
Found an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Effect of temperature on energy transfer in Nd3+/Yb3+ co-doped silicate glass
Authors: Xiaoqi Jiang; Wang, Xin; Sun, Yan; Shubin Chen; Hu, Lili;
Abstract
The energy transfer of Nd3+/Yb3+ in silicate glass with temperature was studied. The fluorescence spectra and fluorescence lifetime were measured at a series of different temperatures, and the energy transfer efficiency at different temperatures was calculated
研究了Nd3+/Yb3+在硅酸盐玻璃中能量传递随温度的变化,测量了一系列不同温度下荧光光谱和荧光寿命,并计算了不同温度下的能量传递效率
Related Organizations
- Chinese Academy of Sciences China (People's Republic of)
- Shanghai Institute of Optics and Fine Mechanics China (People's Republic of)
Keywords
energy transfer, Nd3+/Yb3+, silicate glass, temperature dependence, Materials science
energy transfer, Nd3+/Yb3+, silicate glass, temperature dependence, Materials science
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
0
Average
Average
Average
Beta
Related to Research communities
Energy Research