Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SECURES-Met - A European wide meteorological data set suitable for electricity modelling (supply and demand) for historical climate and climate change projections

Authors: Herbert Formayer; Philipp Maier; Imran Nadeem; David Leidinger; Fabian Lehner; Franziska Schöniger; Gustav Resch; +5 Authors

SECURES-Met - A European wide meteorological data set suitable for electricity modelling (supply and demand) for historical climate and climate change projections

Abstract

For the modelling of electricity production and demand, meteorological conditions are becoming more relevant due to the increasing contribution from renewable electricity production. But the requirements on meteorological data sets for electricity modelling are quite high. One challenge is the high temporal resolution, since a typical time step for modelling electricity production and demand is one hour. On the other side the European electricity market is highly connected, so that a pure country based modelling does not make sense and at least the whole European Union area has to be considered. Additionally, the spatial resolution of the data set must be able to represent the thermal conditions, which requires high spatial resolution at least in mountainous regions. All these requirements lead to huge data amounts for historic observations and even more for climate change projections for the whole 21st century. Thus, we have developed an aggregated European wide data set that has a temporal resolution of one hour, covers the whole EU area, has a reasonable size but is considering the high spatial variability. This meteorological data set for Europe for the historical period and climate change projections fulfills all relevant criteria for energy modelling. It has a hourly temporal resolution, considers local effects up to a spatial resolution of 1 km and has a suitable size, as all variables are aggregated to NUTS regions. Additionally meteorological information from wind speed and river run-off is directly converted into power productions, using state of the art methods and the current information on the location of power plants. Within the research project SECURES (https://www.secures.at/) this data set has been widely used for energy modelling. The SECURES-Met dataset provides variables visible in the table. Variable Short name Unit Aggregation methods Temporal resolution Temperature (2m) T2M °C °C spatial mean population weighted mean (recommended) hourly Radiation GLO (mean global radiation) BNI (direct normal irradiation) Wm-2 Wm-2 spatial mean population weighted mean (recommended) hourly Potential Wind Power WP 1 normalized with potentially available area hourly Hydro Power Potential HYD-RES (reservoir) HYD-ROR (run-of-river) MW 1 summed power production summed power production normalized with average daily production daily SECURES-Met is available in a tabular csv format for the historical period (1981-2020, Hydro only until 2010) created from ERA5 and ERA5-Land and two future emission scenarios (RCP 4.5 and RCP 8.5, both 1951-2100, wind power starting from 1981, hydro power from 1971) created from one CMIP5 EUROCORDEX model (GCM: ICHEC-EC-EARTH, RCM: KNMI-RACMO22E, ensemble run: r12i1p1) on the spatial aggregation level NUTS0 (country-wide), NUTS2 (province-wide), NUTS3 (Austria only), and EEZ (Exclusive Economic Zones, offshore only). The data is divided into the historical (Historical.zip) and the two emission scenarios (Future_RCP45.zip and Future_RCP85.zip), a README file, which describes, how the files are organized, and a folder (Meta.zip), which has information and shape files of the different NUTS levels. As population weighted temperature and radiation represent values in geographical areas more relevant for solar power, it is highly relevant to use population weighted files. Spatial mean should be used for reference only. The project SECURES, in which this dataset was produced, was funded by the Climate and Energy Fund (Klima- und Energiefonds) under project number KR19AC0K17532.

Keywords

Europe, Radiation, Energy, Electricity, Austria, Energy System Modelling, Temperature, NUTS, Energy Meteorology, Hydro Power Potential, Climate Change Projections, Hourly, Wind Power Potential

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Top 10%
Average
Average
Related to Research communities
Energy Research