search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.

  • Energy Research
  • OA Publications Mandate: Yes

  • Funder: European Commission Project Code: 698883
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    INGECID is a renowned engineering company focused on developing innovative constructive processes applied to wind energy, where the cost of installations is dominated by the CAPEX of wind turbines (ca. 84%). While the need of minimizing the costs per installed MW has not been yet successfully addressed, the cost-effective redesign of taller wind turbine towers is now indispensable due to: a) the limited height (ca. 85m) and the fatigue vulnerability of actual towers, which hamper wind turbines harnessing higher wind velocities, at greater altitudes and for longer times (thus from delivering more electric power: P≈v3); b) the load needs for bearing heavier turbines (150 tons), and c) the costs of actual alternatives (hybrid steel/concrete and precast concrete towers) that have avoidable expenses of lifting, maintenance and transport. In this context, INGECID will become a reference within the tower manufacturing business (predicted global market investment of 17.11 bn€ by 2020, at a CAGR of 6.9%) by offering a 140m cost-competitive in-situ monolithic concrete tower solution for 3 MW wind turbines: LiraTower. This novel tower design, patent requested, surpasses actual solutions due to: a) its height (above hitherto reports of 120-137m); b) its unique design of internal and external tendons, which allow for excellent compressive strength (slender diameter of 4m), fatigue resistance and stiffness; and c) the cost reduction (ca. 30-40%) that in-situ technology offers over available solutions in market. With the proposed construction process and tower design, wind velocity increments of up to 8% and 26% higher output powers in comparison to 80m are now feasible at a competitive cost. Additionally, the drawbacks and transport costs of large tower sections, nearby prefabrication plants and on-site mechanizing are totally eliminated. Once in market, LiraTower would have a return on investment of 3.8 years, generating cumulative revenues of 9.53 M€ and 55 new direct jobs.

    more_vert
  • Funder: European Commission Project Code: 701002
    Overall Budget: 2,789,130 EURFunder Contribution: 2,289,730 EUR

    The EU Agency for Safety & Health is currently amending wind turbine standards (such as EN 50308) to ensure safer O&M tasks and increase the Probability Of Detection (POD) for wind turbine defects. ISO have also identified such issues, and in fact initiated the development of QA standards specifically tailored for the Condition Monitoring (CM) of wind turbines. Current CM systems are intrusive, and hence revoke the initial OEM warranty of drive-train components. The combination of industrial and legislative factors is the key driver behind the production of CMDrive: a bespoke and non-intrusive acoustic-analysis CM system, having a POD for drive-train defects of 90-98% within the range of operating powers. The requested grant of €2.5m will be required to validate and enhance the system, and initiate the commercialisation process. Growth in the wind services sector, as related to O&M and CM, is also compelling, as studies by Deloitte have shown that the corresponding market is estimated to increase from €5.2b to €10.8b by 2020, with a CAGR of 10%. The first generation of CMDrive shall be produced for wind turbines of 2.5MW or less; a next generation product, to handle larger turbines, has already been envisioned. The commercialisation strategy involves the segmentation of the wind turbine market into 3 initial customer tiers, is targeting WFOs and Independent Service Providers of CM within such tiers, and will position the product through a number of Unique Selling Points, which will be elaborated further in this proposal. The locations of the 5 partners, in addition to the global outreach of TWI and INESCO, are critical factors for launching the product by 2019. It is expected that CMDrive’s associated revenue streams (sales, services, licensing) will yield an estimated ROI of 1100%, and corresponding cumulative profits of €26m, over the 5 year forecast (2019–2023). INESCO will take lead of the sales, with the other partners benefiting by means of profit shares.

    more_vert
  • Funder: European Commission Project Code: 764626
    Overall Budget: 2,396,530 EURFunder Contribution: 2,396,530 EUR

    IIn the light of the EU 2030 Climate and Energy framework, MUSTEC aims to explore and propose concrete solutions to overcome the various factors that hinder the deployment of concentrated solar power (CSP) projects in Southern Europe capable of supplying renewable electricity on demand to Central and Northern European countries. To do so, the project will analyze the drivers and barriers to CSP deployment and renewable energy (RE) cooperation in Europe, identify future CSP cooperation opportunities and will propose a set of concrete measures to unlock the existing potential. To achieve these objectives, MUSTEC will build on the experience and knowledge generated around the cooperation mechanisms and CSP industry developments building on concrete CSP case studies. Thereby we will consider the present and future European energy market design and policies as well as the value of CSP at electricity markets and related economic and environmental benefits. In this respect, MUSTEC combines a dedicated, comprehensive and multi-disciplinary analysis of past, present and future CSP cooperation opportunities with a constant engagement and consultation with policy makers and market participants. This will be achieved through an intense and continuous stakeholder dialogue and by establishing a tailor-made knowledge sharing network. The MUSTEC consortium consists of nine renowned institutions from six European countries and includes many of the most prolific researchers in the European energy policy community, with very long track records of research in European and nationally funded energy policy research projects.

    more_vert
  • Funder: European Commission Project Code: 649724
    Overall Budget: 996,549 EURFunder Contribution: 996,549 EUR

    In recent years, research has shown that energy savings resulting from energy efficiency improvements have wider benefits for the economy and society such as increases in employment, GDP, energy security, positive impacts on health, ecosystems and crops or resource consumption. In order to develop more cost-effective energy efficiency policies and optimised long-term strategies in the EU, these multiple benefits have to be accounted for more comprehensively in the future. Although this field of research is growing, the findings are disperse and mostly have important gaps regarding geographic, sectorial or technical measure coverage and findings vary largely. This makes a consideration of multiple benefits in policy making and policy evaluation difficult today. The proposed project addresses these issues and aims at closing the identified gaps by five central research innovations: 1) data gathering on energy savings and technology costs per EU country for the most relevant 20 to 30 energy efficiency measures in the residential, commercial, industrial and transport sectors, 2) developing adequate methodologies for benefit quantification, monetisation and aggregation, 3) quantifying the most important multiple benefits and where adequate, monetising, 4) developing an openly available calculation tool that greatly simplifies the evaluation of co-impacts for specific energy efficiency measures to enable decision-making and 5) developing a simple online visualisation tool for customisable graphical analysis and assessment of multiple benefits and data exportation. Project outcomes can thus directly be used by stakeholders and will help to define cost-effective policies and support policy-makers and evaluators in the development and monitoring of energy efficiency strategies and policies in the future.

    more_vert
  • Funder: European Commission Project Code: 727830
    Overall Budget: 7,171,550 EURFunder Contribution: 5,888,420 EUR

    FIThydro addresses the decision support in commissioning and operating hydropower plants (HPP) by use of existing and innovative technologies. It concentrates on mitigation measures and strategies to develop cost-efficient environmental solutions and on strategies to avoid individual fish damage and enhancing population developments. Therefore HPPS all over Europe are involved as test sites. The facilities for upstream and downstream migration are evaluated, different bypass systems including their use as habitats and the influence of sediment on habitat. In addition existing tools and devices will be enhanced during the project and will be used in the experimental set-ups in the laboratories and at the test sites for e.g. detection of fish or prediction of behavior. This includes sensor fish, different solutions for migration as e.g. trash rack variations, different fish tracking systems, but also numerical models as habitat and population model or virtual fish swimming path model. Therefore a three-level-based workplan was created with preparatory desk work at the beginning to analyze shortcomings and potential in environment-friendly hydropower. Following the experimental tests will be conducted at the different test sites to demonstrate and evaluate the effects of the different options not covered by the desk-work. Thirdly, these results are fed into a risk based Decision Support System (DSS) which is developed for planning, commissioning and operating of HPPs. It is meant to enable operators to fulfill the requirements of cost-effective production and at the same time meet the environmental obligations and targets under European legislation and achieve a self-sustained fish population.

    more_vert
  • Funder: European Commission Project Code: 778143
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    TubeICE project deals with the design, industrialization and commercialization of an innovative Phase Change Material (PCM) tubular shaped PTES unit, able to store energy within the range 22-27°C. TubeICE unit is composed by a pipe shell where a Positive Temperature Eutectic solutions is packed: in summer, the storage unit exploits the temperature gradient between night and days, being charged during the night (when temperature is lower) thanks to the solidification of the PCM and discharged during the day by the liquefaction of the material, thus allowing a reduction of air conditioning energy consumption; in winter, TubeICE increases the thermal inertia of the building, being charged through material liquefaction when thermal energy is available. The technology developed and proposed by PCMPro delivers breakthrough properties: • thanks to the development of the innovative PCM and to a compact innovative design, the energy density is 73 kWh/m3, much higher than competing technologies; • installing the storage unit on the ceiling area, 12 tubes can be packed per m2 using standard 50mm pipe brackets, giving a storage of 1.74 kWh/m2; • the application of an eutectic alloy leads to a constant charging and discharging temperature, with benefits in terms of conditioning quality and easiness in storage management; • as already demonstrated by the first pilot installations in a number of offices/shops and in an educational facility located at Coventry in U.K., the integration of TubeICE leads to a global energy consumption reduction within the range 10-40% depending on the location and the building properties, thanks to the maximization of free-cooling (and the consequent reduction of energy intensive mechanical cooling) and to the nighttime free storage. • TubeICE is maintenance free and assures a long durability (10 years and more).

    more_vert
  • Funder: European Commission Project Code: 857851
    Overall Budget: 2,938,370 EURFunder Contribution: 2,938,370 EUR

    The renowned European hydropower industry and its know-how can foster the transition into a more sustainable energy system in parts of the world that still need support to develop the sector. While the European hydropower market does not allow huge developments, some countries present a big potential. HYPOSO will provide strategic support and tools for the European hydropower industry to boost their export of products and services to markets in Africa and Latin America, especially those with a high market potential hydro sector, i.e. Bolivia, Cameroon, Columbia, Ecuador and Uganda. The project will develop solutions which can be easily implemented for overcoming barriers to the broad deployment of hydropower solutions in these export markets. The consortium will bring representatives of the European hydropower industry together with their counterparts and politicians from Africa and Latin America. It will provide political, legal, technical and strategic advice while considering the regional specificities, socio-economic, spatial and environmental aspects all along the life-cycle of hydropower projects. Experts of the consortium will identify pilot hydropower projects and provide capacity building for local stakeholders and politicians. Communications activities such as brochures, events, and workshops highlighting European state-of-the-art technology will complement these measures. Moreover, a website will be created. It will serve as an information hub for the European hydropower industry and useful source of information for hydropower stakeholders worldwide. The outcome of the HYPOSO project will contribute to the promotion of the European hydropower industry, paving the way for better investment conditions in the targeted countries and increasing the share of renewable energy in these regions. It will support the development of policies, market supports and financial frameworks at the local, national and regional level for hydropower facilities.

    more_vert
  • Funder: European Commission Project Code: 885916
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    Wind power is a key component in the transition towards a society based on renewable energy. However, wind turbine operation and maintenance costs remain high and represent a third of the total costs of energy. Maintenance of critical components can be drastically reduced through early fault detection using advanced sensor signals. However, current analysis methods are highly manual and do not scale well. The EU-funded PAVIMON project is focused on the implementation of advanced artificial intelligence (AI) to analyze data from these sensor streams. The aim is to increase the resource efficiency of signal analysis and improve predictive capabilities. The PAVIMON project will effectuate a feasibility study at technical, transformational and commercial levels.

    more_vert
  • Funder: European Commission Project Code: 764048
    Overall Budget: 4,975,960 EURFunder Contribution: 4,975,960 EUR

    The main objective of POLYPHEM is to improve the flexibility and the performance of small-scale Concentrated Solar Power plants. The outcomes of the project will allow in the short term to reinforce the competitiveness of this new low carbon energy technology and therefore to favour its integration in the European energy mix. The technology consists of a solar-driven micro gas-turbine as top cycle and an Organic Rankine Cycle as bottom cycle. There is no water requirement for cooling. A thermal energy storage is integrated between both cycles. The resulting power block is a solar power generation system able to meet the requirements of a local variable demand of energy with a high average conversion efficiency of 18% and a low environmental profile with an investment cost target below 5 €/W. Besides electricity generation, other applications will be considered for future developments, such as heating/cooling of multi-family buildings or water desalination for small communities. The project will build a 60 kW prototype plant with a 2 MWh thermal storage unit and will validate this innovative power cycle in a relevant environment (TRL 5), assess its technical, economic and environmental performances and establish the guidelines for its commercial deployment. POLYPHEM will lead to a supply price of electricity of 21 c€/kWh under DNI of 2050 kWh/m2/year, thus meeting for small scale CSP plants the 40% cost reduction of the SET Plan. POLYPHEM will be carried out by 4 research centers and 5 private companies. The project makes a step forward beyond the state-of-the-art of thermodynamic cycles in CSP plants. The micro gas-turbine will be solarized to integrate solar energy in the cycle. A novel pressurized air solar receiver with 80% efficiency and 0.4 €/W will be developed from a technology of solar absorber currently patented by CEA and CNRS. A thermocline storage at 28 €/kWh will be developed with thermal oil and a filler material in a concrete tank.

    more_vert
  • Funder: European Commission Project Code: 666793
    Overall Budget: 3,701,940 EURFunder Contribution: 2,500,000 EUR

    Ampyx Power develops the PowerPlane, an Airborne Wind Energy System (AWES). AWES are second generation wind turbines that use the stronger and more constant wind at altitudes between 100 and 600 meters. Project AMPYXAP3 concerns the design, construction and testing of the first article of an initial commercial PowerPlane, version AP3. The global transition to a sustainable energy supply is burdened by the exorbitant societal costs associated with it. Renewable energy infrastructure projects have extremely high capital costs, and in most cases the cost per kWh of renewable electricity produced exceeds the cost of fossil-fuelled alternatives, thus requiring subsidies or other supportive instruments from governments. The economic effects of the energy transition are very significant, including the deterioration of international competitive position of countries or regions with high ambition levels regarding climate change, such as the EU – caused by rising electricity prices for industry. PowerPlane technology will have a disruptive effect on the electricity generation sector; due to the low levelised cost of energy (LCoE) that can be achieved with it, and due to its low capital costs. The need for a low cost, low capital investment renewable energy technology is evident. The AP3 PowerPlane, to be developed in the AMPYXAP3 project, fulfils the customer need of PowerPlane technology demonstration in long-term continuous safe operation at costs and LCoE as predicted. Ampyx Power aspires to manufacture and sell PowerPlane systems, as well as deliver operational and maintenance services to wind park owners. As a consequence, Ampyx Power projects revenues from PowerPlane system sales and installations, as well as from operation and maintenance (O&M) contracts. Hence, the AMPYXAP3 project is core business for Ampyx Power.

    more_vert
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
300 Projects
  • Funder: European Commission Project Code: 698883
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    INGECID is a renowned engineering company focused on developing innovative constructive processes applied to wind energy, where the cost of installations is dominated by the CAPEX of wind turbines (ca. 84%). While the need of minimizing the costs per installed MW has not been yet successfully addressed, the cost-effective redesign of taller wind turbine towers is now indispensable due to: a) the limited height (ca. 85m) and the fatigue vulnerability of actual towers, which hamper wind turbines harnessing higher wind velocities, at greater altitudes and for longer times (thus from delivering more electric power: P≈v3); b) the load needs for bearing heavier turbines (150 tons), and c) the costs of actual alternatives (hybrid steel/concrete and precast concrete towers) that have avoidable expenses of lifting, maintenance and transport. In this context, INGECID will become a reference within the tower manufacturing business (predicted global market investment of 17.11 bn€ by 2020, at a CAGR of 6.9%) by offering a 140m cost-competitive in-situ monolithic concrete tower solution for 3 MW wind turbines: LiraTower. This novel tower design, patent requested, surpasses actual solutions due to: a) its height (above hitherto reports of 120-137m); b) its unique design of internal and external tendons, which allow for excellent compressive strength (slender diameter of 4m), fatigue resistance and stiffness; and c) the cost reduction (ca. 30-40%) that in-situ technology offers over available solutions in market. With the proposed construction process and tower design, wind velocity increments of up to 8% and 26% higher output powers in comparison to 80m are now feasible at a competitive cost. Additionally, the drawbacks and transport costs of large tower sections, nearby prefabrication plants and on-site mechanizing are totally eliminated. Once in market, LiraTower would have a return on investment of 3.8 years, generating cumulative revenues of 9.53 M€ and 55 new direct jobs.

    more_vert
  • Funder: European Commission Project Code: 701002
    Overall Budget: 2,789,130 EURFunder Contribution: 2,289,730 EUR

    The EU Agency for Safety & Health is currently amending wind turbine standards (such as EN 50308) to ensure safer O&M tasks and increase the Probability Of Detection (POD) for wind turbine defects. ISO have also identified such issues, and in fact initiated the development of QA standards specifically tailored for the Condition Monitoring (CM) of wind turbines. Current CM systems are intrusive, and hence revoke the initial OEM warranty of drive-train components. The combination of industrial and legislative factors is the key driver behind the production of CMDrive: a bespoke and non-intrusive acoustic-analysis CM system, having a POD for drive-train defects of 90-98% within the range of operating powers. The requested grant of €2.5m will be required to validate and enhance the system, and initiate the commercialisation process. Growth in the wind services sector, as related to O&M and CM, is also compelling, as studies by Deloitte have shown that the corresponding market is estimated to increase from €5.2b to €10.8b by 2020, with a CAGR of 10%. The first generation of CMDrive shall be produced for wind turbines of 2.5MW or less; a next generation product, to handle larger turbines, has already been envisioned. The commercialisation strategy involves the segmentation of the wind turbine market into 3 initial customer tiers, is targeting WFOs and Independent Service Providers of CM within such tiers, and will position the product through a number of Unique Selling Points, which will be elaborated further in this proposal. The locations of the 5 partners, in addition to the global outreach of TWI and INESCO, are critical factors for launching the product by 2019. It is expected that CMDrive’s associated revenue streams (sales, services, licensing) will yield an estimated ROI of 1100%, and corresponding cumulative profits of €26m, over the 5 year forecast (2019–2023). INESCO will take lead of the sales, with the other partners benefiting by means of profit shares.

    more_vert
  • Funder: European Commission Project Code: 764626
    Overall Budget: 2,396,530 EURFunder Contribution: 2,396,530 EUR

    IIn the light of the EU 2030 Climate and Energy framework, MUSTEC aims to explore and propose concrete solutions to overcome the various factors that hinder the deployment of concentrated solar power (CSP) projects in Southern Europe capable of supplying renewable electricity on demand to Central and Northern European countries. To do so, the project will analyze the drivers and barriers to CSP deployment and renewable energy (RE) cooperation in Europe, identify future CSP cooperation opportunities and will propose a set of concrete measures to unlock the existing potential. To achieve these objectives, MUSTEC will build on the experience and knowledge generated around the cooperation mechanisms and CSP industry developments building on concrete CSP case studies. Thereby we will consider the present and future European energy market design and policies as well as the value of CSP at electricity markets and related economic and environmental benefits. In this respect, MUSTEC combines a dedicated, comprehensive and multi-disciplinary analysis of past, present and future CSP cooperation opportunities with a constant engagement and consultation with policy makers and market participants. This will be achieved through an intense and continuous stakeholder dialogue and by establishing a tailor-made knowledge sharing network. The MUSTEC consortium consists of nine renowned institutions from six European countries and includes many of the most prolific researchers in the European energy policy community, with very long track records of research in European and nationally funded energy policy research projects.

    more_vert
  • Funder: European Commission Project Code: 649724
    Overall Budget: 996,549 EURFunder Contribution: 996,549 EUR

    In recent years, research has shown that energy savings resulting from energy efficiency improvements have wider benefits for the economy and society such as increases in employment, GDP, energy security, positive impacts on health, ecosystems and crops or resource consumption. In order to develop more cost-effective energy efficiency policies and optimised long-term strategies in the EU, these multiple benefits have to be accounted for more comprehensively in the future. Although this field of research is growing, the findings are disperse and mostly have important gaps regarding geographic, sectorial or technical measure coverage and findings vary largely. This makes a consideration of multiple benefits in policy making and policy evaluation difficult today. The proposed project addresses these issues and aims at closing the identified gaps by five central research innovations: 1) data gathering on energy savings and technology costs per EU country for the most relevant 20 to 30 energy efficiency measures in the residential, commercial, industrial and transport sectors, 2) developing adequate methodologies for benefit quantification, monetisation and aggregation, 3) quantifying the most important multiple benefits and where adequate, monetising, 4) developing an openly available calculation tool that greatly simplifies the evaluation of co-impacts for specific energy efficiency measures to enable decision-making and 5) developing a simple online visualisation tool for customisable graphical analysis and assessment of multiple benefits and data exportation. Project outcomes can thus directly be used by stakeholders and will help to define cost-effective policies and support policy-makers and evaluators in the development and monitoring of energy efficiency strategies and policies in the future.

    more_vert
  • Funder: European Commission Project Code: 727830
    Overall Budget: 7,171,550 EURFunder Contribution: 5,888,420 EUR

    FIThydro addresses the decision support in commissioning and operating hydropower plants (HPP) by use of existing and innovative technologies. It concentrates on mitigation measures and strategies to develop cost-efficient environmental solutions and on strategies to avoid individual fish damage and enhancing population developments. Therefore HPPS all over Europe are involved as test sites. The facilities for upstream and downstream migration are evaluated, different bypass systems including their use as habitats and the influence of sediment on habitat. In addition existing tools and devices will be enhanced during the project and will be used in the experimental set-ups in the laboratories and at the test sites for e.g. detection of fish or prediction of behavior. This includes sensor fish, different solutions for migration as e.g. trash rack variations, different fish tracking systems, but also numerical models as habitat and population model or virtual fish swimming path model. Therefore a three-level-based workplan was created with preparatory desk work at the beginning to analyze shortcomings and potential in environment-friendly hydropower. Following the experimental tests will be conducted at the different test sites to demonstrate and evaluate the effects of the different options not covered by the desk-work. Thirdly, these results are fed into a risk based Decision Support System (DSS) which is developed for planning, commissioning and operating of HPPs. It is meant to enable operators to fulfill the requirements of cost-effective production and at the same time meet the environmental obligations and targets under European legislation and achieve a self-sustained fish population.

    more_vert
  • Funder: European Commission Project Code: 778143
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    TubeICE project deals with the design, industrialization and commercialization of an innovative Phase Change Material (PCM) tubular shaped PTES unit, able to store energy within the range 22-27°C. TubeICE unit is composed by a pipe shell where a Positive Temperature Eutectic solutions is packed: in summer, the storage unit exploits the temperature gradient between night and days, being charged during the night (when temperature is lower) thanks to the solidification of the PCM and discharged during the day by the liquefaction of the material, thus allowing a reduction of air conditioning energy consumption; in winter, TubeICE increases the thermal inertia of the building, being charged through material liquefaction when thermal energy is available. The technology developed and proposed by PCMPro delivers breakthrough properties: • thanks to the development of the innovative PCM and to a compact innovative design, the energy density is 73 kWh/m3, much higher than competing technologies; • installing the storage unit on the ceiling area, 12 tubes can be packed per m2 using standard 50mm pipe brackets, giving a storage of 1.74 kWh/m2; • the application of an eutectic alloy leads to a constant charging and discharging temperature, with benefits in terms of conditioning quality and easiness in storage management; • as already demonstrated by the first pilot installations in a number of offices/shops and in an educational facility located at Coventry in U.K., the integration of TubeICE leads to a global energy consumption reduction within the range 10-40% depending on the location and the building properties, thanks to the maximization of free-cooling (and the consequent reduction of energy intensive mechanical cooling) and to the nighttime free storage. • TubeICE is maintenance free and assures a long durability (10 years and more).

    more_vert
  • Funder: European Commission Project Code: 857851
    Overall Budget: 2,938,370 EURFunder Contribution: 2,938,370 EUR

    The renowned European hydropower industry and its know-how can foster the transition into a more sustainable energy system in parts of the world that still need support to develop the sector. While the European hydropower market does not allow huge developments, some countries present a big potential. HYPOSO will provide strategic support and tools for the European hydropower industry to boost their export of products and services to markets in Africa and Latin America, especially those with a high market potential hydro sector, i.e. Bolivia, Cameroon, Columbia, Ecuador and Uganda. The project will develop solutions which can be easily implemented for overcoming barriers to the broad deployment of hydropower solutions in these export markets. The consortium will bring representatives of the European hydropower industry together with their counterparts and politicians from Africa and Latin America. It will provide political, legal, technical and strategic advice while considering the regional specificities, socio-economic, spatial and environmental aspects all along the life-cycle of hydropower projects. Experts of the consortium will identify pilot hydropower projects and provide capacity building for local stakeholders and politicians. Communications activities such as brochures, events, and workshops highlighting European state-of-the-art technology will complement these measures. Moreover, a website will be created. It will serve as an information hub for the European hydropower industry and useful source of information for hydropower stakeholders worldwide. The outcome of the HYPOSO project will contribute to the promotion of the European hydropower industry, paving the way for better investment conditions in the targeted countries and increasing the share of renewable energy in these regions. It will support the development of policies, market supports and financial frameworks at the local, national and regional level for hydropower facilities.

    more_vert
  • Funder: European Commission Project Code: 885916
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    Wind power is a key component in the transition towards a society based on renewable energy. However, wind turbine operation and maintenance costs remain high and represent a third of the total costs of energy. Maintenance of critical components can be drastically reduced through early fault detection using advanced sensor signals. However, current analysis methods are highly manual and do not scale well. The EU-funded PAVIMON project is focused on the implementation of advanced artificial intelligence (AI) to analyze data from these sensor streams. The aim is to increase the resource efficiency of signal analysis and improve predictive capabilities. The PAVIMON project will effectuate a feasibility study at technical, transformational and commercial levels.

    more_vert
  • Funder: European Commission Project Code: 764048
    Overall Budget: 4,975,960 EURFunder Contribution: 4,975,960 EUR

    The main objective of POLYPHEM is to improve the flexibility and the performance of small-scale Concentrated Solar Power plants. The outcomes of the project will allow in the short term to reinforce the competitiveness of this new low carbon energy technology and therefore to favour its integration in the European energy mix. The technology consists of a solar-driven micro gas-turbine as top cycle and an Organic Rankine Cycle as bottom cycle. There is no water requirement for cooling. A thermal energy storage is integrated between both cycles. The resulting power block is a solar power generation system able to meet the requirements of a local variable demand of energy with a high average conversion efficiency of 18% and a low environmental profile with an investment cost target below 5 €/W. Besides electricity generation, other applications will be considered for future developments, such as heating/cooling of multi-family buildings or water desalination for small communities. The project will build a 60 kW prototype plant with a 2 MWh thermal storage unit and will validate this innovative power cycle in a relevant environment (TRL 5), assess its technical, economic and environmental performances and establish the guidelines for its commercial deployment. POLYPHEM will lead to a supply price of electricity of 21 c€/kWh under DNI of 2050 kWh/m2/year, thus meeting for small scale CSP plants the 40% cost reduction of the SET Plan. POLYPHEM will be carried out by 4 research centers and 5 private companies. The project makes a step forward beyond the state-of-the-art of thermodynamic cycles in CSP plants. The micro gas-turbine will be solarized to integrate solar energy in the cycle. A novel pressurized air solar receiver with 80% efficiency and 0.4 €/W will be developed from a technology of solar absorber currently patented by CEA and CNRS. A thermocline storage at 28 €/kWh will be developed with thermal oil and a filler material in a concrete tank.

    more_vert
  • Funder: European Commission Project Code: 666793
    Overall Budget: 3,701,940 EURFunder Contribution: 2,500,000 EUR

    Ampyx Power develops the PowerPlane, an Airborne Wind Energy System (AWES). AWES are second generation wind turbines that use the stronger and more constant wind at altitudes between 100 and 600 meters. Project AMPYXAP3 concerns the design, construction and testing of the first article of an initial commercial PowerPlane, version AP3. The global transition to a sustainable energy supply is burdened by the exorbitant societal costs associated with it. Renewable energy infrastructure projects have extremely high capital costs, and in most cases the cost per kWh of renewable electricity produced exceeds the cost of fossil-fuelled alternatives, thus requiring subsidies or other supportive instruments from governments. The economic effects of the energy transition are very significant, including the deterioration of international competitive position of countries or regions with high ambition levels regarding climate change, such as the EU – caused by rising electricity prices for industry. PowerPlane technology will have a disruptive effect on the electricity generation sector; due to the low levelised cost of energy (LCoE) that can be achieved with it, and due to its low capital costs. The need for a low cost, low capital investment renewable energy technology is evident. The AP3 PowerPlane, to be developed in the AMPYXAP3 project, fulfils the customer need of PowerPlane technology demonstration in long-term continuous safe operation at costs and LCoE as predicted. Ampyx Power aspires to manufacture and sell PowerPlane systems, as well as deliver operational and maintenance services to wind park owners. As a consequence, Ampyx Power projects revenues from PowerPlane system sales and installations, as well as from operation and maintenance (O&M) contracts. Hence, the AMPYXAP3 project is core business for Ampyx Power.

    more_vert