search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.

  • Energy Research
  • 2017

  • Funder: National Science Foundation Project Code: 1363167
    more_vert
  • Funder: European Commission Project Code: 278912
    more_vert
  • Funder: European Commission Project Code: 745439
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    This project is a technical, economic and commercial feasibility assessment into a portable wind turbine for ships (the Hi-GEN) which will cut reliance on auxiliary, fossil fuel generators when ships are at anchor or in port (referred to as "downtime"). Fuel costs and green house gas emissions are significant issues for the shipping and fishing industries, especially during downtime. During downtime, ships use auxiliary fossil fuel generators to power the ships. Fossil fuel generators are expensive to run and produce harmful emissions including CO, CO2, CH4, NOX, PM, SOX and NMVOC. Shipping emissions in ports are substantial accounted for 18.3 million tonnes of CO2 emission in 2011. External costs of port emissions for the largest 50 ports is estimated at €12bn. Global fisheries accounts for 1.8% of total global oil consumption and international fishing contributes between 13 and 20 million tonnes of CO2 emissions annually. Yet fishing vessels spend between 44% and 70% of the year NOT at sea. The objective of the overall project is to establish the Hi-GEN as a cost effective, environmentally friendly and preferred source of auxiliary power for commercial vessels during downtime. The overall objective of this study is to identify and consider all relevant factors into the economic and technical viability of the Hi-GEN. The Hi-GEN is an innovative and novel low carbon technology. IP is owned by the Company and currently patent pending with UK and PCT. Every vessel in the world which has a crane could benefit from using the Hi-GEN. The benefits would be significant: 1. Vessel owners could make significant savings on operating costs and achieve an economic payback of between 2 and 4 years (see case study below) 2.Marine industries could save up to 32 million litres of fuel and 4.5 million tonnes of CO2 per annum, boosting the blue economy 3. The company could add 40 new jobs and €24m of revenue over 4 years; a fraction of the total market potential of over €2bn

    more_vert
  • Funder: European Commission Project Code: 761874
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    Wind power has established itself in recent years as a clean alternative to conventional sources of electrical generation.Reduced costs and wider deployment, especially in the European market, have led over the past decade to its use at sea. Here, the wind resource is larger and more constant, allowing higher unitary power turbines. However, the marine environment itself also imposes a number of restrictions and challenges. The technology that is being deployed now is fixed to the seabed, using different types of foundations, but a large amount of wind resources is in deeper waters, where floating solutions are needed. Because of their initial higher costs, these solutions are still under development, with only three prototypes installed worldwide. The challenge nowadays is to reduce the costs of floating wind turbine structures that will ease the access to a much larger energy potential than available in land, more easily manageable and with lower visual impact. The aim of the SATH project is the demonstration in real conditions of a floating structure for offshore wind which will allow a reduction in LCOE (Levelized Cost Of Energy) over the current floating technology. To achieve this, it is proposed as a first objective the validation and qualifying for this technology, of a 1:3 scaled prototype not only from a technical point of view but also from economic and necessary logistics. The SATH solution is a platform that consists of two cylindrical floats (of prestressed reinforced concrete) which can be manufactured onshore and transported and positioned at the final location in a single mooring point allowing the rotation of the platform around, self-aligning with the wind direction.

    more_vert
  • Funder: Fundação para a Ciência e a Tecnologia, I.P. Project Code: SFRH/BPD/71816/2010
    more_vert
  • Funder: National Science Foundation Project Code: 1433521
    more_vert
  • Funder: National Science Foundation Project Code: 1151151
    more_vert
  • Funder: UK Research and Innovation Project Code: 320190
    Funder Contribution: 50,000 GBP

    The capital cost of existing solar thermal collectors is the major barrier to use rather than efficiency; the objective of this project is to produce a roof based solar collector with adequate efficiency but at a potentially much lower cost that could be deployed on the large roof areas of commercial buildings to reduce space heating costs. The project aim is to capitalise on the strength and thermal conductivity of carbon nanotubes (CNT's) to reinforce polymer materials that have previously been too weak for thermal panel production and bring to market a robust and durable polymer solar thermal collection system that could be manufactured and installed at a 50% lower cost than existing metallic solar collectors with lightweight and aesthetic benefits that would allow significantly enhanced solar collection capability. Also the project aims to embed sensors to provide data to optimise heat energy generation and also allow friendly end user control. This would involve developing a software package to utilise the data analytics to perform as a sales tool that would enable a reduction in the cost of sale by up to 50%.This project will bring together expert roofing and polymer manufacturing companies alongside leading academics in the design of solar systems to optimise the polymeric panels through laboratory and solar simulated testing, determine an economic production process, attain solar keymark of the panels, the accreditation of manufacturing factories, protection of the component supply chain, securing of installers, extensive market analysis , innovativemarket exploitation and dissemination for successful commercialisation

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/J017361/1
    Funder Contribution: 4,088,360 GBP

    The market for photovoltaic (PV) solar modules is experiencing astonishing growth due to increasing energy demand, security of supply issues, increasing cost of fossil fuels and concerns over global warming. The world market for photovoltaics grew by 139% to 21GW in 2010. Although this extraordinary pace of growth is unlikely to be maintained in the short term it will advance rapidly again at the point where grid parity is achieved. It is important that the UK retains a strong research presence in this important technology. It is proposed that the SUPERSOLAR Hub of Universities be set up to co-ordinate research activities, establish a network of academic and industrial researchers, conduct cross-technology research and provide a focus for international co-operation. SUPERSOLAR is led by CREST at Loughborough University and supported by the Universities of Bath, Liverpool, Oxford, Sheffield and Southampton. This group is active in all of the PV technologies including new materials, thin film chalcopyrite, c-Si, thin film a-Si, dye sensitised solar cells, organic PV, concentrator PV, PV systems performance and testing. SUPERSOLAR will set up a solar cell efficiency measurement facility for the benefit of the PV community in the UK. The consortium contains a deliberate balance of expertise, with no bias towards any one technology.

    more_vert
  • Funder: European Commission Project Code: 649883
    Overall Budget: 1,850,060 EURFunder Contribution: 1,850,060 EUR

    URBAN LEARNING gathers capitals and other large cities across Europe facing the common challenge of considerable population growth while being committed to significantly reduce fossil energy consumption and CO2 emissions. E.g. Stockholm grew by more than 12.000 people / a (1.5%); in the next 10 years Vienna has to build for 200.000 new people. Efficient and effective planning processes will be crucial for climbing this mountain. Vienna, Berlin, Paris, Stockholm, Amsterdam/Zaanstad, Warsaw and Zagreb aim to enhance the capacity of their local authorities on integrative urban energy planning, as response to new challenges from EU EPBD and RES directives as well as to changes of technologies and market conditions and the pressure to provide sufficient, affordable homes. The focus is put on the governance processes related to the (re-)development of concrete sites. While some cities already started ambitious urban development projects, the institutionalisation of these experiences is missing - despite awareness and willingness, due to lack of knowledge, lack of time and the need for collaboration across departments, which is not a common practice in many administrations in Europe. External stimulus is needed to overcome these barriers, and to address these issues collectively with external key stakeholders, such as DNOs and energy suppliers, and across cities. Focus will be on multi-disciplinary learning – concentrating on innovative technological solutions, instruments and tools as well as on innovative governance elements - and to capitalise this learning to institutionalise integrative urban energy planning. Improving the governance processes is expected to have significant energy impacts on homes and workplaces to be built and refurbished for over 3 million more people in the participating cities in the next 20 years: more than 1.700 GWh/a of energy savings and over 2.000 GWh/a renewable energy produced. Special emphasis is put on knowledge transfer to 150 more cities.

    more_vert