Filters
Clear All- Energy Research
- OA Publications Mandate: Yes
- 2017
- Energy Research
- OA Publications Mandate: Yes
- 2017
Open Access Mandate for Publications assignment_turned_in Project2017 - 2020Partners:CSIC, IMDEA EnergiaCSIC,IMDEA EnergiaFunder: European Commission Project Code: 746167Overall Budget: 239,191 EURFunder Contribution: 239,191 EURSolar energy, attractive source of energy being it free and endless, can be converted into electricity by means of a Concentrating Solar Power (CSP) plant. However, the biggest limit of such technology is the intermittency and the diurnal nature of the solar light. For their future development, CSP plants need to be coupled with storage system. Among the existing thermal storage systems, the ThermoChemical Storage (TCS) is one of the most promising technology and it is based on the exploitation of the reaction heat of a reversible chemical reaction. Just recently, perovskite systems have drawn increasing interest as promising candidates for TCS systems. Perovskites are generally indicated as ABO3, with A and B the two cations of the structure and with O the oxygen. They exhibit a continuous, quasi-linear oxygen release/uptake within a very wide temperature range. Their reduction being endothermic consists in the heat storage step, while the exothermic oxidation releases heat when it is required. The overall objective of the proposal is to study more earth abundant compositions (Ca-, Fe-, Mn- or Co-based) of perovskites for identifying one or more promising candidate storage medium for the design and the realization of a prototype of a multilevel-cascaded TCS system. It aims at solving the no-easy solution problem of the wide temperature range to be covered by a TCS system for CSP plant by using perovskites with different operating temperatures cascaded from the lowest operating temperature to the maximum one. As main result it could bring the TCS systems to a level closer to the market scale. The research project will be developed in collaboration with the IMDEA Energy Institute and the Materials Science and Engineering Department of Northwestern University. This project idea is totally in line with the current strict global energy and environmental politics and also with the Horizon 2020 objectives.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ac3051511f187ca86d21d7166b2ea40d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ac3051511f187ca86d21d7166b2ea40d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2017 - 2017Partners:ALBACOMP RI RENDSZERINTEGRACIOS KORLATOLT FELELOSSEGU TARSASAG, ALBACOMP RI RENDSZERINTEGRACIOS KORLATOLT FELELOSSEGU TARSASAGALBACOMP RI RENDSZERINTEGRACIOS KORLATOLT FELELOSSEGU TARSASAG,ALBACOMP RI RENDSZERINTEGRACIOS KORLATOLT FELELOSSEGU TARSASAGFunder: European Commission Project Code: 774686Overall Budget: 71,429 EURFunder Contribution: 50,000 EURSilicon based solar panels dominate the photovoltaic (PV) market but it seems they have reached their limits due to three major limiting factors: (1) high manufacturing costs, (2) inflexible shape and (3) not improving efficiency. These factors do not allow PV prices to drop under a theoretical minimum resulting in the fact solar investments have a reasonable ROI only with state subsidies, which is a major obstacle in the way of the further spreading of renewables, although they could be the answer for the world’s energy security and fossil energy reduction issues. The project aims to break these barriers by exchanging the silicon based active layer with perovskite based composites, this innovation offers a solution for all of the 3 aforementioned hindrances. In our revenue model two types of solar panels will be sold through direct (own sales network, webshop) and indirect (distributors) channels. Expected direct/indirect sales ratio will be 50-50% by the end of the initial business period. The overall market (TAM) is global (size ~2.8 bn EUR), the initial market segment is Europe (size: ~ 1/3 of TAM).. Targeted users are companies the with the profile of fulfilling the end users’ (households, public institutions, industry) energy needs by building or installing solar farms or solar based systems. Competitive advantages: (1) significantly cheaper (1/3) price; (2) only slightly less (but rapidly increasing) performance; (3) flexible shape; In Phase 1 focus will be on a technical viability check covering potential material compounds, issues of scaling up the cell, efficiency and lifespan analyses; market survey to support our market concept; conducting an FTO analysis. Project plan of Phase 2 and a detailed business plan will also be elaborated. The TRL-9 level product is being planned to be elaborated in the frame of Phase 2, estimated cost is 1,500,000 EUR.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::26e849af1f7cf7ab31f17f88a7acdd2f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::26e849af1f7cf7ab31f17f88a7acdd2f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2017 - 2018Partners:SIDAC CNC SRL, ALFAPRESS, SIDAC CNC SRLSIDAC CNC SRL,ALFAPRESS,SIDAC CNC SRLFunder: European Commission Project Code: 791019Overall Budget: 71,429 EURFunder Contribution: 50,000 EURWind Power brings the lowest cost of electricity generation of the renewable energy technologies available today. This fact has positioned the wind energy as the most promising renewable energy technologies to power our future: up to 12% of global electricity by 2020 will be supplied by wind reducing CO2 emissions by more than 1.5 billion tons per year, more than 5 times actual level. Although the cost of electricity from onshore wind power is already at very low level, wind energy poses new challenges such as a limited number of available sites with suitable wind speed, location, and access, limited predictability and short-/long-term variability. And this is why; investments in specialised low wind turbines and in the utilisation of smart grid systems vs. current power generation facilities are key to efficiently and reliably improve the utilisation of wind systems. Moreover, the small wind turbine sector continues to develop growing at a Compound Annual Growth Rate (CAGR) of 16.4% (global cumulative installed capacity of 4.8GW by 2025). In this scenario, Alfapress and Sidac find their major business opportunity with VENTURAS focused on small consumers. VENTURAS is a small (gearless) wind turbine that comprises 3 rotor blades that can change its aerodynamic surface over time (variable twist and active pitch control). Hence, the power production of the turbine is maximized and at the same time the operating loads are reduced. It is suitable for low/very low wind speed locations having an exclusive capacity factor (Cp) and, thus, the merest cost of energy. With the market launch of VENTURAS wind turbine, Alfapress and Sidac plan to gain market share within the EU small wind industry for microgeneration capacities (from 5kW to 60kW): 1) initially in 2020 in our home market, Italy and UK, 2) to expand sales to Germany, Denmark, and Spain in 2021, 3) Then to other countries. In doing so, our consortium will create over 82 jobs and generate 36.82M€ market opportunity.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::773f1990d5561b94bcf449dd58db883a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::773f1990d5561b94bcf449dd58db883a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2017 - 2017Partners:ASOLUNA, ASOLUNAASOLUNA,ASOLUNAFunder: European Commission Project Code: 781835Overall Budget: 71,429 EURFunder Contribution: 50,000 EURHeating and cooling in our buildings accounts for 40% of energy consumption and 36% of CO2 emissions in the EU. Moreover, 84% of heating and cooling is still generated from fossil fuels, while only 16% is generated from renewable energy. By improving the energy efficiency of buildings, we could reduce total EU energy consumption by 5-6% and lower CO2 emissions by about 5%. In 2016, the Commission proposed the EU Heating and Cooling Strategy that includes plans to make energy efficient renovations to buildings easier. The EU/Global market is requesting a cost effective and high efficient solution. Current commercial solutions are of very low efficiency, expensive and not suitable for old buildings. Asoluna, a Swedish SME that designs and manufactures solar energy solutions, has design and prototyped Prisma: a multifunctional solar thermal collector for integration in the building envelope in such forms as facades, decorative elements, parapets, glazing etc. It acts as a climate envelope that efficiently protects the building from unwanted heating or cooling, while at the same time delivering solar heating to the building’s systems. Crucially, it has been designed in collaboration with some of Europe’s leading sustainability architects to be easy to retrofit on to existing buildings. Prisma exhibits the following characteristics: 1) 100 % renewable energy; 2) Patented; 3) Reduces annual energy costs by 50 % throughout the building’s life; 4) High efficiency (<80%); 5) Suitable for new and old buildings; 6) Easy to install; 7) Follows the statutory instruments, directives and standards for façade applications; 8) Low environmental impact; 9) Cost effective; 10) Unique design with no frame; 11) Various colours and shading available; 12) Designed by architects, for architects. We anticipate that Prisma will be launched on to the market in 2020 and reaching sales of 28.5M€ by 2024, with a Net Present Value of 12M€ based on a project cost of SME phase II of 2M€%.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::50ea146657ee39b7849793f35c2f7f22&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::50ea146657ee39b7849793f35c2f7f22&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2017 - 2021Partners:TAMPERE UNIVERSITY OF TECHNOLOGY, TAMPERE UNIVERSITY OF TECHNOLOGY, TAMPERE UNIVERSITY, TAMPERE UNIVERSITYTAMPERE UNIVERSITY OF TECHNOLOGY,TAMPERE UNIVERSITY OF TECHNOLOGY,TAMPERE UNIVERSITY,TAMPERE UNIVERSITYFunder: European Commission Project Code: 695116Overall Budget: 2,492,720 EURFunder Contribution: 2,492,720 EURCompound semiconductor solar cells are providing the highest photovoltaic conversion efficiency, yet their performance lacks far behind the theoretical potential. This is a position we will challenge by engineering advanced III-V optoelectronics materials and heterostructures for better utilization of the solar spectrum, enabling efficiencies approaching practical limits. The work is strongly motivated by the global need for renewable energy sources. To this end, AMETIST framework is based on three vectors of excellence in: i) material science and epitaxial processes, ii) advanced solar cells exploiting nanophotonics concepts, and iii) new device fabrication technologies. Novel heterostructures (e.g. GaInNAsSb, GaNAsBi), providing absorption in a broad spectral range from 0.7 eV to 1.4 eV, will be synthesized and monolithically integrated in tandem cells with up to 8-junctions. Nanophotonic methods for light-trapping, spectral and spatial control of solar radiation will be developed to further enhance the absorption. To ensure a high long-term impact, the project will validate the use of state-of-the-art molecular-beam-epitaxy processes for fabrication of economically viable ultra-high efficiency solar cells. The ultimate efficiency target is to reach a level of 55%. This would enable to generate renewable/ecological/sustainable energy at a levelized production cost below ~7 ¢/kWh, comparable or cheaper than fossil fuels. The work will also bring a new breath of developments for more efficient space photovoltaic systems. AMETIST will leverage the leading position of the applicant in topical technology areas relevant for the project (i.e. epitaxy of III-N/Bi-V alloys and key achievements concerning GaInNAsSb-based tandem solar cells). Thus it renders a unique opportunity to capitalize on the group expertize and position Europe at the forefront in the global competition for demonstrating more efficient and economically viable photovoltaic technologies.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ae29acf06ef8c080a02272831e7746b9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ae29acf06ef8c080a02272831e7746b9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2017 - 2019Partners:Frandsen Industri, Frandsen IndustriFrandsen Industri,Frandsen IndustriFunder: European Commission Project Code: 778847Overall Budget: 1,992,000 EURFunder Contribution: 1,394,400 EURWind power plays a crucial role in Europe’s strategy towards a zero-carbon, clean energy-powered economy. While efforts have primarily focused on the development of wind turbine technology, it starts to become evident that the planning associated with the end-of-service life of these installations has been vastly neglected. Wind turbine blades are a particularly challenging component due to their composition and sheer size, which causes uncertainty about how to get rid of them in an environmentally and economically sustainable manner. Frandsen Industri (FI) will tackle this problem through prototyping and testing a mobile separation platform, which shred and separate the blades directly on the wind farms, and have its functionalities and performance documented and validated. This mobile separation platform will meet the need of the wind farm owners and the wind farm manufacturers by solving the existing problems related to decommissioning wind turbine blades, as it will: • Reduce the transportation costs by 16x • Reduce the CO2-emissions by 16x • Enable the wind farm owners to recover the scrap value of €50/ton of their expired blades. As up to 250,000 tons of expired wind turbine blades are to be decommissioned per year in our targeted markets in the 2020-2030 period, the business opportunity amounts to €29M/year. The total CO2-emissions for transporting EOSLWTs blades per year using the current method is 1,540,000 kg. Using our mobile separation platform, the CO2-emissions for transporting EOSLWTs blades will be reduced by a factor of 16x, to 96,250 kg per year. We at FI want to continue our award-winning technological development of solutions within the sphere of decommissioning expired raw materials. The EcoBlade project is a vital part in this, as it allows us to strive for a leadership position in the future market of blade disposal, expecting a cumulated profit of over €10 million in year 5 post project.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::60180b0b49b3ba26fdc1edcc1e612103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::60180b0b49b3ba26fdc1edcc1e612103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2017 - 2020Partners:UPV/EHU, KUL, INDAR ELECTRIC SL, FHG, FUNDACION CIDAUT +10 partnersUPV/EHU,KUL,INDAR ELECTRIC SL,FHG,FUNDACION CIDAUT,INGETEAM,KOLEKTOR MAGNET TECHNOLOGY GMBH,University of Birmingham,AICHISTEEL CORPORATION,University of Florence,KOLEKTOR MAGNET TECHNOLOGY GMBH,Ceit,CEIT,AICHISTEEL CORPORATION,FUNDACION CIDAUTFunder: European Commission Project Code: 720838Overall Budget: 4,532,640 EURFunder Contribution: 4,443,890 EURRegarding NdFeB PM technology for WT, it is still necessary to break through 3 important barriers: Strong dependence on China for supply and high price of REE present in PM, high difficulty of substitution of REE in PM, and technical and economic barriers that avoid establishing commercially viable, large-scale REE recycling framework. In this context, NEOHIRE main objective is to reduce the use of REE, and Co and Ga, in WTG. This objective is mainly achieved through the development of: a) New concept of bonded NdFeB magnets able to substitute the present state-of-the-art sintered magnets for WT, and b) New recycling techniques for these CRM from the future and current PM wastes. In this way, the EU external demand of REE and CRM for PM in WTG will be reduced in a 50%. The specific objectives are: i) To develop a new NdFeB material solution that reduces the use REE and CRM amount in PM for WTG (100% of HRE, 30% of LRE Nd/Pr, and 100% of CRM Co and Ga), ii) To increase the deliverable electric power in wind power electric generators from current 2.74 MW to 3.56 MW per 1Tn of REE owing to novel electric machine designs, iii) To research and develop two recycling processes to highly increase the CRM recycling rates in NdFeB PM wastes for sintered PM from current WT (increase from 0 to 70% the recovered Nd, separate 100% of Dy and recover 90% of Co) and novel Bonded NEOHIRE PM (recycling almost 95% of Nd), iv) To achieve an economic and technically feasible large-scale framework for NdFeB PM commercial recycling, and v) To ensure the economic and technical sustainability of NdFeB resin-bonded PM developed technologies. NEOHIRE will count on PM material RTD experts (CEIT, UOB), material recycling experts (UOB, KU LEUVEN), material characterisation RTD experts (CEIT, UPV, LBF), JP Powder manufacturer (AICHI), PM manufacturer (KOLEKTOR), LCA experts (UNIFI) and WT manufacturer (INDAR). AICHI (Japan) will be involved by providing advice and raw materials to the project.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::08e69d22639efe8808f2544a441062ed&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::08e69d22639efe8808f2544a441062ed&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2017 - 2019Partners:NTNU, ENTPE, ENERGY CITIES, ECEEE, KIT +16 partnersNTNU,ENTPE,ENERGY CITIES,ECEEE,KIT,TBU,ACENTOLINE COMUNICACION EDITORA SL,Duneworks,ODTÜ,Anglia Ruskin University,ENERGY CITIES,Duneworks,POLITO,ODTÜ,FOEE,Anglia Ruskin University,BLACK SEA ENERGY RESEARCH CENTRE,ECEEE,ACENTOLINE COMUNICACION EDITORA SL,FOE,TBUFunder: European Commission Project Code: 731264Overall Budget: 1,996,570 EURFunder Contribution: 1,996,570 EURSHAPE-ENERGY “Social Sciences and Humanities for Advancing Policy in European Energy” will develop Europe’s expertise in using and applying energy-SSH to accelerate the delivery of Europe’s Energy Union Strategy. Our consortium brings together 7 leading academic partners and 6 highly respected policy, industry and communications practitioners from across the Energy, Social Sciences and Humanities (energy-SSH) research field, to create an innovative and inclusive Platform. Our partners are involved in numerous European energy projects, have extensive, relevant networks in the energy domain, and represent exceptional coverage across SSH disciplines across Europe. These enable us to maximise the impact of our Platform delivery within an intensive 2-year project. SHAPE-ENERGY brings together those who ‘demand’ energy-SSH research and those who ‘supply’ that research to collaborate in ‘shaping’ Europe’s energy future. A key deliverable will be a “2020-2030 research and innovation agenda” to underpin post-Horizon 2020 energy-focused work programmes. It will highlight how energy-SSH can be better embedded into energy policymaking, innovation and research in the next decade. Our SHAPE-ENERGY Platform activities will involve >12,114 stakeholders and begin with scoping activities including: an academic workshop, call for evidence, interviews with business leaders and NGOs, online citizen debates and multi-level policy meetings. We will build on our scoping to then deliver: 18 multi-stakeholder workshops in cities across Europe, an Early Stage Researcher programme, Horizon 2020 sandpits, interdisciplinary think pieces, a research design challenge, and a pan-European conference. Our expert consortium will bring their considerable expertise to overcome difficulties in promoting interdisciplinary and cross-sector working, and reach out to new parts of Europe to create an inclusive, dynamic and open Platform. SHAPE-ENERGY will drive forward Europe’s low carbon energy future.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::24f28dc18bc09da9a1ca94e3951c40cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::24f28dc18bc09da9a1ca94e3951c40cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2017 - 2019Partners:LSBU, MILLIDYNE OY, ONYX, OPUS, CEA +4 partnersLSBU,MILLIDYNE OY,ONYX,OPUS,CEA,MILLIDYNE OY,LSBU,OPUS,ONYXFunder: European Commission Project Code: 760311Overall Budget: 2,767,470 EURFunder Contribution: 2,267,640 EURDirt on solar panels causes losses of more than €40bn p.a. and over 100Mtonnes of CO2 emission. Cleaning is expensive (up to €100/m2 depending on accessibility) and wastes water. Current self-cleaning coatings suffer from short lifetime (2-3 years), poor transparency, and high cost (over €20/m2). They are usually not cost-effective, are not widely used, and losses are accepted as part of the operation of the plant. The objective of this action is to bring to market a new product, SolarSharc, which will provide, for the first time, a transparent, durable, cost-effective and permanent self-cleaning solution for solar panels. This patented coating technology uses multi-functionalised silica nano-particles bonded strongly to the coating polymer matrix to provide a highly transparent, low cost, durable and robust self-cleaning coating. Target markets are utility scale solar and the rapidly growing (18% CAGR €26bn by 2022) Building Integrated Photovoltaics (BIPV) markets. The objectives of this 24 month action are to commercialise the SolarSharc coating and new self-cleaning BIPV modules from the current TRL6 prototype to operational demonstration (TRL9) in BIPV, certification, commercialisation and supply chain measures to deliver rapid growth. The action will be delivered by a consortium of SMEs (Opus, Onyx, Millidyne) representing the supply chain from materials to application together with specialist coatings technologists from London South Bank University and solar testing expertise from CEA. We are requesting a grant of €2.78m to bring SolarSharc to market, securing €2m of post-action financing for sales growth. Commercialisation of SolarSharc will develop new revenues for the consortium of €71m with profits of €45m cumulative over 5 years of sales, creating 243 new jobs within the consortium and providing a return on EU investment in this action of 19:1. These sales will increase output from new solar installation by 9000GWh, saving 5Mtonne of CO2 emission.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::6374c467de5ea601cd581e8afcde3d9b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::6374c467de5ea601cd581e8afcde3d9b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2017 - 2022Partners:Newcastle University, University of Newcastle upon TyneNewcastle University,University of Newcastle upon TyneFunder: European Commission Project Code: 715354Overall Budget: 1,499,840 EURFunder Contribution: 1,499,840 EURThis proposal will develop new transparent p-type semiconductors that will make dye-sensitized solar cells (DSC) a vastly more efficient and a realistic prospect for carbon-free energy generation worldwide. Two key challenges will be addressed: (1) a means of converting NIR radiation to increase the amount of sunlight utilised from 35% to over 70%; (2) a means of storing the energy. Almost all the research in the field is based on dye or “perovskite” sensitized TiO2 (n-type) solar cells, which are limited by their poor spectral response in the red-NIR. pTYPE approaches the problem differently: tandem DSCs will be developed which combine a n-type and a p-type DSC in a single p/n device. This increases the theoretical efficiency from 33% to 43% by extending the spectral response without sacrificing the voltage. The device will be modified with catalysts to convert H2O or CO2 and sunlight into fuel without using sacrificial reagents that limit the efficiency of current systems. An efficient tandem DSC has not yet been developed because p-type DSCs are much less efficient than n-type cells. As an independent Royal Society Dorothy Hodgkin fellow I increased the photocurrent by developing new dyes. This project will exploit this breakthrough by increasing the voltage, which is currently limited by the NiO semiconductor conventionally used. I will rapidly synthesise libraries of alternative p-type semiconductors; select promising candidates based on key criteria which can be measured on a single sample within minutes: transparency and dye adsorption (for high light harvesting efficiency by the dye), conductivity (for high charge collection efficiency) and valence band potential (for high voltage); assemble the new materials in tandem DSCs. As one of the few researchers experienced in preparing, characterising and optimising each aspect of this photoelectrochemical system, I aim to match the efficiency from TiO2 with p-type DSCs to obtain tandem efficiencies above 20%.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::9edb6b45f54c0a7efccd861d0f2e27df&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::9edb6b45f54c0a7efccd861d0f2e27df&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Open Access Mandate for Publications assignment_turned_in Project2017 - 2020Partners:CSIC, IMDEA EnergiaCSIC,IMDEA EnergiaFunder: European Commission Project Code: 746167Overall Budget: 239,191 EURFunder Contribution: 239,191 EURSolar energy, attractive source of energy being it free and endless, can be converted into electricity by means of a Concentrating Solar Power (CSP) plant. However, the biggest limit of such technology is the intermittency and the diurnal nature of the solar light. For their future development, CSP plants need to be coupled with storage system. Among the existing thermal storage systems, the ThermoChemical Storage (TCS) is one of the most promising technology and it is based on the exploitation of the reaction heat of a reversible chemical reaction. Just recently, perovskite systems have drawn increasing interest as promising candidates for TCS systems. Perovskites are generally indicated as ABO3, with A and B the two cations of the structure and with O the oxygen. They exhibit a continuous, quasi-linear oxygen release/uptake within a very wide temperature range. Their reduction being endothermic consists in the heat storage step, while the exothermic oxidation releases heat when it is required. The overall objective of the proposal is to study more earth abundant compositions (Ca-, Fe-, Mn- or Co-based) of perovskites for identifying one or more promising candidate storage medium for the design and the realization of a prototype of a multilevel-cascaded TCS system. It aims at solving the no-easy solution problem of the wide temperature range to be covered by a TCS system for CSP plant by using perovskites with different operating temperatures cascaded from the lowest operating temperature to the maximum one. As main result it could bring the TCS systems to a level closer to the market scale. The research project will be developed in collaboration with the IMDEA Energy Institute and the Materials Science and Engineering Department of Northwestern University. This project idea is totally in line with the current strict global energy and environmental politics and also with the Horizon 2020 objectives.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ac3051511f187ca86d21d7166b2ea40d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ac3051511f187ca86d21d7166b2ea40d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2017 - 2017Partners:ALBACOMP RI RENDSZERINTEGRACIOS KORLATOLT FELELOSSEGU TARSASAG, ALBACOMP RI RENDSZERINTEGRACIOS KORLATOLT FELELOSSEGU TARSASAGALBACOMP RI RENDSZERINTEGRACIOS KORLATOLT FELELOSSEGU TARSASAG,ALBACOMP RI RENDSZERINTEGRACIOS KORLATOLT FELELOSSEGU TARSASAGFunder: European Commission Project Code: 774686Overall Budget: 71,429 EURFunder Contribution: 50,000 EURSilicon based solar panels dominate the photovoltaic (PV) market but it seems they have reached their limits due to three major limiting factors: (1) high manufacturing costs, (2) inflexible shape and (3) not improving efficiency. These factors do not allow PV prices to drop under a theoretical minimum resulting in the fact solar investments have a reasonable ROI only with state subsidies, which is a major obstacle in the way of the further spreading of renewables, although they could be the answer for the world’s energy security and fossil energy reduction issues. The project aims to break these barriers by exchanging the silicon based active layer with perovskite based composites, this innovation offers a solution for all of the 3 aforementioned hindrances. In our revenue model two types of solar panels will be sold through direct (own sales network, webshop) and indirect (distributors) channels. Expected direct/indirect sales ratio will be 50-50% by the end of the initial business period. The overall market (TAM) is global (size ~2.8 bn EUR), the initial market segment is Europe (size: ~ 1/3 of TAM).. Targeted users are companies the with the profile of fulfilling the end users’ (households, public institutions, industry) energy needs by building or installing solar farms or solar based systems. Competitive advantages: (1) significantly cheaper (1/3) price; (2) only slightly less (but rapidly increasing) performance; (3) flexible shape; In Phase 1 focus will be on a technical viability check covering potential material compounds, issues of scaling up the cell, efficiency and lifespan analyses; market survey to support our market concept; conducting an FTO analysis. Project plan of Phase 2 and a detailed business plan will also be elaborated. The TRL-9 level product is being planned to be elaborated in the frame of Phase 2, estimated cost is 1,500,000 EUR.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::26e849af1f7cf7ab31f17f88a7acdd2f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::26e849af1f7cf7ab31f17f88a7acdd2f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2017 - 2018Partners:SIDAC CNC SRL, ALFAPRESS, SIDAC CNC SRLSIDAC CNC SRL,ALFAPRESS,SIDAC CNC SRLFunder: European Commission Project Code: 791019Overall Budget: 71,429 EURFunder Contribution: 50,000 EURWind Power brings the lowest cost of electricity generation of the renewable energy technologies available today. This fact has positioned the wind energy as the most promising renewable energy technologies to power our future: up to 12% of global electricity by 2020 will be supplied by wind reducing CO2 emissions by more than 1.5 billion tons per year, more than 5 times actual level. Although the cost of electricity from onshore wind power is already at very low level, wind energy poses new challenges such as a limited number of available sites with suitable wind speed, location, and access, limited predictability and short-/long-term variability. And this is why; investments in specialised low wind turbines and in the utilisation of smart grid systems vs. current power generation facilities are key to efficiently and reliably improve the utilisation of wind systems. Moreover, the small wind turbine sector continues to develop growing at a Compound Annual Growth Rate (CAGR) of 16.4% (global cumulative installed capacity of 4.8GW by 2025). In this scenario, Alfapress and Sidac find their major business opportunity with VENTURAS focused on small consumers. VENTURAS is a small (gearless) wind turbine that comprises 3 rotor blades that can change its aerodynamic surface over time (variable twist and active pitch control). Hence, the power production of the turbine is maximized and at the same time the operating loads are reduced. It is suitable for low/very low wind speed locations having an exclusive capacity factor (Cp) and, thus, the merest cost of energy. With the market launch of VENTURAS wind turbine, Alfapress and Sidac plan to gain market share within the EU small wind industry for microgeneration capacities (from 5kW to 60kW): 1) initially in 2020 in our home market, Italy and UK, 2) to expand sales to Germany, Denmark, and Spain in 2021, 3) Then to other countries. In doing so, our consortium will create over 82 jobs and generate 36.82M€ market opportunity.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::773f1990d5561b94bcf449dd58db883a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::773f1990d5561b94bcf449dd58db883a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2017 - 2017Partners:ASOLUNA, ASOLUNAASOLUNA,ASOLUNAFunder: European Commission Project Code: 781835Overall Budget: 71,429 EURFunder Contribution: 50,000 EURHeating and cooling in our buildings accounts for 40% of energy consumption and 36% of CO2 emissions in the EU. Moreover, 84% of heating and cooling is still generated from fossil fuels, while only 16% is generated from renewable energy. By improving the energy efficiency of buildings, we could reduce total EU energy consumption by 5-6% and lower CO2 emissions by about 5%. In 2016, the Commission proposed the EU Heating and Cooling Strategy that includes plans to make energy efficient renovations to buildings easier. The EU/Global market is requesting a cost effective and high efficient solution. Current commercial solutions are of very low efficiency, expensive and not suitable for old buildings. Asoluna, a Swedish SME that designs and manufactures solar energy solutions, has design and prototyped Prisma: a multifunctional solar thermal collector for integration in the building envelope in such forms as facades, decorative elements, parapets, glazing etc. It acts as a climate envelope that efficiently protects the building from unwanted heating or cooling, while at the same time delivering solar heating to the building’s systems. Crucially, it has been designed in collaboration with some of Europe’s leading sustainability architects to be easy to retrofit on to existing buildings. Prisma exhibits the following characteristics: 1) 100 % renewable energy; 2) Patented; 3) Reduces annual energy costs by 50 % throughout the building’s life; 4) High efficiency (<80%); 5) Suitable for new and old buildings; 6) Easy to install; 7) Follows the statutory instruments, directives and standards for façade applications; 8) Low environmental impact; 9) Cost effective; 10) Unique design with no frame; 11) Various colours and shading available; 12) Designed by architects, for architects. We anticipate that Prisma will be launched on to the market in 2020 and reaching sales of 28.5M€ by 2024, with a Net Present Value of 12M€ based on a project cost of SME phase II of 2M€%.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::50ea146657ee39b7849793f35c2f7f22&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::50ea146657ee39b7849793f35c2f7f22&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2017 - 2021Partners:TAMPERE UNIVERSITY OF TECHNOLOGY, TAMPERE UNIVERSITY OF TECHNOLOGY, TAMPERE UNIVERSITY, TAMPERE UNIVERSITYTAMPERE UNIVERSITY OF TECHNOLOGY,TAMPERE UNIVERSITY OF TECHNOLOGY,TAMPERE UNIVERSITY,TAMPERE UNIVERSITYFunder: European Commission Project Code: 695116Overall Budget: 2,492,720 EURFunder Contribution: 2,492,720 EURCompound semiconductor solar cells are providing the highest photovoltaic conversion efficiency, yet their performance lacks far behind the theoretical potential. This is a position we will challenge by engineering advanced III-V optoelectronics materials and heterostructures for better utilization of the solar spectrum, enabling efficiencies approaching practical limits. The work is strongly motivated by the global need for renewable energy sources. To this end, AMETIST framework is based on three vectors of excellence in: i) material science and epitaxial processes, ii) advanced solar cells exploiting nanophotonics concepts, and iii) new device fabrication technologies. Novel heterostructures (e.g. GaInNAsSb, GaNAsBi), providing absorption in a broad spectral range from 0.7 eV to 1.4 eV, will be synthesized and monolithically integrated in tandem cells with up to 8-junctions. Nanophotonic methods for light-trapping, spectral and spatial control of solar radiation will be developed to further enhance the absorption. To ensure a high long-term impact, the project will validate the use of state-of-the-art molecular-beam-epitaxy processes for fabrication of economically viable ultra-high efficiency solar cells. The ultimate efficiency target is to reach a level of 55%. This would enable to generate renewable/ecological/sustainable energy at a levelized production cost below ~7 ¢/kWh, comparable or cheaper than fossil fuels. The work will also bring a new breath of developments for more efficient space photovoltaic systems. AMETIST will leverage the leading position of the applicant in topical technology areas relevant for the project (i.e. epitaxy of III-N/Bi-V alloys and key achievements concerning GaInNAsSb-based tandem solar cells). Thus it renders a unique opportunity to capitalize on the group expertize and position Europe at the forefront in the global competition for demonstrating more efficient and economically viable photovoltaic technologies.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ae29acf06ef8c080a02272831e7746b9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ae29acf06ef8c080a02272831e7746b9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2017 - 2019Partners:Frandsen Industri, Frandsen IndustriFrandsen Industri,Frandsen IndustriFunder: European Commission Project Code: 778847Overall Budget: 1,992,000 EURFunder Contribution: 1,394,400 EURWind power plays a crucial role in Europe’s strategy towards a zero-carbon, clean energy-powered economy. While efforts have primarily focused on the development of wind turbine technology, it starts to become evident that the planning associated with the end-of-service life of these installations has been vastly neglected. Wind turbine blades are a particularly challenging component due to their composition and sheer size, which causes uncertainty about how to get rid of them in an environmentally and economically sustainable manner. Frandsen Industri (FI) will tackle this problem through prototyping and testing a mobile separation platform, which shred and separate the blades directly on the wind farms, and have its functionalities and performance documented and validated. This mobile separation platform will meet the need of the wind farm owners and the wind farm manufacturers by solving the existing problems related to decommissioning wind turbine blades, as it will: • Reduce the transportation costs by 16x • Reduce the CO2-emissions by 16x • Enable the wind farm owners to recover the scrap value of €50/ton of their expired blades. As up to 250,000 tons of expired wind turbine blades are to be decommissioned per year in our targeted markets in the 2020-2030 period, the business opportunity amounts to €29M/year. The total CO2-emissions for transporting EOSLWTs blades per year using the current method is 1,540,000 kg. Using our mobile separation platform, the CO2-emissions for transporting EOSLWTs blades will be reduced by a factor of 16x, to 96,250 kg per year. We at FI want to continue our award-winning technological development of solutions within the sphere of decommissioning expired raw materials. The EcoBlade project is a vital part in this, as it allows us to strive for a leadership position in the future market of blade disposal, expecting a cumulated profit of over €10 million in year 5 post project.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::60180b0b49b3ba26fdc1edcc1e612103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::60180b0b49b3ba26fdc1edcc1e612103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2017 - 2020Partners:UPV/EHU, KUL, INDAR ELECTRIC SL, FHG, FUNDACION CIDAUT +10 partnersUPV/EHU,KUL,INDAR ELECTRIC SL,FHG,FUNDACION CIDAUT,INGETEAM,KOLEKTOR MAGNET TECHNOLOGY GMBH,University of Birmingham,AICHISTEEL CORPORATION,University of Florence,KOLEKTOR MAGNET TECHNOLOGY GMBH,Ceit,CEIT,AICHISTEEL CORPORATION,FUNDACION CIDAUTFunder: European Commission Project Code: 720838Overall Budget: 4,532,640 EURFunder Contribution: 4,443,890 EURRegarding NdFeB PM technology for WT, it is still necessary to break through 3 important barriers: Strong dependence on China for supply and high price of REE present in PM, high difficulty of substitution of REE in PM, and technical and economic barriers that avoid establishing commercially viable, large-scale REE recycling framework. In this context, NEOHIRE main objective is to reduce the use of REE, and Co and Ga, in WTG. This objective is mainly achieved through the development of: a) New concept of bonded NdFeB magnets able to substitute the present state-of-the-art sintered magnets for WT, and b) New recycling techniques for these CRM from the future and current PM wastes. In this way, the EU external demand of REE and CRM for PM in WTG will be reduced in a 50%. The specific objectives are: i) To develop a new NdFeB material solution that reduces the use REE and CRM amount in PM for WTG (100% of HRE, 30% of LRE Nd/Pr, and 100% of CRM Co and Ga), ii) To increase the deliverable electric power in wind power electric generators from current 2.74 MW to 3.56 MW per 1Tn of REE owing to novel electric machine designs, iii) To research and develop two recycling processes to highly increase the CRM recycling rates in NdFeB PM wastes for sintered PM from current WT (increase from 0 to 70% the recovered Nd, separate 100% of Dy and recover 90% of Co) and novel Bonded NEOHIRE PM (recycling almost 95% of Nd), iv) To achieve an economic and technically feasible large-scale framework for NdFeB PM commercial recycling, and v) To ensure the economic and technical sustainability of NdFeB resin-bonded PM developed technologies. NEOHIRE will count on PM material RTD experts (CEIT, UOB), material recycling experts (UOB, KU LEUVEN), material characterisation RTD experts (CEIT, UPV, LBF), JP Powder manufacturer (AICHI), PM manufacturer (KOLEKTOR), LCA experts (UNIFI) and WT manufacturer (INDAR). AICHI (Japan) will be involved by providing advice and raw materials to the project.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::08e69d22639efe8808f2544a441062ed&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::08e69d22639efe8808f2544a441062ed&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2017 - 2019Partners:NTNU, ENTPE, ENERGY CITIES, ECEEE, KIT +16 partnersNTNU,ENTPE,ENERGY CITIES,ECEEE,KIT,TBU,ACENTOLINE COMUNICACION EDITORA SL,Duneworks,ODTÜ,Anglia Ruskin University,ENERGY CITIES,Duneworks,POLITO,ODTÜ,FOEE,Anglia Ruskin University,BLACK SEA ENERGY RESEARCH CENTRE,ECEEE,ACENTOLINE COMUNICACION EDITORA SL,FOE,TBUFunder: European Commission Project Code: 731264Overall Budget: 1,996,570 EURFunder Contribution: 1,996,570 EURSHAPE-ENERGY “Social Sciences and Humanities for Advancing Policy in European Energy” will develop Europe’s expertise in using and applying energy-SSH to accelerate the delivery of Europe’s Energy Union Strategy. Our consortium brings together 7 leading academic partners and 6 highly respected policy, industry and communications practitioners from across the Energy, Social Sciences and Humanities (energy-SSH) research field, to create an innovative and inclusive Platform. Our partners are involved in numerous European energy projects, have extensive, relevant networks in the energy domain, and represent exceptional coverage across SSH disciplines across Europe. These enable us to maximise the impact of our Platform delivery within an intensive 2-year project. SHAPE-ENERGY brings together those who ‘demand’ energy-SSH research and those who ‘supply’ that research to collaborate in ‘shaping’ Europe’s energy future. A key deliverable will be a “2020-2030 research and innovation agenda” to underpin post-Horizon 2020 energy-focused work programmes. It will highlight how energy-SSH can be better embedded into energy policymaking, innovation and research in the next decade. Our SHAPE-ENERGY Platform activities will involve >12,114 stakeholders and begin with scoping activities including: an academic workshop, call for evidence, interviews with business leaders and NGOs, online citizen debates and multi-level policy meetings. We will build on our scoping to then deliver: 18 multi-stakeholder workshops in cities across Europe, an Early Stage Researcher programme, Horizon 2020 sandpits, interdisciplinary think pieces, a research design challenge, and a pan-European conference. Our expert consortium will bring their considerable expertise to overcome difficulties in promoting interdisciplinary and cross-sector working, and reach out to new parts of Europe to create an inclusive, dynamic and open Platform. SHAPE-ENERGY will drive forward Europe’s low carbon energy future.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::24f28dc18bc09da9a1ca94e3951c40cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::24f28dc18bc09da9a1ca94e3951c40cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2017 - 2019Partners:LSBU, MILLIDYNE OY, ONYX, OPUS, CEA +4 partnersLSBU,MILLIDYNE OY,ONYX,OPUS,CEA,MILLIDYNE OY,LSBU,OPUS,ONYXFunder: European Commission Project Code: 760311Overall Budget: 2,767,470 EURFunder Contribution: 2,267,640 EURDirt on solar panels causes losses of more than €40bn p.a. and over 100Mtonnes of CO2 emission. Cleaning is expensive (up to €100/m2 depending on accessibility) and wastes water. Current self-cleaning coatings suffer from short lifetime (2-3 years), poor transparency, and high cost (over €20/m2). They are usually not cost-effective, are not widely used, and losses are accepted as part of the operation of the plant. The objective of this action is to bring to market a new product, SolarSharc, which will provide, for the first time, a transparent, durable, cost-effective and permanent self-cleaning solution for solar panels. This patented coating technology uses multi-functionalised silica nano-particles bonded strongly to the coating polymer matrix to provide a highly transparent, low cost, durable and robust self-cleaning coating. Target markets are utility scale solar and the rapidly growing (18% CAGR €26bn by 2022) Building Integrated Photovoltaics (BIPV) markets. The objectives of this 24 month action are to commercialise the SolarSharc coating and new self-cleaning BIPV modules from the current TRL6 prototype to operational demonstration (TRL9) in BIPV, certification, commercialisation and supply chain measures to deliver rapid growth. The action will be delivered by a consortium of SMEs (Opus, Onyx, Millidyne) representing the supply chain from materials to application together with specialist coatings technologists from London South Bank University and solar testing expertise from CEA. We are requesting a grant of €2.78m to bring SolarSharc to market, securing €2m of post-action financing for sales growth. Commercialisation of SolarSharc will develop new revenues for the consortium of €71m with profits of €45m cumulative over 5 years of sales, creating 243 new jobs within the consortium and providing a return on EU investment in this action of 19:1. These sales will increase output from new solar installation by 9000GWh, saving 5Mtonne of CO2 emission.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::6374c467de5ea601cd581e8afcde3d9b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::6374c467de5ea601cd581e8afcde3d9b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2017 - 2022Partners:Newcastle University, University of Newcastle upon TyneNewcastle University,University of Newcastle upon TyneFunder: European Commission Project Code: 715354Overall Budget: 1,499,840 EURFunder Contribution: 1,499,840 EURThis proposal will develop new transparent p-type semiconductors that will make dye-sensitized solar cells (DSC) a vastly more efficient and a realistic prospect for carbon-free energy generation worldwide. Two key challenges will be addressed: (1) a means of converting NIR radiation to increase the amount of sunlight utilised from 35% to over 70%; (2) a means of storing the energy. Almost all the research in the field is based on dye or “perovskite” sensitized TiO2 (n-type) solar cells, which are limited by their poor spectral response in the red-NIR. pTYPE approaches the problem differently: tandem DSCs will be developed which combine a n-type and a p-type DSC in a single p/n device. This increases the theoretical efficiency from 33% to 43% by extending the spectral response without sacrificing the voltage. The device will be modified with catalysts to convert H2O or CO2 and sunlight into fuel without using sacrificial reagents that limit the efficiency of current systems. An efficient tandem DSC has not yet been developed because p-type DSCs are much less efficient than n-type cells. As an independent Royal Society Dorothy Hodgkin fellow I increased the photocurrent by developing new dyes. This project will exploit this breakthrough by increasing the voltage, which is currently limited by the NiO semiconductor conventionally used. I will rapidly synthesise libraries of alternative p-type semiconductors; select promising candidates based on key criteria which can be measured on a single sample within minutes: transparency and dye adsorption (for high light harvesting efficiency by the dye), conductivity (for high charge collection efficiency) and valence band potential (for high voltage); assemble the new materials in tandem DSCs. As one of the few researchers experienced in preparing, characterising and optimising each aspect of this photoelectrochemical system, I aim to match the efficiency from TiO2 with p-type DSCs to obtain tandem efficiencies above 20%.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::9edb6b45f54c0a7efccd861d0f2e27df&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::9edb6b45f54c0a7efccd861d0f2e27df&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu