Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2019
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2019
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2019
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

Datasets on multiparameter glacier change dynamics for the Jankar Chhu Watershed, Lahaul Himalaya, India

Authors: orcid bw Das, Suresh;
Das, Suresh
ORCID
Derived by OpenAIRE algorithms or harvested from 3rd party repositories

Das, Suresh in OpenAIRE
Milap Chand Sharma;

Datasets on multiparameter glacier change dynamics for the Jankar Chhu Watershed, Lahaul Himalaya, India

Abstract

Characterization of glacier changes in the surface area, terminus, equilibrium line altitude (ELA), elevation, and velocity was worked out for the Jankar Chhu Watershed (JCW) of Lahaul Himalaya using freely available satellite remote sensing data and the limited number of field observations. We studied changes using Corona (1971), Landsat (1993‒2017), Sentinel 2A (2016), the SRTM Digital Elevation Model (DEM; 2000), and the global TanDEM‒X DEM (2014). Our results showed that changes in glacier area (‒14.7 ± 4.3 km²), terminus (‒4.7 ± 0.4 m a¯¹), and ELA (~ 20 m rise) between 1971 and 2016 are smaller than previously reported. Glacier lake area increased by ~0.3 km² during 1971‒2016. An intricate pattern of mass changes across the JCW was observed, with surface lowering on an average of ‒0.7 ± 0.4 m a¯¹ which equates to a geodetic mass balance of ‒0.6 ± 0.4 m w.e. a¯¹ during 2000‒14. The computed glacier surface velocities (1971‒2017) reveal nearly stagnant debris-covered ablation zone but the dynamically active main trunk. The present study provides valuable insights into the recent multiparameter glacier variations, which are of critical importance to assess the future glacier dynamics on a regional scale in areas like the present one.

Keywords

Terminus retreat, Jankar Chhu Watershed, Elevation change, Surface velocity, Lahaul Himalaya, Debris-covered glacier, Glacier change, Remote sensing, Topographic factors, Geodatic mass budget

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average