
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Funneling and Enhancing Upconversion Emission by Light-Harvesting Molecular Wires
Triplet-triplet annihilation (TTA) upconversion has shown promising potentials in the augmentation of solar energy conversion. However, challenging issues exist in improving TTA upconversion efficiencies in solid-states, one of which is the back energy transfer from upconverted singlet annihilators to sensitizers resulting in decreasing upconversion emission. Here we present a light-harvesting molecular wire consisting of dendrons with 9,10-diphenylanthracene derivatives (DPAEH) at the periphery and para-phenylene ethynylene oligomers (PPE) as the wire core. The peripheral DPAEH antenna funnels singlet excitonic energy to the wire on a 12 ps timescale. Incorporating the molecular wire into the TTA upconversion solid consisting of the DPAEH annihilator and the porphyrin sensitizer evidently improves the upconversion quantum yield from 1.5% to 2.7% upon 532 nm excitation by suppressing the back energy transfer from the singlet annihilator to the sensitizer. This finding offers a potential route to use singlet energy light-harvesting architecture for enhancing TTA upconversion.
Triplet-triplet annihilation (TTA) upconversion has shown promising potentials in the augmentation of solar energy conversion. However, challenging issues exist in improving TTA upconversion efficiencies in solid-states, one of which is the back energy transfer from upconverted singlet annihilators to sensitizers resulting in decreasing upconversion emission. Here we present a light-harvesting molecular wire consisting of dendrons with 9,10-diphenylanthracene derivatives (DPAEH) at the periphery and para-phenylene ethynylene oligomers (PPE) as the wire core. The peripheral DPAEH antenna funnels singlet excitonic energy to the wire on a 12 ps timescale. Incorporating the molecular wire into the TTA upconversion solid consisting of the DPAEH annihilator and the porphyrin sensitizer evidently improves the upconversion quantum yield from 1.5% to 2.7% upon 532 nm excitation by suppressing the back energy transfer from the singlet annihilator to the sensitizer. This finding offers a potential route to use singlet energy light-harvesting architecture for enhancing TTA upconversion.
- Chinese Academy of Sciences China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
energy transfer, Dendrimers, Triplet-triplet annihilation, Chemical
energy transfer, Dendrimers, Triplet-triplet annihilation, Chemical
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
