search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.

  • Energy Research
  • OA Publications Mandate: Yes
  • 2015

  • Funder: European Commission Project Code: 642108
    Overall Budget: 2,862,070 EURFunder Contribution: 2,862,070 EUR

    AWESOME network aims to educate eleven young researchers in the wind power operation and maintenance (O&M) field by constructing a sustainable training network gathering the whole innovation value chain. The main EU actors in the field of wind O&M have worked together, under the umbrella of the European Wind Energy Academy (EAWE), in order to design a training program coping with the principal R&D challenges related to wind O&M while tackling the shortage of highly-skilled professionals on this area that has been foreseen by the European Commission, the wind energy industrial sector and the academia. The overall AWESOME research programme tackles the main research challenges in the wind O&M field identified by the European wind academic and industrial community: (1) to develop better O&M planning methodologies of wind farms for maximizing its revenue, (2) to optimise the maintenance of wind turbines by prognosis of component failures and (3) to develop new and better cost-effective strategies for Wind Energy O&M. These main goals have been divided into eleven specific objectives, which will be assigned to the fellows, for them to focus their R&D project, PhD Thesis and professional career. The established training plan answers the challenges identified by the SET Plan Education Roadmap. Personal Development Career Plans will be tuned up for every fellow, being their accomplishment controlled by a Personal Supervisory Team. The training plan includes intra-network activities, as well as network-wide initiatives. The secondments at partner organizations and between beneficiaries are a key attribute of the training programme. Each fellow will be exposed to three different research environments from both, academic and industrial spheres. All the network activities will be developed in accordance with the established in the Ethical Codes and Standards for research careers development, looking therefore for talent, excellence and opportunity equality.

    more_vert
  • Funder: European Commission Project Code: 686116
    Overall Budget: 6,920,680 EURFunder Contribution: 5,516,910 EUR

    Nanocomposites are promising for many sectors, as they can make polymers stronger, less water and gas permeable, tune surface properties, add functionalities such as antimicrobial effects. In spite of intensive research activities, significant efforts are still needed to deploy the full potential of nanotechnology in the industry. The main challenge is still obtaining a proper nanostructuring of the nanoparticles, especially when transferring it to industrial scale, further improvements are clearly needed in terms of processing and control. The OptiNanoPro project will develop different approaches for the introduction of nanotechnology into packaging, automotive and photovoltaic materials production lines. In particular, the project will focus on the development and industrial integration of tailored online dispersion and monitoring systems to ensure a constant quality of delivered materials. In terms of improved functionalities, nanotechnology can provide packaging with improved barrier properties as well as repellent properties resulting in easy-to-empty features that will on the one hand reduce wastes at consumer level and, on the other hand, improve their acceptability by recyclers. Likewise, solar panels can be self-cleaning to increase their effectiveness and extend the period between their maintenance and their lifetime by filtering UV light leading to material weathering. In the automotive sector, lightweight parts can be obtained for greater fuel efficiency. To this end, a group of end-user industries from Europe covering the supply and value chain of the 3 target sectors and using a range of converting processes such as coating and lamination, compounding, injection/co-injection and electrospray nanodeposition, supported by selected RTDs and number of technological SMEs, will work together on integrating new nanotechnologies in existing production lines, while also taking into account nanosafety, environmental, productivity and cost-effectiveness issues.

    more_vert
  • Funder: European Commission Project Code: 680555
    Overall Budget: 4,311,700 EURFunder Contribution: 4,311,700 EUR

    There is a compelling need of encouraging energy efficiency in buildings, enhance green technologies and promote advance thermal energy storage solutions. TESSe2b will enable the optimal use of renewable energy and provide one of the most advantageous solutions for correcting the mismatch that often occurs between the supply and demand of energy in residential buildings. The target of TESSe2b is to design, develop, validate and demonstrate a modular and low cost thermal storage technology based on solar collectors and highly efficient heat pumps for heating, cooling and domestic hot water (DHW) production. The idea is to develop advanced compact integrated PCM TES tanks exploiting RES (solar and geothermal) in an efficient manner coupled with enhanced PCM borehole heat exchangers (BHEs) that will take advantage of the increased underground thermal storage and maximize the efficiency of the ground coupled heat pumps (GCHP). The two TES tanks developed within TESSe2b project will be integrated with different PCM materials; (i) enhanced paraffin PCM, (ii) salt-hydrates PCM, while in both of them a highly efficient heat exchanger will be included. Even if the concept of phase change thermal stores has been demonstrated, TESSe2b project discriminates itself through incorporating; (i) PCM materials innovation, (ii) advanced energy management through self-learning model-based control system, (iii) enhanced PCM BHEs (v) compact modular design of thermal storage tank. Since the lifetime of TESSe2b solution is among the most critical factors determining its acceptability, reliability and success the on the long run, special emphasis will be given in the life-expectancy of the involved components.

    more_vert
  • Funder: European Commission Project Code: 673917
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    Main objective of this proposal is to launch a novel multifunctional window (MLSYSTEM), which is a glazed insulating glass unit integrated with semi-transparent photovoltaics (panels of all generations) on the EU market. It was developed by a R&D department of ML System. Current available solutions can not be full-competitive to MLSYSTEM. There are PV panels, PV mounting systems, heatable insulated glass units, radiators. The main innovative feature of our technology is a cost-effective integration of properties of all these products. Thanks to 3rd generation solar cells application, higher aesthetic, transparency and better power reduction parameter in relation to any PV technology used so far on Building-Integrated PV sector could be achieved. We intend to contribute to solving one of the European’s main problem, as well as one of the real estate’s market problems. Buildings are the biggest primary energy consumer and Europe’s CO2 emitter. 30% of energy consumed in buildings is used unnecessarily or inefficiently. 30-50% of energy loss is attributed to air leakage and heat transfer. One of the main sources of these losses are windows. Our innovative solution allows for environmental-friendly electrical energy production and thermal energy transfer into a heated room simultaneously manner and is much cheaper than competing solutions. At least 39,000 of tons reduction of CO2 emissions will be achieved every year. Moreover the European efficiency-related construction market is expected to double to €140 billion by 2020 from €70 billion in 2011 - we are ready to exploit this business opportunity. Feasibility study will enable us to verify the technological feasibility and economic viability of launching MLSYSTEM on different EU markets, which will contribute to solving the aforementioned problems. PHASE I is only the beginning and we believe it will lead to PHASE II. This will enable us to identify resources needed for commercial implementation of our technology.

    more_vert
  • Funder: European Commission Project Code: 656132
    Overall Budget: 170,509 EURFunder Contribution: 170,509 EUR

    Hematite is a promising photoanode material for harvesting solar energy by splitting water into hydrogen and oxygen. It has a favorable bandgap energy (2.1 eV), good catalytic activity for water oxidation, low cost, is chemically stable in alkaline solutions and environmentally friendly. However, its water splitting efficiency is limited by electron-hole recombination length and it produces a below threshold photovoltage. The key to increasing the recombination length is supressing defects such as grain boundaries or surface roughness of the photoanode. The second issue is successfully resolved by coupling the photoelectrolytic cell to a photovoltaic cell, a so-called tandem cell with theoretically higher efficiency owing to optimal use of the solar spectrum. Both of these drawbacks are accounted for in this project. The aim of this project is to optimize the water photoelectrolysis performance of the photoelectrolysis-photovoltaic tandem-cell device by tailoring the microstructure of the thin film hematite photoanods, and up scaling from the laboratory scale to a prototype device. Fabrication of an efficient water-splitting cell is challenging as it consists of several thin film layers. Each of these layers impacts on the performance of the water-splitting tandem-cell. Up scaling from the lab scale to the prototype scale (10x10cm2) will be carried out in cooperation with PVComB in Germany. This poses entirely different challenges, creating the need for an adapted fabrication sequence and deposition conditions that ensure the adhesion of the ceramic and metal thin film layers. At the end of this project, I personally will have gained expertise in advanced microstructural analysis technique and also in the leadership role, which will enable me to take the next step in my carrier. And, we will have built a fully functional, fabrication-ready device for hydrogen production directly from solar energy. A great leap forward into a society based on renewable resources.

    more_vert
  • Funder: European Commission Project Code: 698688
    Overall Budget: 2,025,500 EURFunder Contribution: 1,417,850 EUR

    Water and energy are highly interdependent and are both crucial to human well-being and sustainable socio-economic development. 1.1 billion people worldwide do not have access to a safe source of drinking water; 1.3 billion people lack access to electricity; 5 billion people worldwide still have no access to internet. Our innovative solution Watly addresses the increasing global demand for safe sources of drinking water and green off-grid electricity, by combining highly efficient photovoltaic panels with thermal energy production, used to desalinate and purify water in-situ. Watly also provides internet connectivity and mobile chargers in remote areas. Our customers are: Governments and public institutions, NGOs, mobile hospitals, military organizations, hotels/resorts/businesses in remote destinations, oil platforms, etc. WATLY’s success depends on the fulfilment of the following objectives: - Scale-up Watly 2.0 to Watly 3.0 able to treat up to 4,500l of water and produce 70 kWh of electricity per day, boosting its readiness level from TRL7 to TRL9 - Certification and live Demonstration of Watly 3.0 - Succesfull final Business Innovation Plan and commercialization activities for Watly 3.0 The investment cost of Watly 3.0 could be a strong barrier for the public sector and NGOs. To overcome this barrier Watly will include additional features and 2 kinds of revenues channels for the Watly operator: • Vending Machine: It is a model created for the public sector of remote areas, with medium-low purchasing power. Watly will include specific hardware to act as a vending machine, which will give a certain amount of water/energy/connectivity in exchange of a small economic input • Lively Donors: It is a model strictly created for NGOs. Watly will integrate a web platform and a mobile App which will allow external donors, i.e. philanthropists from rich countries, to remotely donate money giving a certain amount of water/energy/connectivity to the needy person

    more_vert
  • Funder: European Commission Project Code: 667942
    Overall Budget: 3,499,380 EURFunder Contribution: 2,500,000 EUR

    The CyI Solar Thermal Energy Chair for the Eastern Mediterranean (CySTEM – Chair) proposal aims in consolidating and upgrading the already substantial activity at the Cyprus Institute (CyI) in Solar Energy, principally solar-thermal and related activities. This will be accomplished by attracting and installing a cluster of outstanding researchers, led by a professor of international stature to maximally utilize and upgrade the existing facilities, and pursue a program of excellence in Cyprus with local and regional focus in the region of Eastern Mediterranean and Middle East (EMME). The principal focus will be on Concentrated Solar Power (CSP) technologies for electricity production, desalination, air conditioning and heating, either in isolation or in multi-generation modes. The Chair shall be embedded in CyI’s Energy Environment and Water Research Centre (EEWRC), a Centre with intense activity in climate change (and adaptation strategies), water management, and sustainability. CyI, being a technologically orientated research and educational institution, will provide the CySTEM Chair the opportunity to contribute to other related important activities of techno-economic nature, such as the definition of a road map for Renewable Energy Sources (and Solar in particular) development in the area in light of the recent discoveries of substantial Natural Gas deposits in the Eastern Mediterranean. Following the template provided by the Commission, the proposal first presents the main objectives of the chair. This is arranged in subsections to describe what is proposed (research activities), who will carry it out (human capital), what infrastructure and tools will be employed to enable the realization of the proposed program and how the various tools and policies available to the program, including CyI’s educational programs, will be integrated and used to maximize its impact.

    more_vert
  • Funder: European Commission Project Code: 640741
    Overall Budget: 7,274,840 EURFunder Contribution: 7,274,840 EUR

    The focus of the project will be on floating wind turbines installed at water depths from 50m to about 200m. The consortium partners have chosen to focus on large wind turbines (in the region of 10MW), which are seen as the most effective way of reducing the Levelized Cost of Energy (LCOE). The objective of the proposed project is two-fold: 1. Optimize and qualify, to a TRL5 level, two (2) substructure concepts for 10MW turbines. The chosen concepts will be taken from an existing list of four (4) TRL>4 candidates currently supporting turbines in the region of 5MW. The selection of the two concepts will be made based on technical, economical, and industrial criteria. An existing reference 10MW wind turbine design will be used throughout the project. 2. More generally, develop a streamlined and KPI-based methodology for the design and qualification process, focusing on technical, economical, and industrial aspects. This methodology will be supported by existing numerical tools, and targeted development and experimental work. It is expected that resulting guidelines/recommended practices will facilitate innovation and competition in the industry, reduce risks, and indirectly this time, contribute to a lower LCOE. End users for the project deliverables will be developers, designers and manufacturers, but also decision makers who need to evaluate a concept based on given constraints. The proposed project is expected to have a broad impact since it is not led by single group of existing business partners, focusing on one concept only. On the contrary, it will involve a strong consortium reflecting the value chain for offshore wind turbines: researchers, designers, classification societies, manufacturers, utilities. This will ensure that the project's outcomes suit the concrete requirements imposed by end-users.

    more_vert
  • Funder: European Commission Project Code: 642682
    Overall Budget: 2,990,470 EURFunder Contribution: 2,990,470 EUR

    The height of conventional wind turbines is limited by the enormous stresses on the structure. The idea of the Airborne Wind Energy (AWE) is to replace the most efficient part of a conventional wind turbine, the tip of the turbine blade, with a fast flying high efficiency kite, and to replace the rest of the structure by a tether which anchors the kite to the ground. Power is generated either by periodically pulling a ground based generator via a winch, or by small wind turbines mounted on the kite that exploit its fast cross wind motion. While the concept is highly promising, major academic and industrial research is still needed to achieve the performance required for industrial deployment. This can best be done by innovative junior researchers in a closely cooperating consortium of academic and industrial partners. The ITN AWESCO combines six interdisciplinary academic and four industrial network partners with seven associated partners, all selected on the basis of excellence and complementarity. All partners work already intensively on AWE systems, several with prototypes, and they are committed to create synergies via the cooperation in AWESCO. The main task is to train fourteen Early Stage Researchers (ESRs) in training-by-research and to create a closely connected new generation of leading European scientists that are ready to push the frontiers of airborne wind energy. AWESCO is the first major cooperation effort of the most important European actors in the field and will help Europe to gain a leading role in a possibly huge emerging renewable energy market, and to meet its ambitious CO2 targets. In addition, the AWESCO early stage researchers will be trained in cutting-edge simulation, design, sensing, and control technologies that are needed in many branches of engineering.

    more_vert
  • Funder: European Commission Project Code: 674628
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    Current utility PV installations require a large quantity of PV panels (semiconductors), space (land resources) and are consequently very capital intensive. RayGen offers a proprietary breakthrough utility scale solar energy technology that utilises a field of low cost heliostat collectors to concentrate sunlight onto an ultra-efficient multi-junction photovoltaic cell array located in a mast mounted central receiver. The technology combines the benefits of traditional PV with solar thermal energy installations and leverages several patents and trade secrets. The RayGen CSPV offers unique value to Energy Utility Companies and System integrators, such as 40% less collector area than CPV as well as 65% plant mass, performance 2.4x higher than conventional PV plants with only 0.1% of PV cells, cheaper and easier installation and maintenance, high reliability and most importantly capital expenditure 95% less than traditional PV. RayGen’s technology is also the leader in PV performance, since it presently holds (with the University of New South Wales, Australia) the world record solar system efficiency of 40.4%, independently verified by NREL. The technology has been validated with extensive lab tests and the Australian mother company is already testing the design in a pilot plant in Bridgewater Australia, supported by the Australian Government. The Phase 1 project will be focused on establishing a complete supply chain, a sound business model and commercialization strategy and to plan all activities for deploying a large scale pilot supported by a major energy utility company and partnering system integrator SMEs Nur Energie Ltd, Cautha Srl and Renience Srl.

    more_vert
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
52 Projects
  • Funder: European Commission Project Code: 642108
    Overall Budget: 2,862,070 EURFunder Contribution: 2,862,070 EUR

    AWESOME network aims to educate eleven young researchers in the wind power operation and maintenance (O&M) field by constructing a sustainable training network gathering the whole innovation value chain. The main EU actors in the field of wind O&M have worked together, under the umbrella of the European Wind Energy Academy (EAWE), in order to design a training program coping with the principal R&D challenges related to wind O&M while tackling the shortage of highly-skilled professionals on this area that has been foreseen by the European Commission, the wind energy industrial sector and the academia. The overall AWESOME research programme tackles the main research challenges in the wind O&M field identified by the European wind academic and industrial community: (1) to develop better O&M planning methodologies of wind farms for maximizing its revenue, (2) to optimise the maintenance of wind turbines by prognosis of component failures and (3) to develop new and better cost-effective strategies for Wind Energy O&M. These main goals have been divided into eleven specific objectives, which will be assigned to the fellows, for them to focus their R&D project, PhD Thesis and professional career. The established training plan answers the challenges identified by the SET Plan Education Roadmap. Personal Development Career Plans will be tuned up for every fellow, being their accomplishment controlled by a Personal Supervisory Team. The training plan includes intra-network activities, as well as network-wide initiatives. The secondments at partner organizations and between beneficiaries are a key attribute of the training programme. Each fellow will be exposed to three different research environments from both, academic and industrial spheres. All the network activities will be developed in accordance with the established in the Ethical Codes and Standards for research careers development, looking therefore for talent, excellence and opportunity equality.

    more_vert
  • Funder: European Commission Project Code: 686116
    Overall Budget: 6,920,680 EURFunder Contribution: 5,516,910 EUR

    Nanocomposites are promising for many sectors, as they can make polymers stronger, less water and gas permeable, tune surface properties, add functionalities such as antimicrobial effects. In spite of intensive research activities, significant efforts are still needed to deploy the full potential of nanotechnology in the industry. The main challenge is still obtaining a proper nanostructuring of the nanoparticles, especially when transferring it to industrial scale, further improvements are clearly needed in terms of processing and control. The OptiNanoPro project will develop different approaches for the introduction of nanotechnology into packaging, automotive and photovoltaic materials production lines. In particular, the project will focus on the development and industrial integration of tailored online dispersion and monitoring systems to ensure a constant quality of delivered materials. In terms of improved functionalities, nanotechnology can provide packaging with improved barrier properties as well as repellent properties resulting in easy-to-empty features that will on the one hand reduce wastes at consumer level and, on the other hand, improve their acceptability by recyclers. Likewise, solar panels can be self-cleaning to increase their effectiveness and extend the period between their maintenance and their lifetime by filtering UV light leading to material weathering. In the automotive sector, lightweight parts can be obtained for greater fuel efficiency. To this end, a group of end-user industries from Europe covering the supply and value chain of the 3 target sectors and using a range of converting processes such as coating and lamination, compounding, injection/co-injection and electrospray nanodeposition, supported by selected RTDs and number of technological SMEs, will work together on integrating new nanotechnologies in existing production lines, while also taking into account nanosafety, environmental, productivity and cost-effectiveness issues.

    more_vert
  • Funder: European Commission Project Code: 680555
    Overall Budget: 4,311,700 EURFunder Contribution: 4,311,700 EUR

    There is a compelling need of encouraging energy efficiency in buildings, enhance green technologies and promote advance thermal energy storage solutions. TESSe2b will enable the optimal use of renewable energy and provide one of the most advantageous solutions for correcting the mismatch that often occurs between the supply and demand of energy in residential buildings. The target of TESSe2b is to design, develop, validate and demonstrate a modular and low cost thermal storage technology based on solar collectors and highly efficient heat pumps for heating, cooling and domestic hot water (DHW) production. The idea is to develop advanced compact integrated PCM TES tanks exploiting RES (solar and geothermal) in an efficient manner coupled with enhanced PCM borehole heat exchangers (BHEs) that will take advantage of the increased underground thermal storage and maximize the efficiency of the ground coupled heat pumps (GCHP). The two TES tanks developed within TESSe2b project will be integrated with different PCM materials; (i) enhanced paraffin PCM, (ii) salt-hydrates PCM, while in both of them a highly efficient heat exchanger will be included. Even if the concept of phase change thermal stores has been demonstrated, TESSe2b project discriminates itself through incorporating; (i) PCM materials innovation, (ii) advanced energy management through self-learning model-based control system, (iii) enhanced PCM BHEs (v) compact modular design of thermal storage tank. Since the lifetime of TESSe2b solution is among the most critical factors determining its acceptability, reliability and success the on the long run, special emphasis will be given in the life-expectancy of the involved components.

    more_vert
  • Funder: European Commission Project Code: 673917
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    Main objective of this proposal is to launch a novel multifunctional window (MLSYSTEM), which is a glazed insulating glass unit integrated with semi-transparent photovoltaics (panels of all generations) on the EU market. It was developed by a R&D department of ML System. Current available solutions can not be full-competitive to MLSYSTEM. There are PV panels, PV mounting systems, heatable insulated glass units, radiators. The main innovative feature of our technology is a cost-effective integration of properties of all these products. Thanks to 3rd generation solar cells application, higher aesthetic, transparency and better power reduction parameter in relation to any PV technology used so far on Building-Integrated PV sector could be achieved. We intend to contribute to solving one of the European’s main problem, as well as one of the real estate’s market problems. Buildings are the biggest primary energy consumer and Europe’s CO2 emitter. 30% of energy consumed in buildings is used unnecessarily or inefficiently. 30-50% of energy loss is attributed to air leakage and heat transfer. One of the main sources of these losses are windows. Our innovative solution allows for environmental-friendly electrical energy production and thermal energy transfer into a heated room simultaneously manner and is much cheaper than competing solutions. At least 39,000 of tons reduction of CO2 emissions will be achieved every year. Moreover the European efficiency-related construction market is expected to double to €140 billion by 2020 from €70 billion in 2011 - we are ready to exploit this business opportunity. Feasibility study will enable us to verify the technological feasibility and economic viability of launching MLSYSTEM on different EU markets, which will contribute to solving the aforementioned problems. PHASE I is only the beginning and we believe it will lead to PHASE II. This will enable us to identify resources needed for commercial implementation of our technology.

    more_vert
  • Funder: European Commission Project Code: 656132
    Overall Budget: 170,509 EURFunder Contribution: 170,509 EUR

    Hematite is a promising photoanode material for harvesting solar energy by splitting water into hydrogen and oxygen. It has a favorable bandgap energy (2.1 eV), good catalytic activity for water oxidation, low cost, is chemically stable in alkaline solutions and environmentally friendly. However, its water splitting efficiency is limited by electron-hole recombination length and it produces a below threshold photovoltage. The key to increasing the recombination length is supressing defects such as grain boundaries or surface roughness of the photoanode. The second issue is successfully resolved by coupling the photoelectrolytic cell to a photovoltaic cell, a so-called tandem cell with theoretically higher efficiency owing to optimal use of the solar spectrum. Both of these drawbacks are accounted for in this project. The aim of this project is to optimize the water photoelectrolysis performance of the photoelectrolysis-photovoltaic tandem-cell device by tailoring the microstructure of the thin film hematite photoanods, and up scaling from the laboratory scale to a prototype device. Fabrication of an efficient water-splitting cell is challenging as it consists of several thin film layers. Each of these layers impacts on the performance of the water-splitting tandem-cell. Up scaling from the lab scale to the prototype scale (10x10cm2) will be carried out in cooperation with PVComB in Germany. This poses entirely different challenges, creating the need for an adapted fabrication sequence and deposition conditions that ensure the adhesion of the ceramic and metal thin film layers. At the end of this project, I personally will have gained expertise in advanced microstructural analysis technique and also in the leadership role, which will enable me to take the next step in my carrier. And, we will have built a fully functional, fabrication-ready device for hydrogen production directly from solar energy. A great leap forward into a society based on renewable resources.

    more_vert
  • Funder: European Commission Project Code: 698688
    Overall Budget: 2,025,500 EURFunder Contribution: 1,417,850 EUR

    Water and energy are highly interdependent and are both crucial to human well-being and sustainable socio-economic development. 1.1 billion people worldwide do not have access to a safe source of drinking water; 1.3 billion people lack access to electricity; 5 billion people worldwide still have no access to internet. Our innovative solution Watly addresses the increasing global demand for safe sources of drinking water and green off-grid electricity, by combining highly efficient photovoltaic panels with thermal energy production, used to desalinate and purify water in-situ. Watly also provides internet connectivity and mobile chargers in remote areas. Our customers are: Governments and public institutions, NGOs, mobile hospitals, military organizations, hotels/resorts/businesses in remote destinations, oil platforms, etc. WATLY’s success depends on the fulfilment of the following objectives: - Scale-up Watly 2.0 to Watly 3.0 able to treat up to 4,500l of water and produce 70 kWh of electricity per day, boosting its readiness level from TRL7 to TRL9 - Certification and live Demonstration of Watly 3.0 - Succesfull final Business Innovation Plan and commercialization activities for Watly 3.0 The investment cost of Watly 3.0 could be a strong barrier for the public sector and NGOs. To overcome this barrier Watly will include additional features and 2 kinds of revenues channels for the Watly operator: • Vending Machine: It is a model created for the public sector of remote areas, with medium-low purchasing power. Watly will include specific hardware to act as a vending machine, which will give a certain amount of water/energy/connectivity in exchange of a small economic input • Lively Donors: It is a model strictly created for NGOs. Watly will integrate a web platform and a mobile App which will allow external donors, i.e. philanthropists from rich countries, to remotely donate money giving a certain amount of water/energy/connectivity to the needy person

    more_vert
  • Funder: European Commission Project Code: 667942
    Overall Budget: 3,499,380 EURFunder Contribution: 2,500,000 EUR

    The CyI Solar Thermal Energy Chair for the Eastern Mediterranean (CySTEM – Chair) proposal aims in consolidating and upgrading the already substantial activity at the Cyprus Institute (CyI) in Solar Energy, principally solar-thermal and related activities. This will be accomplished by attracting and installing a cluster of outstanding researchers, led by a professor of international stature to maximally utilize and upgrade the existing facilities, and pursue a program of excellence in Cyprus with local and regional focus in the region of Eastern Mediterranean and Middle East (EMME). The principal focus will be on Concentrated Solar Power (CSP) technologies for electricity production, desalination, air conditioning and heating, either in isolation or in multi-generation modes. The Chair shall be embedded in CyI’s Energy Environment and Water Research Centre (EEWRC), a Centre with intense activity in climate change (and adaptation strategies), water management, and sustainability. CyI, being a technologically orientated research and educational institution, will provide the CySTEM Chair the opportunity to contribute to other related important activities of techno-economic nature, such as the definition of a road map for Renewable Energy Sources (and Solar in particular) development in the area in light of the recent discoveries of substantial Natural Gas deposits in the Eastern Mediterranean. Following the template provided by the Commission, the proposal first presents the main objectives of the chair. This is arranged in subsections to describe what is proposed (research activities), who will carry it out (human capital), what infrastructure and tools will be employed to enable the realization of the proposed program and how the various tools and policies available to the program, including CyI’s educational programs, will be integrated and used to maximize its impact.

    more_vert
  • Funder: European Commission Project Code: 640741
    Overall Budget: 7,274,840 EURFunder Contribution: 7,274,840 EUR

    The focus of the project will be on floating wind turbines installed at water depths from 50m to about 200m. The consortium partners have chosen to focus on large wind turbines (in the region of 10MW), which are seen as the most effective way of reducing the Levelized Cost of Energy (LCOE). The objective of the proposed project is two-fold: 1. Optimize and qualify, to a TRL5 level, two (2) substructure concepts for 10MW turbines. The chosen concepts will be taken from an existing list of four (4) TRL>4 candidates currently supporting turbines in the region of 5MW. The selection of the two concepts will be made based on technical, economical, and industrial criteria. An existing reference 10MW wind turbine design will be used throughout the project. 2. More generally, develop a streamlined and KPI-based methodology for the design and qualification process, focusing on technical, economical, and industrial aspects. This methodology will be supported by existing numerical tools, and targeted development and experimental work. It is expected that resulting guidelines/recommended practices will facilitate innovation and competition in the industry, reduce risks, and indirectly this time, contribute to a lower LCOE. End users for the project deliverables will be developers, designers and manufacturers, but also decision makers who need to evaluate a concept based on given constraints. The proposed project is expected to have a broad impact since it is not led by single group of existing business partners, focusing on one concept only. On the contrary, it will involve a strong consortium reflecting the value chain for offshore wind turbines: researchers, designers, classification societies, manufacturers, utilities. This will ensure that the project's outcomes suit the concrete requirements imposed by end-users.

    more_vert
  • Funder: European Commission Project Code: 642682
    Overall Budget: 2,990,470 EURFunder Contribution: 2,990,470 EUR

    The height of conventional wind turbines is limited by the enormous stresses on the structure. The idea of the Airborne Wind Energy (AWE) is to replace the most efficient part of a conventional wind turbine, the tip of the turbine blade, with a fast flying high efficiency kite, and to replace the rest of the structure by a tether which anchors the kite to the ground. Power is generated either by periodically pulling a ground based generator via a winch, or by small wind turbines mounted on the kite that exploit its fast cross wind motion. While the concept is highly promising, major academic and industrial research is still needed to achieve the performance required for industrial deployment. This can best be done by innovative junior researchers in a closely cooperating consortium of academic and industrial partners. The ITN AWESCO combines six interdisciplinary academic and four industrial network partners with seven associated partners, all selected on the basis of excellence and complementarity. All partners work already intensively on AWE systems, several with prototypes, and they are committed to create synergies via the cooperation in AWESCO. The main task is to train fourteen Early Stage Researchers (ESRs) in training-by-research and to create a closely connected new generation of leading European scientists that are ready to push the frontiers of airborne wind energy. AWESCO is the first major cooperation effort of the most important European actors in the field and will help Europe to gain a leading role in a possibly huge emerging renewable energy market, and to meet its ambitious CO2 targets. In addition, the AWESCO early stage researchers will be trained in cutting-edge simulation, design, sensing, and control technologies that are needed in many branches of engineering.

    more_vert
  • Funder: European Commission Project Code: 674628
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    Current utility PV installations require a large quantity of PV panels (semiconductors), space (land resources) and are consequently very capital intensive. RayGen offers a proprietary breakthrough utility scale solar energy technology that utilises a field of low cost heliostat collectors to concentrate sunlight onto an ultra-efficient multi-junction photovoltaic cell array located in a mast mounted central receiver. The technology combines the benefits of traditional PV with solar thermal energy installations and leverages several patents and trade secrets. The RayGen CSPV offers unique value to Energy Utility Companies and System integrators, such as 40% less collector area than CPV as well as 65% plant mass, performance 2.4x higher than conventional PV plants with only 0.1% of PV cells, cheaper and easier installation and maintenance, high reliability and most importantly capital expenditure 95% less than traditional PV. RayGen’s technology is also the leader in PV performance, since it presently holds (with the University of New South Wales, Australia) the world record solar system efficiency of 40.4%, independently verified by NREL. The technology has been validated with extensive lab tests and the Australian mother company is already testing the design in a pilot plant in Bridgewater Australia, supported by the Australian Government. The Phase 1 project will be focused on establishing a complete supply chain, a sound business model and commercialization strategy and to plan all activities for deploying a large scale pilot supported by a major energy utility company and partnering system integrator SMEs Nur Energie Ltd, Cautha Srl and Renience Srl.

    more_vert