Filters
Clear All- Energy Research
- OA Publications Mandate: Yes
- 2022
- Energy Research
- OA Publications Mandate: Yes
- 2022
Open Access Mandate for Publications and Research data assignment_turned_in Project2019 - 2022Partners:GEOPLAT, EIMUR, EIMUR, IZES, LPRC +13 partnersGEOPLAT,EIMUR,EIMUR,IZES,LPRC,University of Glasgow,CrowdfundingHub BV,DISTRICT HEATING COMPANY OF SZEGED,IZES,EUROPEAN FEDERATION OF GEOLOGISTSFEDERACION EUROPE,GEORG,GEOPLAT,VES,DISTRICT HEATING COMPANY OF SZEGED,CrowdfundingHub BV,EUROPEAN FEDERATION OF GEOLOGISTSFEDERACION EUROPE,LPRC,GEORGFunder: European Commission Project Code: 857830Overall Budget: 2,305,800 EURFunder Contribution: 2,305,800 EURCROWDTHERMAL aims to empower the European public to directly participate in the development of geothermal projects with the help of alternative financing schemes (crowdfunding) and social engagement tools. In order to reach this goal, the project will first increase the transparency of geothermal projects and technologies by creating one to one links between geothermal actors and the public so that a Social Licence to Operate (SLO) could be obtained. This will be done by assessing the nature of public concerns for the different types of geothermal technologies, considering deep and shallow geothermal installations separately, as well as various hybrid and emerging technology solutions. CROWDTHERMAL will create a social acceptance model for geothermal energy that will be used as baseline in subsequent actions for inspiring public support for geothermal energy. Parallel and synergetic with this CROWDTHERMAL will work out details of alternative financing and risk mitigation options covering the different types of geothermal resources and various socio-geographical settings. The models will be developed and validated with the help of three Case Studies in Iceland, Hungary and Spain and with the help of a Trans-European survey conducted by EFG Third Parties. Based on these feedbacks, a developers’ toolbox will be created with the aim of promoting new geothermal projects in Europe supported by new forms of financing and investment risk mitigation schemes that will be designed to work hand in hand with current engineering and microeconomic best practices and conventional financial instruments.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::64f6edc49a36029460e60ddee1891e07&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::64f6edc49a36029460e60ddee1891e07&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2018 - 2022Partners:AAU, UL, Wavestone, SISW, VKI +14 partnersAAU,UL,Wavestone,SISW,VKI,IN EXTENSO INNOVATION CROISSANCE,Siemens Wind Power,SINTEF AS,SISW,LMS SAMTECH,VKI,UNL,Wavestone,FHG,AWS TRUEPOWER SL,SINTEF AS,SGRE-DK,LMS SAMTECH,WUFunder: European Commission Project Code: 763990Overall Budget: 3,999,920 EURFunder Contribution: 3,999,920 EURWind energy is the largest of the new renewable energies and traditional wind turbine design has reached maturity, but still improvements can be done through better understanding of the physics for the entire wind turbine system. At the same time demand for more green energy, requires new turbine designs with improved environmental characteristics, adaptable to new locations, etc. In the UPWARDS project the goal is by the help of high performance computing (HPC) to develop a simulation framework, which will incorporate a more complete description of the wind field, turbine, the support structure, etc. and their interaction in order to better understand the physics of the entire system. The complex wind field will be calculated adding interactions from nearby turbines, waves, terrain, etc. The simulation framework will yield more accurate prediction of the forces acting in the system and thus the energy captured by the turbine. In addition, it will better predict acoustic phenomena, and materials issues related to the turbine blades, etc. The platform will be modular and new design will be relatively simple to introduce. An important part of the project is to evaluate the socio-economic impact and to bring user communities into the project development. Altogether this will improve the design development process and allow for faster implementation of new and more advanced designs with less environmental impact. It will also improve the accuracy in power production. The methodologies and major results from the project will be published in open access journals or freely accessible reports. In addition an open database containing relevant results and raw data will be established. This will enable other researchers and turbine developers to utilise the results for further studies.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::6c9929c9225d70a6164392ff4ec01dbe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::6c9929c9225d70a6164392ff4ec01dbe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2018 - 2022Partners:SISSA, SISSASISSA,SISSAFunder: European Commission Project Code: 799408Overall Budget: 262,269 EURFunder Contribution: 262,269 EURIn the quest for solar cell technologies, organic photovoltaics (OPVs) are playing a leading role as a potentially cost-effective and clean solution. Thus, much research has been devoted into increasing power conversion efficiencies (PCE), currently ~10% by optimising material properties at the different steps involved in the conversion of light into charge. There is evidence that charge delocalization and hot charge transfer (CT) states facilitate charge separation at the electron donor/acceptor interface. State-of-the-art OPVs already exhibit very high (>90%) internal quantum efficiencies (IQE). However, PCE relies not only on high IQE but also on minimizing energy loses (e.g. exciton relaxation) and avoiding charge recombination. A possible strategy to increase PCE is to find ways to optimise charge separation that allow simultaneously for high quantum efficiencies and architectures with longer exciton diffusion lengths or lower charge recombination rates. In QuESt we will investigate how to enhance OPV functionality by the emerging approach of modifying material properties through the hybridization of matter and photon states under strong light matter coupling. In particular, the aim of this project is to modify charge separation and eventually PCE in OPVs by engineering strong coupling between IR molecular vibrations and an optical cavity mode. We will develop a theoretical framework to describe the energy structure and charge dynamics in OPVs under strong vibrational coupling that will be benchmarked with non-linear spectroscopy experiments.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::36efa9d14254daab2a752dbb05c7bb9d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::36efa9d14254daab2a752dbb05c7bb9d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Open Access Mandate for Publications and Research data assignment_turned_in Project2019 - 2022Partners:GEOPLAT, EIMUR, EIMUR, IZES, LPRC +13 partnersGEOPLAT,EIMUR,EIMUR,IZES,LPRC,University of Glasgow,CrowdfundingHub BV,DISTRICT HEATING COMPANY OF SZEGED,IZES,EUROPEAN FEDERATION OF GEOLOGISTSFEDERACION EUROPE,GEORG,GEOPLAT,VES,DISTRICT HEATING COMPANY OF SZEGED,CrowdfundingHub BV,EUROPEAN FEDERATION OF GEOLOGISTSFEDERACION EUROPE,LPRC,GEORGFunder: European Commission Project Code: 857830Overall Budget: 2,305,800 EURFunder Contribution: 2,305,800 EURCROWDTHERMAL aims to empower the European public to directly participate in the development of geothermal projects with the help of alternative financing schemes (crowdfunding) and social engagement tools. In order to reach this goal, the project will first increase the transparency of geothermal projects and technologies by creating one to one links between geothermal actors and the public so that a Social Licence to Operate (SLO) could be obtained. This will be done by assessing the nature of public concerns for the different types of geothermal technologies, considering deep and shallow geothermal installations separately, as well as various hybrid and emerging technology solutions. CROWDTHERMAL will create a social acceptance model for geothermal energy that will be used as baseline in subsequent actions for inspiring public support for geothermal energy. Parallel and synergetic with this CROWDTHERMAL will work out details of alternative financing and risk mitigation options covering the different types of geothermal resources and various socio-geographical settings. The models will be developed and validated with the help of three Case Studies in Iceland, Hungary and Spain and with the help of a Trans-European survey conducted by EFG Third Parties. Based on these feedbacks, a developers’ toolbox will be created with the aim of promoting new geothermal projects in Europe supported by new forms of financing and investment risk mitigation schemes that will be designed to work hand in hand with current engineering and microeconomic best practices and conventional financial instruments.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::64f6edc49a36029460e60ddee1891e07&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::64f6edc49a36029460e60ddee1891e07&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2018 - 2022Partners:AAU, UL, Wavestone, SISW, VKI +14 partnersAAU,UL,Wavestone,SISW,VKI,IN EXTENSO INNOVATION CROISSANCE,Siemens Wind Power,SINTEF AS,SISW,LMS SAMTECH,VKI,UNL,Wavestone,FHG,AWS TRUEPOWER SL,SINTEF AS,SGRE-DK,LMS SAMTECH,WUFunder: European Commission Project Code: 763990Overall Budget: 3,999,920 EURFunder Contribution: 3,999,920 EURWind energy is the largest of the new renewable energies and traditional wind turbine design has reached maturity, but still improvements can be done through better understanding of the physics for the entire wind turbine system. At the same time demand for more green energy, requires new turbine designs with improved environmental characteristics, adaptable to new locations, etc. In the UPWARDS project the goal is by the help of high performance computing (HPC) to develop a simulation framework, which will incorporate a more complete description of the wind field, turbine, the support structure, etc. and their interaction in order to better understand the physics of the entire system. The complex wind field will be calculated adding interactions from nearby turbines, waves, terrain, etc. The simulation framework will yield more accurate prediction of the forces acting in the system and thus the energy captured by the turbine. In addition, it will better predict acoustic phenomena, and materials issues related to the turbine blades, etc. The platform will be modular and new design will be relatively simple to introduce. An important part of the project is to evaluate the socio-economic impact and to bring user communities into the project development. Altogether this will improve the design development process and allow for faster implementation of new and more advanced designs with less environmental impact. It will also improve the accuracy in power production. The methodologies and major results from the project will be published in open access journals or freely accessible reports. In addition an open database containing relevant results and raw data will be established. This will enable other researchers and turbine developers to utilise the results for further studies.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::6c9929c9225d70a6164392ff4ec01dbe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::6c9929c9225d70a6164392ff4ec01dbe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2018 - 2022Partners:SISSA, SISSASISSA,SISSAFunder: European Commission Project Code: 799408Overall Budget: 262,269 EURFunder Contribution: 262,269 EURIn the quest for solar cell technologies, organic photovoltaics (OPVs) are playing a leading role as a potentially cost-effective and clean solution. Thus, much research has been devoted into increasing power conversion efficiencies (PCE), currently ~10% by optimising material properties at the different steps involved in the conversion of light into charge. There is evidence that charge delocalization and hot charge transfer (CT) states facilitate charge separation at the electron donor/acceptor interface. State-of-the-art OPVs already exhibit very high (>90%) internal quantum efficiencies (IQE). However, PCE relies not only on high IQE but also on minimizing energy loses (e.g. exciton relaxation) and avoiding charge recombination. A possible strategy to increase PCE is to find ways to optimise charge separation that allow simultaneously for high quantum efficiencies and architectures with longer exciton diffusion lengths or lower charge recombination rates. In QuESt we will investigate how to enhance OPV functionality by the emerging approach of modifying material properties through the hybridization of matter and photon states under strong light matter coupling. In particular, the aim of this project is to modify charge separation and eventually PCE in OPVs by engineering strong coupling between IR molecular vibrations and an optical cavity mode. We will develop a theoretical framework to describe the energy structure and charge dynamics in OPVs under strong vibrational coupling that will be benchmarked with non-linear spectroscopy experiments.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::36efa9d14254daab2a752dbb05c7bb9d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::36efa9d14254daab2a752dbb05c7bb9d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu