Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interpreting future climate conditions in Brazilian cities – Dashboard and EPW files

Authors: Vaz, Igor Catão Martins; Ghisi, Enedir; Thives, Liseane Padilha; Vieira, Abel Silva; Rupp, Ricardo Forgiarini; da Rosa, Aline Schaefer; Flores, Rafael Almeida; +5 Authors

Interpreting future climate conditions in Brazilian cities – Dashboard and EPW files

Abstract

(English) 1. Introduction This project aims to address the impacts of climate change on the built environment by developing a set of future Brazilian EPW (Energy Plus Weather Format) files and a dashboard to interpret and evaluate the data. The future climate files were obtained using the Future Weather Generator (FWG) [1] with climate projections for Brazilian cities, integrating these projections into a code pipeline for automation. In this part of the project, thermal comfort indices, such as the Universal Thermal Climate Index (UTCI) and the Discomfort Index (DI), were also evaluated to understand future thermal comfort conditions. The methodology followed the structure available in the future-EPW-analysis repository: Climate-One-Building (COB) web-scrapping for all available Brazilian EPW files (we recommend doing this carefully so as not to damage the COB infrastructure); Automatic organisation of all EPW files in a folder, extracting them from the ZIP format; Simulation of future climate files using FutureWeatherGenerator [1] in a line of code with default parameters (shown in Table 1); Organisation of all available EPWs (original and simulated) in a single database; Calculation of thermal comfort indices using pythermalcomfort [2]. The main objective is to provide researchers, policymakers and professionals with a comprehensive tool for assessing and mitigating the impacts of climate change in different Brazilian cities, offering accurate data for thermal comfort and energy efficiency modelling. The methodology involves generating future EPW files, validating them against existing literature and visualising the results through a user-friendly dashboard. The study highlights the importance of adaptive and climate-resilient strategies in urban planning and building design. Expected climate changes in Brazil include increased dry bulb temperature and variations in relative humidity, radiation and wind speed in the different bioclimatic zones. The dashboard has been designed to simplify the visualisation of future climate data, focusing on the main climate variables, thermal comfort indices and data visualisation. It allows users to filter by city and automatically calculate all the indices, providing detailed analyses and comparisons of different scenarios. By offering a free, open-access, multi-platform, extensible, customisable and easy-to-maintain tool, the project aims to facilitate continuous updates, new features and corrections. This tool supports decision-making in public policy and urban planning, promoting a more sustainable and resilient built environment in the face of climate change. 2. Further details on the methodology Details on how the indices were selected and how the study was conducted may be found in Vaz et al. [3]. The GitHub repository in future-EPW-analysis [4] also includes details on the step-by-step procedures. Table 1 - Parameters used in the FWG simulation: Parameter Data used in the simulations Base files 578 cities from COB CMIP-6 models BCC-CSM2-MR, CAS-ESM2.0, CMCC-ESM2, CNRM-CM6.1-HR, CNRM-ESM2.1, EC-Earth3, EC-Earth3-Veg, MIROC-ES2H, MIROC6, MRI-ESM2.0, UKESM1.0-LL Grid Bilinear interpolation of the four nearest points Month transition smoothness 72 hours Apply variable limits True Scenarios A total of nine scenarios: One baseline for 2021 and eight future files (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 for 2050 and 2080) Solar hour correction Made by day Diffuse irradiation model Engerer, 2015 3. References [1] E. Rodrigues, M.S. Fernandes, D. Carvalho, Future weather generator for building performance research: An open-source morphing tool and an application, Building and Environment 233 (2023) 110104. https://doi.org/10.1016/j.buildenv.2023.110104. [2] F. Tartarini, S. Schiavon, pythermalcomfort: A Python package for thermal comfort research, SoftwareX 12 (2020) 100578. https://doi.org/10.1016/j.softx.2020.100578. [3] Vaz, I.C.M.; Ghisi, E.; Thives, L.P.; Vieira, A.S.; Rupp, R.F.; da Rosa, A.S.; Flores, R.A.; Bastos, M.B.; Marinoski, D.L.; Silva, A.S.; Weeber, M.; Invidiata, A. (2024). Dashboard for interpreting future climate files used in the simulation of buildings – an outdoor thermal comfort approach. Under submission. [4] Future EPW Analysis - A pipeline of processes aimed at providing future EPW files based on existing models from the literature. Available at: https://github.com/igorcmvaz/future-EPW-analysis. Current version of the dashboard: 1.0.0. Available at Dashboard Comfort. Suggestions for improvements can be made directly in the GitHub repository at future-EPW-analysis or sent to igorcmvaz@gmail.com. -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (Português-BR) 1. Introdução Este projeto tem como objetivo abordar os impactos das mudanças climáticas no ambiente construído, desenvolvendo um conjunto de futuros arquivos EPW (Energy Plus Weather Format) brasileiros e um dashboard para interpretar e avaliar os dados. Os arquivos climáticos futuros foram obtidos com o Future Weather Generator (FWG) [1] com projeções climáticas para cidades brasileiras, integrando essas projeções a um pipeline de código para automação. Nessa parte do projeto, os índices de conforto térmico, como o Universal Thermal Climate Index (UTCI) e o Discomfort Index (DI), também foram avaliados para entender as condições futuras de conforto térmico. A metodologia seguiu a estrutura que está disponível no repositório future-EPW-analysis: Web-scrapping do Climate-One-Building (COB) para todos os arquivos EPW brasileiros disponíveis (recomendamos fazer isso com cuidado para não prejudicar a infraestrutura do COB); Organização automática de todos os arquivos EPW em uma pasta, extraindo-os do formato ZIP; Simulação dos arquivos climáticos futuros por meio do FutureWeatherGenerator [1] em linha de código com parâmetros padrão (mostrados na Tabela 1); Organização de todos os EPW disponíveis (originais e simulados) em um único banco de dados; Cálculo dos índices de conforto térmico com o pythermalcomfort [2]. O objetivo principal é fornecer a pesquisadores, formuladores de políticas e profissionais uma ferramenta abrangente para avaliar e mitigar os impactos das mudanças climáticas em diferentes cidades brasileiras, oferecendo dados precisos para modelagem de conforto térmico e eficiência energética. A metodologia envolve a geração de futuros arquivos EPW, validando-os com a literatura existente e visualizando os resultados por meio de um dashboard de fácil utilização. O estudo destaca a importância de estratégias adaptativas e resistentes ao clima no planejamento urbano e no projeto de edificações. As mudanças climáticas esperadas no Brasil incluem o aumento da temperatura de bulbo seco e variações na umidade relativa, radiação e velocidade do vento nas diferentes zonas bioclimáticas. O dashboard foi projetado para simplificar a visualização dos dados climáticos futuros, concentrando-se nas principais variáveis climáticas, índices de conforto térmico e visualização dos dados. Ele permite que os usuários filtrem por cidade e calculem automaticamente todos os índices, fornecendo análises detalhadas e comparações de diferentes cenários. Ao oferecer uma ferramenta gratuita, de acesso aberto, multiplataforma, extensível, personalizável e de fácil manutenção, o projeto visa a facilitar atualizações contínuas, novos recursos e correções. Essa ferramenta apoia a tomada de decisões em políticas públicas e planejamento urbano, promovendo um ambiente construído mais sustentável e resiliente em face das mudanças climáticas. 2. Mais detalhes sobre a metodologia Detalhes sobre a seleção dos índices de conforto e como o estudo foi conduzido podem ser encontrados em Vaz et al. [3]. O repositório GitHub em future-EPW-analysis [4] também inclui detalhes sobre os procedimentos passo a passo. Tabela 1 - Parâmetros usados na simulação do FWG Parâmetro Dados utilizados na simulação Arquivos base 578 cidades do COB Modelos CMIP-6 BCC-CSM2-MR, CAS-ESM2.0, CMCC-ESM2, CNRM-CM6.1-HR, CNRM-ESM2.1, EC-Earth3, EC-Earth3-Veg, MIROC-ES2H, MIROC6, MRI-ESM2.0, UKESM1.0-LL Malha Interpolação bilinear dos quatro pontos mais próximos Suavização da transição mensal 72 horas Aplicar limites das variáveis Sim Cenários Total de nove cenários: Um arquivo base em 2021 e oito arquivos futuros (SSP1-2.6, SSP2-4.5, SSP3-7.0 e SSP5-8.5 para 2050 e 2080) Correção de hora solar Feita por dia Modelo de radiação difusa Engerer (2015) 3. Referências [1] E. Rodrigues, M.S. Fernandes, D. Carvalho, Future weather generator for building performance research: An open-source morphing tool and an application, Building and Environment 233 (2023) 110104. https://doi.org/10.1016/j.buildenv.2023.110104. [2] F. Tartarini, S. Schiavon, pythermalcomfort: A Python package for thermal comfort research, SoftwareX 12 (2020) 100578. https://doi.org/10.1016/j.softx.2020.100578. [3] Vaz, I.C.M.; Ghisi, E.; Thives, L.P.; Vieira, A.S.; Rupp, R.F.; da Rosa, A.S.; Flores, R.A.; Bastos, M.B.; Marinoski, D.L.; Silva, A.S.; Weeber, M.; Invidiata, A. (2024). Dashboard for interpreting future climate files used in the simulation of buildings – an outdoor thermal comfort approach. Under submission. [4] Future EPW Analysis - A pipeline of processes aimed at providing future EPW files based on existing models from the literature. Available at: https://github.com/igorcmvaz/future-EPW-analysis. Versão atual do dashboard: 1.0.0. Disponível em Dashboard conforto. As sugestões de melhorias podem ser feitas diretamente no repositório do GitHub em future-EPW-analysis ou enviadas para igorcmvaz@gmail.com. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Keywords

thermal comfort, Simulation software, EPW, Sustainable building, Climatic changes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research