search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.

  • Energy Research
  • OA Publications Mandate: No
  • 2016

  • Funder: National Science Foundation Project Code: 1336534
    more_vert
  • Funder: National Science Foundation Project Code: 1420967
    more_vert
  • Funder: Fundação para a Ciência e a Tecnologia, I.P. Project Code: SFRH/BD/51931/2012
    more_vert
  • Funder: European Commission Project Code: 309395
    more_vert
  • Funder: UK Research and Innovation Project Code: NE/M021882/1
    Funder Contribution: 99,897 GBP

    The UK is the third largest generator of wind power in Europe, with 584 projects, 4,366 turbines and four of the five largest European wind farms. Conflicts between wind energy generation and bats - animals with high legal protection across Europe - therefore have important implications for the economy and energy security as well as biodiversity. We are currently concluding research that has quantified the scale of collision and disturbance impacts and examined potential predictors of risk. This is the only work in the UK to address this issue at commercial scale wind energy installations. The purpose of the current project is to determine with stakeholders the practical applications of the environmental data and expertise amassed during this extensive and costly research, and to package these with the assistance of users into accessible formats to facilitate more effective management of the environmental impacts of wind energy production. Stakeholders have emphasised to us that evidence-based decision making requires that they not only have access to the overall results of scientific analyses, but to information and guidance on which to base best-practice for future commercial surveys and monitoring. Because of our extensive research, we have available a unique dataset on bat activity and casualty rates at wind turbine sites across the UK, as well as unparalleled experience in practical monitoring techniques: this project will allow these to be shared with end-users. Specific outputs will include species- and region-specific reference ranges for bat activity levels, allowing stakeholders to contextualise and interpret the bat activity levels routinely recorded in surveys conducted by ecological consultants; Geographic Information System (GIS) layers to facilitate evidence-based decision making about cumulative ecological impacts; information on appropriate monitoring techniques; and assistance with understanding the potential consequences of developments for local and national bat populations. The direct beneficiaries will be wind energy developers and operators (industry), professional ecological consultants (service providers), local government ecologists and planning committees (decision makers), and Statutory Nature Conservation Organisations (SNCOs, policy makers). Keywords: environmental impact assessment; wind turbines; bats; ecological data; wind energy Stakeholders: Statutory Nature Conservation Organisations (Natural Resources Wales, Natural England, Scottish Natural Heritage) Local Authority Ecologists and Planners (including The Association of Local Government Ecologists) Professional Ecological Consultants (including the Chartered Institute of Ecology and Environmental Management) Department for Environment, Food and Rural Affairs Department of Energy and Climate Change Wind energy developers and operators (including all of the major energy suppliers as well as installers of small energy systems) Non-governmental wildlife conservation organisations (e.g. Bat Conservation Trust, The Wildlife Trusts)

    more_vert
  • Funder: National Science Foundation Project Code: 1549716
    more_vert
  • Funder: National Science Foundation Project Code: 1334489
    more_vert
  • Funder: National Science Foundation Project Code: 1335177
    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K009915/1
    Funder Contribution: 302,410 GBP

    The aim of the proposed research is to provide the necessary knowledge to allow the development of a pre-prototype High Performance Vacuum Flat Plate Solar Thermal Collector with minimal materials content. The development of a thin evacuated solar collector offers new and exciting prospects for integrating solar collectors into building designs and for their use in medium temperature (100-200 Celsius) applications such as air conditioning or low temperature process heat. The research planned will develop technology for the effective utilisation of the solar energy resource and fits within EPSRC's Energy theme. Solar thermal energy is predicted to be a significant growth market with the potential to make a significant contribution to reducing fossil fuel use in the building energy sector. The research is targeted at providing new knowledge and techniques that will enable the advances in technology necessary for a step change in solar thermal collector performance to be realised and a range of new products and application areas developed. Such new products will encourage inward investment and lead to the creation of new companies that can contribute significantly to the transition to a low carbon society whilst maintaining and improving quality of life.

    more_vert
  • Funder: National Science Foundation Project Code: 1244079
    more_vert
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
168 Projects
  • Funder: National Science Foundation Project Code: 1336534
    more_vert
  • Funder: National Science Foundation Project Code: 1420967
    more_vert
  • Funder: Fundação para a Ciência e a Tecnologia, I.P. Project Code: SFRH/BD/51931/2012
    more_vert
  • Funder: European Commission Project Code: 309395
    more_vert
  • Funder: UK Research and Innovation Project Code: NE/M021882/1
    Funder Contribution: 99,897 GBP

    The UK is the third largest generator of wind power in Europe, with 584 projects, 4,366 turbines and four of the five largest European wind farms. Conflicts between wind energy generation and bats - animals with high legal protection across Europe - therefore have important implications for the economy and energy security as well as biodiversity. We are currently concluding research that has quantified the scale of collision and disturbance impacts and examined potential predictors of risk. This is the only work in the UK to address this issue at commercial scale wind energy installations. The purpose of the current project is to determine with stakeholders the practical applications of the environmental data and expertise amassed during this extensive and costly research, and to package these with the assistance of users into accessible formats to facilitate more effective management of the environmental impacts of wind energy production. Stakeholders have emphasised to us that evidence-based decision making requires that they not only have access to the overall results of scientific analyses, but to information and guidance on which to base best-practice for future commercial surveys and monitoring. Because of our extensive research, we have available a unique dataset on bat activity and casualty rates at wind turbine sites across the UK, as well as unparalleled experience in practical monitoring techniques: this project will allow these to be shared with end-users. Specific outputs will include species- and region-specific reference ranges for bat activity levels, allowing stakeholders to contextualise and interpret the bat activity levels routinely recorded in surveys conducted by ecological consultants; Geographic Information System (GIS) layers to facilitate evidence-based decision making about cumulative ecological impacts; information on appropriate monitoring techniques; and assistance with understanding the potential consequences of developments for local and national bat populations. The direct beneficiaries will be wind energy developers and operators (industry), professional ecological consultants (service providers), local government ecologists and planning committees (decision makers), and Statutory Nature Conservation Organisations (SNCOs, policy makers). Keywords: environmental impact assessment; wind turbines; bats; ecological data; wind energy Stakeholders: Statutory Nature Conservation Organisations (Natural Resources Wales, Natural England, Scottish Natural Heritage) Local Authority Ecologists and Planners (including The Association of Local Government Ecologists) Professional Ecological Consultants (including the Chartered Institute of Ecology and Environmental Management) Department for Environment, Food and Rural Affairs Department of Energy and Climate Change Wind energy developers and operators (including all of the major energy suppliers as well as installers of small energy systems) Non-governmental wildlife conservation organisations (e.g. Bat Conservation Trust, The Wildlife Trusts)

    more_vert
  • Funder: National Science Foundation Project Code: 1549716
    more_vert
  • Funder: National Science Foundation Project Code: 1334489
    more_vert
  • Funder: National Science Foundation Project Code: 1335177
    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K009915/1
    Funder Contribution: 302,410 GBP

    The aim of the proposed research is to provide the necessary knowledge to allow the development of a pre-prototype High Performance Vacuum Flat Plate Solar Thermal Collector with minimal materials content. The development of a thin evacuated solar collector offers new and exciting prospects for integrating solar collectors into building designs and for their use in medium temperature (100-200 Celsius) applications such as air conditioning or low temperature process heat. The research planned will develop technology for the effective utilisation of the solar energy resource and fits within EPSRC's Energy theme. Solar thermal energy is predicted to be a significant growth market with the potential to make a significant contribution to reducing fossil fuel use in the building energy sector. The research is targeted at providing new knowledge and techniques that will enable the advances in technology necessary for a step change in solar thermal collector performance to be realised and a range of new products and application areas developed. Such new products will encourage inward investment and lead to the creation of new companies that can contribute significantly to the transition to a low carbon society whilst maintaining and improving quality of life.

    more_vert
  • Funder: National Science Foundation Project Code: 1244079
    more_vert