Filters
Clear All- Energy Research
- Australian Research Council (ARC)
- 2002
- Energy Research
- Australian Research Council (ARC)
- 2002
assignment_turned_in Project2002 - 2006Funder: Australian Research Council (ARC) Project Code: FF0241390Funder Contribution: 1,417,500 AUDThe Fellowship would be used to launch a major new initiative addressing one of the key challenges facing microelectronics, the incorporation of optical functions into high density silicon integrated circuits, as well as accelerating development of a "third" generation of photovoltaic solar cells using similar techniques. This third generation thin-film technology would be capable of fundamentally higher energy conversion efficiency than earlier generations, at low cost. In both cases, the targeted outcome over the period of the Fellowship is to develop technology to the stage where it can be commercially evaluated, in a way likely to maximise Australian benefits.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=arc_________::1bf728421923b15b7e6fbad71bb95133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=arc_________::1bf728421923b15b7e6fbad71bb95133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2002 - 2005Funder: Australian Research Council (ARC) Project Code: DP0210049Funder Contribution: 580,000 AUDWe will investigate energy transfer from the solar wind to the Earth's space environment, and down to low altitudes. The coupling occurs via reconnection between geomagnetic and interplanetary field lines, ultra-low frequency waves, and momentum transfer. Signatures of these processes include perturbations in the ionosphere and the geomagnetic field and these will be examined using ionospheric radars and sounders (in Tasmania, Antarctica, Canada and Alaska) and magnetometers (Antarctica and Alaska). Space weather can profoundly affect satellite, radio and terrestrial communication networks and observations of the type described here are essential to the development of realistic space weather models.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=arc_________::63b21169db1e4156736abc512dfaa43c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=arc_________::63b21169db1e4156736abc512dfaa43c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2002 - 2003Funder: Australian Research Council (ARC) Project Code: LX0212065Funder Contribution: 63,191 AUDThe objective of this proposed research is to develop an intelligent control system for selection of optimal process parameters in welding using solar energy concentration. This investigation endeavours to address the complex interaction between welding process parameters and quality of weld. The results of the work will lead to signicant advancement of knowledge in automation of the welding process and will generate global interest due to its innovation and applications in automotive manufacturing and steel fabrication industries. The research activity proposed in this application is expected to further strengthen the links between QUT and Mokpo National University and will enhance the capabilities of both universities in attracting funding from local manufacturing industries.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=arc_________::59736e7374623a75520765f3e1ef6071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=arc_________::59736e7374623a75520765f3e1ef6071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
assignment_turned_in Project2002 - 2006Funder: Australian Research Council (ARC) Project Code: FF0241390Funder Contribution: 1,417,500 AUDThe Fellowship would be used to launch a major new initiative addressing one of the key challenges facing microelectronics, the incorporation of optical functions into high density silicon integrated circuits, as well as accelerating development of a "third" generation of photovoltaic solar cells using similar techniques. This third generation thin-film technology would be capable of fundamentally higher energy conversion efficiency than earlier generations, at low cost. In both cases, the targeted outcome over the period of the Fellowship is to develop technology to the stage where it can be commercially evaluated, in a way likely to maximise Australian benefits.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=arc_________::1bf728421923b15b7e6fbad71bb95133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=arc_________::1bf728421923b15b7e6fbad71bb95133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2002 - 2005Funder: Australian Research Council (ARC) Project Code: DP0210049Funder Contribution: 580,000 AUDWe will investigate energy transfer from the solar wind to the Earth's space environment, and down to low altitudes. The coupling occurs via reconnection between geomagnetic and interplanetary field lines, ultra-low frequency waves, and momentum transfer. Signatures of these processes include perturbations in the ionosphere and the geomagnetic field and these will be examined using ionospheric radars and sounders (in Tasmania, Antarctica, Canada and Alaska) and magnetometers (Antarctica and Alaska). Space weather can profoundly affect satellite, radio and terrestrial communication networks and observations of the type described here are essential to the development of realistic space weather models.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=arc_________::63b21169db1e4156736abc512dfaa43c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=arc_________::63b21169db1e4156736abc512dfaa43c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2002 - 2003Funder: Australian Research Council (ARC) Project Code: LX0212065Funder Contribution: 63,191 AUDThe objective of this proposed research is to develop an intelligent control system for selection of optimal process parameters in welding using solar energy concentration. This investigation endeavours to address the complex interaction between welding process parameters and quality of weld. The results of the work will lead to signicant advancement of knowledge in automation of the welding process and will generate global interest due to its innovation and applications in automotive manufacturing and steel fabrication industries. The research activity proposed in this application is expected to further strengthen the links between QUT and Mokpo National University and will enhance the capabilities of both universities in attracting funding from local manufacturing industries.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=arc_________::59736e7374623a75520765f3e1ef6071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=arc_________::59736e7374623a75520765f3e1ef6071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu