Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.57760/sc...
Dataset . 2023
License: CC BY
Data sources: Datacite
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A gridded phenology dataset of woody plants in Europe from 1951–2021

Authors: ZHU Mengyao; DAI Junhu; WANG Huanjiong; HAO Yulong; LIU Wei; CAO Lijuan;

A gridded phenology dataset of woody plants in Europe from 1951–2021

Abstract

This dataset contains the grid data of the first leaf date (FLD) and first flower date (FFD) of six woody plants in Europe (34°57′N-72°3′N,25°3′W-40°3′E) from 1951 to 2021, with a spatial resolution of 0.1° and a temporal resolution of 1 day. The quality evaluation of the grid phenology data shows that the average error of FLD and FFD is 7.9 and 7.6 days respectively, which has high simulation accuracy.Method: Based on the in-situ phenology observations from the Pan European Phenology Project (PEP725) in the past 70 years, this dataset employed three phenology models (Unichill, Unified and Temporal-Spatial Coupling) to predict and upscale the phenology data on the continental scale, and developed a grid phenology dataset of woody plants in Europe.Dataset composition: The dataset contains the gridded phenology data of six woody plants in Europe from 1951 to 2021, including the spring FLD (BBCH11.zip) and the spring FFD (BBCH60.zip). The annual data of each species is stored as a Geotiff file with 651 row × 371 column. The data is named according to "year (YYYY) + species genus (Genus) + phenophase (_xx)". For example, "2021Aesculus_11. tif" is the grid data file of the FLD of European Aesculus in 2021. The unit of phenology data is Julian day of year (DOY), which represents the actual number of days from the date of phenology occurrence to January 1 of the current year. The valid value is 1-366, and the invalid filling value is 999. The spatial reference system of the data is EPSG:4326 (WGS84).

This dataset contains the grid data of the first leaf date (FLD) and first flower date (FFD) of six woody plants in Europe (34°57′N-72°3′N,25°3′W-40°3′E) from 1951 to 2021, with a spatial resolution of 0.1° and a temporal resolution of 1 day. The quality evaluation of the grid phenology data shows that the average error of FLD and FFD is 7.9 and 7.6 days respectively, which has high simulation accuracy.Method: Based on the in-situ phenology observations from the Pan European Phenology Project (PEP725) in the past 70 years, this dataset employed three phenology models (Unichill, Unified and Temporal-Spatial Coupling) to predict and upscale the phenology data on the continental scale, and developed a grid phenology dataset of woody plants in Europe.Dataset composition: The dataset contains the gridded phenology data of six woody plants in Europe from 1951 to 2021, including the spring FLD (BBCH11.zip) and the spring FFD (BBCH60.zip). The annual data of each species is stored as a Geotiff file with 651 row × 371 column. The data is named according to "year (YYYY) + species genus (Genus) + phenophase (_xx)". For example, "2021Aesculus_11. tif" is the grid data file of the FLD of European Aesculus in 2021. The unit of phenology data is Julian day of year (DOY), which represents the actual number of days from the date of phenology occurrence to January 1 of the current year. The valid value is 1-366, and the invalid filling value is 999. The spatial reference system of the data is EPSG:4326 (WGS84).

Related Organizations
Keywords

Europe, Earth science, Phenology, Woody plants, Climate change, First leaf date, First flower date, Biology, Phenology model

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research