search
  • End Year
    Clear
  • Funder
  • Start Year
  • Active within
  • OA Publications Mandate
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.

  • Energy Research
  • 2020

  • Funder: UK Research and Innovation Project Code: 1942013

    The photovoltaics field has been revolutionized by the emergence of lead-based hybrid perovskites. These materials are high quality semiconductors that can be deposited cheaply, from solution, at room temperature. However, the toxicity of lead and stability issues for these perovskites are driving a new search for more benign and stable alternatives. In this project we will try to find other chemically processable Bi based compounds which resemble the same defect tolerance as Lead based perovskites, but tackling the two major drawbacks mentioned earlier. The project will study the effect of systematic doping of BiOI with chalcogenides S and Se on the optical and electronic properties of the films. The aim is to form idealized microstructures in large area, chemically grown thin films and in doing so optimize the physical properties and optimize transport properties to give long diffusion lengths. Different experiments will be conducted and will give insight into routes to improve the transport properties and minority-carrier lifetimes in BiOI and related films, and to maximize charge extraction at device interfaces, all of which should provide a route to more efficient photovoltaic devices.

    more_vert
  • Funder: UK Research and Innovation Project Code: 1879632

    The generation of energy is the most important scientific and technological challenge that faces humankind in the 21st century. In order to supply the demand of increasing global energy requirements, the development of low cost, easily processable, efficient photovoltaics (PV) is essential. Third generation PV offers a potentially low cost, easily processable and efficient technology and before us lays a great opportunity in solar energy research. International progress in PV research and technology is currently running at an unparalleled rate, with major contributions from the SPECIFIC and Ser Solar groups. The extremely rapid evolution of solution processed halide perovskite-based solar cells during the last few years (reaching efficiencies in the range of 15-20%, including certified 20.1%) makes them an extremely strong candidate to develop a cost and performance competitive PV technology. Photovoltaic devices which utilise light harvesting perovskite chemistries could potentially offer a cheaper and simpler technology in comparison to the typically favoured silicon solar cell. However, current issues when using perovskites for PV application include physicochemical degradation, instability and lifetime issues up on exposure to ambient conditions. The fundamental workings and reasoning for the aforementioned problems when using perovskite absorbers are yet to be fully understood. The project is concerned with gaining a better understanding of halide perovskite chemistry through identification and investigation of the manufacturing conditions or parameters which may lead to device instabilities. Fluorescence microscopy and fluorescence spectroscopy are two techniques which will be applied to investigate the photoluminescent properties and morphologies of a range of perovskite materials prepared under different conditions. The project research will explore routes to increasing the efficiency and light harvesting ability of these devices. There is also scope to use X-ray diffraction to investigate the crystalline structure of the perovskite layer and to determine whether the uniformity of this layer (amongst other layers) is affected by the alteration of certain parameters during device manufacture. The degradation of perovskite is believed to be exacerbated due to reaction with oxygen which will be investigated using transient absorption spectroscopy as a method to monitor oxygen diffusion within halide-perovskite solar cells. The overall aim is to develop an understanding of device photophysics and photochemistry resulting in the development of new materials to improve stability and cost and leading to world leading, high impact articles in the premier international journals in the field.

    more_vert
  • Funder: European Commission Project Code: 806844
    Overall Budget: 2,486,080 EURFunder Contribution: 1,740,260 EUR

    Extreme weather conditions (i.e. strong and unsteady winds, icing, etc.) - that countries such as Iceland and the other four Nordics (Sweden, Denmark, Norway, and Finland), the UK, Ireland, Canada´s Prairies, Northern US, Russia, and Nigeria along with high altitude sites face - make traditional wind turbines (horizontal-axis) to spin out of control resulting in catastrophic system failure in the first year of operation. As a result, these locations needed a different kind of wind technology capable of working over a wide production range (whether it’s in the stormy afternoon, in hurricanes or on calm and icy winter nights in the range of -10 to -30 °C) with mimimum maintenance. IceWind has therefore identified a business opportunity for a rugged and durable VAWT intended for extreme wind conditions with a power capacity range between 300W to 1,000W and focused on on-site small applications that require a continuous 100% green energy source of reduced carbon footprint and will bring down energy bills of customers through self-generation and consumption. The excellent match of aerodynamics and materials give our NJORD turbines unique features such as optimal structural stability, strength, and hence durability to withstand the most extreme wind conditions. Our VAWT can produce electricity at very low wind speeds, as well as spin elegantly, non-stop and noiseless at high speed winds. As for our commercial strategy, we plan to respond: 1) directly to individual end-users of isolated areas for residential applications (i.e. cabins, homes, and small farms) mainly in Iceland and other EU countries (i.e. the other four Nordics, the UK, and Ireland) and 2) owners of telecom towers worldwide. Expected total net income from selling NJORD turbines after deducting costs of purchase, manufacture and distribution fees amounts to a cumulative 10.32M€ along with the creation of over 140 skilled works in IceWind and partners worldwide for the 2020-2024 period.

    more_vert
  • Funder: UK Research and Innovation Project Code: 105235
    Funder Contribution: 67,627 GBP

    Production of a prototype internal blade inspection system for use inside Offshore Wind Turbine blades including a cost benefit analysis.

    more_vert
  • Funder: National Science Foundation Project Code: 1829252
    more_vert
  • Funder: European Commission Project Code: 811145
    Overall Budget: 140,192 EURFunder Contribution: 100,000 EUR

    The proposed Action will support analytical work carried out in the context of the IEA-Morocco Joint Work Programme (JWP). Under the JWP, which came into effect on 28 June 2017, the IEA will provide technical support and advice to assist Morocco in developing a strategy to design an integrated assessment of long-term low carbon energy transition pathways. The IEA-Morocco work programme will include capacity building and training in data and statistics; modelling and support for the de-carbonisation programme. The IEA will also provide advice on further energy price liberalisation and energy security in the oil, gas and electricity sectors. It will also advise the Moroccan Ministry of Energy, Mines and Sustainable Development (MEMDD) and related stakeholders on optimal technologies and best practices that can be implemented to help Morocco attain its Energy Efficiency and Renewable Energy targets. It is anticipated that EU support will cover the Energy Efficiency and Renewable Energy work streams outlined in the JWP. In addition to on-site visits, IEA experts will host interactive webinars in English with Moroccan energy efficiency stakeholders on mutually agreed priority areas. The IEA could also assist MEMDD and the Moroccan Agency for Energy Efficiency (AMEE) in assessing the economic and other conditions for a push towards clean, electric cooking. The main purpose of this activity would be to ensure that energy efficiency measures are accelerated and run parallel with renewable energy deployment. This proposal relates to item 57 in the Horizon 2020 Work Programme for 2016-2017. This action will be instrumental in supporting Morocco’s transition to a reliable, sustainable and competitive energy system, in particular in Horizon 2020 priority areas such as reduction in energy consumption and carbon footprint; generation and transmission of lower-cost, low-carbon electricity; new knowledge and technologies;

    more_vert
  • Funder: National Science Foundation Project Code: 1821526
    more_vert
  • Funder: National Science Foundation Project Code: 1822206
    more_vert
  • Funder: National Science Foundation Project Code: 1452857
    more_vert
  • Funder: National Science Foundation Project Code: 1463644
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
91 Projects
  • Funder: UK Research and Innovation Project Code: 1942013

    The photovoltaics field has been revolutionized by the emergence of lead-based hybrid perovskites. These materials are high quality semiconductors that can be deposited cheaply, from solution, at room temperature. However, the toxicity of lead and stability issues for these perovskites are driving a new search for more benign and stable alternatives. In this project we will try to find other chemically processable Bi based compounds which resemble the same defect tolerance as Lead based perovskites, but tackling the two major drawbacks mentioned earlier. The project will study the effect of systematic doping of BiOI with chalcogenides S and Se on the optical and electronic properties of the films. The aim is to form idealized microstructures in large area, chemically grown thin films and in doing so optimize the physical properties and optimize transport properties to give long diffusion lengths. Different experiments will be conducted and will give insight into routes to improve the transport properties and minority-carrier lifetimes in BiOI and related films, and to maximize charge extraction at device interfaces, all of which should provide a route to more efficient photovoltaic devices.

    more_vert
  • Funder: UK Research and Innovation Project Code: 1879632

    The generation of energy is the most important scientific and technological challenge that faces humankind in the 21st century. In order to supply the demand of increasing global energy requirements, the development of low cost, easily processable, efficient photovoltaics (PV) is essential. Third generation PV offers a potentially low cost, easily processable and efficient technology and before us lays a great opportunity in solar energy research. International progress in PV research and technology is currently running at an unparalleled rate, with major contributions from the SPECIFIC and Ser Solar groups. The extremely rapid evolution of solution processed halide perovskite-based solar cells during the last few years (reaching efficiencies in the range of 15-20%, including certified 20.1%) makes them an extremely strong candidate to develop a cost and performance competitive PV technology. Photovoltaic devices which utilise light harvesting perovskite chemistries could potentially offer a cheaper and simpler technology in comparison to the typically favoured silicon solar cell. However, current issues when using perovskites for PV application include physicochemical degradation, instability and lifetime issues up on exposure to ambient conditions. The fundamental workings and reasoning for the aforementioned problems when using perovskite absorbers are yet to be fully understood. The project is concerned with gaining a better understanding of halide perovskite chemistry through identification and investigation of the manufacturing conditions or parameters which may lead to device instabilities. Fluorescence microscopy and fluorescence spectroscopy are two techniques which will be applied to investigate the photoluminescent properties and morphologies of a range of perovskite materials prepared under different conditions. The project research will explore routes to increasing the efficiency and light harvesting ability of these devices. There is also scope to use X-ray diffraction to investigate the crystalline structure of the perovskite layer and to determine whether the uniformity of this layer (amongst other layers) is affected by the alteration of certain parameters during device manufacture. The degradation of perovskite is believed to be exacerbated due to reaction with oxygen which will be investigated using transient absorption spectroscopy as a method to monitor oxygen diffusion within halide-perovskite solar cells. The overall aim is to develop an understanding of device photophysics and photochemistry resulting in the development of new materials to improve stability and cost and leading to world leading, high impact articles in the premier international journals in the field.

    more_vert
  • Funder: European Commission Project Code: 806844
    Overall Budget: 2,486,080 EURFunder Contribution: 1,740,260 EUR

    Extreme weather conditions (i.e. strong and unsteady winds, icing, etc.) - that countries such as Iceland and the other four Nordics (Sweden, Denmark, Norway, and Finland), the UK, Ireland, Canada´s Prairies, Northern US, Russia, and Nigeria along with high altitude sites face - make traditional wind turbines (horizontal-axis) to spin out of control resulting in catastrophic system failure in the first year of operation. As a result, these locations needed a different kind of wind technology capable of working over a wide production range (whether it’s in the stormy afternoon, in hurricanes or on calm and icy winter nights in the range of -10 to -30 °C) with mimimum maintenance. IceWind has therefore identified a business opportunity for a rugged and durable VAWT intended for extreme wind conditions with a power capacity range between 300W to 1,000W and focused on on-site small applications that require a continuous 100% green energy source of reduced carbon footprint and will bring down energy bills of customers through self-generation and consumption. The excellent match of aerodynamics and materials give our NJORD turbines unique features such as optimal structural stability, strength, and hence durability to withstand the most extreme wind conditions. Our VAWT can produce electricity at very low wind speeds, as well as spin elegantly, non-stop and noiseless at high speed winds. As for our commercial strategy, we plan to respond: 1) directly to individual end-users of isolated areas for residential applications (i.e. cabins, homes, and small farms) mainly in Iceland and other EU countries (i.e. the other four Nordics, the UK, and Ireland) and 2) owners of telecom towers worldwide. Expected total net income from selling NJORD turbines after deducting costs of purchase, manufacture and distribution fees amounts to a cumulative 10.32M€ along with the creation of over 140 skilled works in IceWind and partners worldwide for the 2020-2024 period.

    more_vert
  • Funder: UK Research and Innovation Project Code: 105235
    Funder Contribution: 67,627 GBP

    Production of a prototype internal blade inspection system for use inside Offshore Wind Turbine blades including a cost benefit analysis.

    more_vert
  • Funder: National Science Foundation Project Code: 1829252
    more_vert
  • Funder: European Commission Project Code: 811145
    Overall Budget: 140,192 EURFunder Contribution: 100,000 EUR

    The proposed Action will support analytical work carried out in the context of the IEA-Morocco Joint Work Programme (JWP). Under the JWP, which came into effect on 28 June 2017, the IEA will provide technical support and advice to assist Morocco in developing a strategy to design an integrated assessment of long-term low carbon energy transition pathways. The IEA-Morocco work programme will include capacity building and training in data and statistics; modelling and support for the de-carbonisation programme. The IEA will also provide advice on further energy price liberalisation and energy security in the oil, gas and electricity sectors. It will also advise the Moroccan Ministry of Energy, Mines and Sustainable Development (MEMDD) and related stakeholders on optimal technologies and best practices that can be implemented to help Morocco attain its Energy Efficiency and Renewable Energy targets. It is anticipated that EU support will cover the Energy Efficiency and Renewable Energy work streams outlined in the JWP. In addition to on-site visits, IEA experts will host interactive webinars in English with Moroccan energy efficiency stakeholders on mutually agreed priority areas. The IEA could also assist MEMDD and the Moroccan Agency for Energy Efficiency (AMEE) in assessing the economic and other conditions for a push towards clean, electric cooking. The main purpose of this activity would be to ensure that energy efficiency measures are accelerated and run parallel with renewable energy deployment. This proposal relates to item 57 in the Horizon 2020 Work Programme for 2016-2017. This action will be instrumental in supporting Morocco’s transition to a reliable, sustainable and competitive energy system, in particular in Horizon 2020 priority areas such as reduction in energy consumption and carbon footprint; generation and transmission of lower-cost, low-carbon electricity; new knowledge and technologies;

    more_vert
  • Funder: National Science Foundation Project Code: 1821526
    more_vert
  • Funder: National Science Foundation Project Code: 1822206
    more_vert
  • Funder: National Science Foundation Project Code: 1452857
    more_vert
  • Funder: National Science Foundation Project Code: 1463644
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph