Filters
Funder
Start Year
End Year
Active within
-chevron_right GO
- Energy Research
- Energy Research
assignment_turned_in Project2019 - 2020Partners:University of Warwick, University of Glasgow, NTU, BRE Trust, University of Strathclyde +10 partnersUniversity of Warwick,University of Glasgow,NTU,BRE Trust,University of Strathclyde,Durham University,Econotherm (United Kingdom),University of Birmingham,Confederation of Paper Industries,Durham University,BRE Trust,British Glass,Heat Pump Association,Heat Pump Association,Econotherm (United Kingdom)Funder: UK Research and Innovation Project Code: EP/P005667/2Funder Contribution: 33,590 GBPTackling climate change, providing energy security and delivering sustainable energy solutions are major challenges faced by civil society. The social, environmental and economic cost of these challenges means that it is vital that there is a research focus on improving the conversion and use of thermal energy. A great deal of research and development is continuing to take place to reduce energy consumption and deliver cost-effective solutions aimed at helping the UK achieve its target of reducing greenhouse gas emissions by 80 per cent by 2050. Improved thermal energy performance impacts on industry through reduced energy costs, reduced emissions, and enhanced energy security. Improving efficiency and reducing emissions is necessary to increase productivity, support growth in the economy and maintain a globally competitive manufacturing sector. In the UK, residential and commercial buildings are responsible for approximately 40% of the UK's total non-transport energy use, with space heating and hot water accounting for almost 80% of residential and 60% of commercial energy use. Thermal energy demand has continued to increase over the past 40 years, even though home thermal energy efficiency has been improving. Improved thermal energy conversion and utilisation results in reduced emissions, reduced costs for industrial and domestic consumers and supports a more stable energy security position. In the UK, thermal energy (heating and cooling) is the largest use of energy in our society and cooling demand set to increase as a result of climate change. The need to address the thermal energy challenge at a multi-disciplinary level is essential and consequently this newly established network will support the technical, social, economic and environmental challenges, and the potential solutions. It is crucial to take account of the current and future economic, social, environmental and legislative barriers and incentives associated with thermal energy. The Thermal Energy Challenge Network will support synergistic approaches which offer opportunities for improved sustainable use of thermal energy which has previously been largely neglected. This approach can result in substantial energy demand reductions but collaboration and networking is essential if this is to be achieved. A combination of technological solutions working in a multi-disciplinary manner with engineers, physical scientists, and social scientists is essential and this will be encouraged and supported by the Thermal Energy Challenge Network.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::57e59cb22c5db22d94b488cf94d13a0a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::57e59cb22c5db22d94b488cf94d13a0a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2019 - 2021Partners:EOLOGIX SENSOR TECHNOLOGY GMBH, EOLOGIX SENSOR TECHNOLOGY GMBHEOLOGIX SENSOR TECHNOLOGY GMBH,EOLOGIX SENSOR TECHNOLOGY GMBHFunder: European Commission Project Code: 874102Overall Budget: 1,619,820 EURFunder Contribution: 1,133,880 EURMaintenance costs are one of the largest problems in the wind energy market, adding to up to 40% of total wind turbine costs. Blades take the lion’s share of this, with 20-30% of all maintenance costs. Our solution, eolACC is the first condition-based monitoring on-blade sensor system to combine 3 features: blade crack detection, pitch angle measurements and blade icing detection. Monitoring all these features will save wind turbine owners up to €2.9 M across the turbine lifetime, recovering the investment in eolACC in the first 2 months. We studied the target market and competitors. Forecasts predict the wind power O&M market will grow to €22 bn by 2025. eolACC has full Freedom to Operate in our target markets of Europe, North America and Asia. We currently have over 50 customers which have purchased over 200 of our ice detection sensor system, many of which have been asking for an all-in-one solution as eolACC. We will leverage our connection with them to first expand into France, Belgium and the DACH region in 2021, then the rest of Europe and North America in 2022 and Asia in 2023. Our strategy will be to sell our product first to turbine owners directly, and then through large OEMs. We already have registered interest from several of our current customers (Enercon, e.on. Tecnocentre eolien, EVN, Verbund) to implement eolACC into their systems. We will use our current clients, our connection with Phoenix Contact and local sales partners to assist our dissemination efforts. We require a 24-month project with a budget of €1.62 M to bring eolACC to market. Our Work Plan is composed of 3 Technical Work Packages, one Commercial and one for Project Management. Our Phase 2 project will also result in the creation of 6 new jobs. The project is highly profitable, bringing a 4.01 ROI up to 2024 for the €1.62M required to bring our innovation to market. This will translate into a payback period of 2 years and total revenues of almost €12M per year to 2024.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::311066c18aaca9315d8ffe0eb9d9d827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::311066c18aaca9315d8ffe0eb9d9d827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2015Partners:STRUCTURAL RESEARCH, S.L., STRUCTURAL RESEARCH, S.L.STRUCTURAL RESEARCH, S.L.,STRUCTURAL RESEARCH, S.L.Funder: European Commission Project Code: 672559Overall Budget: 71,429 EURFunder Contribution: 50,000 EURBuilding methodology in skyscrapers marked a turning point in the construction sector. Due to the high altitude of those buildings, the only way of building them is a crane that rises in the same manner the skyscraper does. The main objective of the AIRCRANE project is to complete, qualify, standard setting and demonstrate in real working conditions a self-climbing telescopic crane (AIRCRANE) for the construction of full-concrete towers for wind turbines, at very low cost compared to current market solutions. This new solution has been inspired by the skyscraper’s building methodology. As a consequence of the development of this new crane, the second objective will be the introduction in the market of a new full-concrete tower with no height limit and with a new patented procedure of building that will bring reliability, time saving, quality and workers safety. In the current decade the main trend in the wind energy sector is to decrease the costs of the energy produced by wind turbines. One of the main strategies is the installation of the rotor axis (as well as nacelle and generator) at higher heights, as much as possible, where turbulences are minor and the efficiency of the equipment is higher. However, the wind industry has found some technical and economic constraints given by the construction of steel towers. This constraints are related to: size limitations in transport (larger diameters of tower segments), cost increase for heights greater than 100m., vibrations, etc.. Full concrete towers, built with precast concrete elements are a feasible solution: easy to transport, more durable (~50 years vs. ~25 years of steel), less vibrant, less required maintenance, etc. Another advantage is that concrete annual average price is significantly lower than steel. The development of the new AIRCRANE will help in the construction of full concrete towers, to reach heights unreachable with conventional nowadays crawler cranes (>140m) and at a much lower cost.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::a70878ece12279abc23e5d20fe8fa7bf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::a70878ece12279abc23e5d20fe8fa7bf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2020 - 2022Partners:FHG, University of Vaasa, Technical University of Ostrava, University of Vaasa, Technical University of OstravaFHG,University of Vaasa,Technical University of Ostrava,University of Vaasa,Technical University of OstravaFunder: European Commission Project Code: 856670Overall Budget: 796,250 EURFunder Contribution: 796,250 EURGeoUS will support increased research excellence in geothermal energy at VSB -Technical University of Ostrava, Czech Republic through close cooperation with Fraunhofer Institute, Germany and University of Vaasa, Finland. The ultimate goal is the development of multi-disciplinary research and innovation skills in the Czech Republic, focused on the fundamental and practical aspects of developing geothermal as a sustainable energy source. GeoUS will enable VSB to expand its network with leading research organisations in geothermal energy. It also involves young researchers to support future development of research activities impacting in the Moravia Region in line with the Regional and National Research and Innovation Strategy for Smart Specialization (RIS3 Strategy) and ESIF targets. The results will be widely shared with City Authority of Ostrava, Moravian-Silesian Regional Authority and also with authorities at national level. GeoUS will: 1. Transfer knowledge and build excellent research. 2. Increase scientific excellence in thermal characterization and mathematical modelling of heat flows and temperature fields and in measurement and control of energy flows. 3. Improve the scientific excellence and research capacity of VSB. 4. Increase the capacity of VSB for participation in future high-quality research activities and innovation in thermal energy in Central Europe. 5. Increase the interaction with and between the main players in the innovation process in Czech Republic for developing and exploiting geothermal energy. 6. Widen the visibility of VSB as a centre of excellence for thermal energy. 7. Engage with the public and citizens and young people on science related to thermal energy.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::e79c36a158723f57f81f5844934fb8a8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::e79c36a158723f57f81f5844934fb8a8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2018 - 2019Partners:EOLOGIX SENSOR TECHNOLOGY GMBH, EOLOGIX SENSOR TECHNOLOGY GMBHEOLOGIX SENSOR TECHNOLOGY GMBH,EOLOGIX SENSOR TECHNOLOGY GMBHFunder: European Commission Project Code: 836540Overall Budget: 71,429 EURFunder Contribution: 50,000 EURWind energy plants are increasingly becoming critical parts of electrical infrastructure around the world. Despite major technological advancements over the past decade, an estimated 5.500 wind turbine blades fail each year, resulting in long periods of unexpected downtime and repair costs. At eologix sensor technologies gmbh, we are developing an advanced system called eolACC that uses wireless accelerometers to detect damage to blades before they fail. The patented sensor technology is thin and flexible, allowing it to be easily applied to virtually any location, even on aerodynamic surfaces of blades. Together with a base station and our software, diagnostics will alert operators of poor blade conditions and thus enhance their ability to plan critical maintenance activities. Additionally, the insight from blade sensors will help operators manage assets more effectively, and make objective decisions about useful lifetimes and operating ranges. eolACC builds off of an ice detection system previously made by eologix by utilizing the same sensor profile, wireless data transmission, and ambient light power system. Initially eolACC will be sold to owners and operators of wind plants, and in the future we will pursue collaboration with large wind turbine manufacturers. The eolACC system will ultimately help wind power plants to operate more efficiently by reducing unexpected downtime. Owners and operators will be able to more effectively plan budgets and maximize the lifetime of their assets.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::61232a0deb9f1f09808ef4ab6e1db5dc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::61232a0deb9f1f09808ef4ab6e1db5dc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2017Partners:University of Michigan Ann ArborUniversity of Michigan Ann ArborFunder: National Science Foundation Project Code: 1362120All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nsf_________::36c49d2a8683b3e3b4c0e19f11e1ab49&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nsf_________::36c49d2a8683b3e3b4c0e19f11e1ab49&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2010Partners:University of Stuttgart, ZF WPA, Suzlon Energy GmbH, ZF WPA, ECN +5 partnersUniversity of Stuttgart,ZF WPA,Suzlon Energy GmbH,ZF WPA,ECN,UL INTERNATIONAL GMBH,ECN,Suzlon Energy GmbH,GERMANISCHER LLOYD INDUSTRIAL SERVICES GMBH,CRESFunder: European Commission Project Code: 212825All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::f49807a576fd9148120a2a0153cee5c3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::f49807a576fd9148120a2a0153cee5c3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2020 - 2025Partners:University of Zurich, Aalto UniversityUniversity of Zurich,Aalto UniversityFunder: Research Council of Finland Project Code: 334205Funder Contribution: 438,874 EURThis project studies the dynamic response characteristic of the thermal energy storage (TES) coupled with the district heating network (DHN) and the innovative active control technology for the indoor thermal comfort with efficient load matching. Therefore, this study will develop a more accurate spatiotemporal dynamic simulation model for the TES-DHN emphasizing the thermal inertia and time-delay properties. The research will also develop an active control technology and optimization tool from the viewpoint of system design and operation to match the heat supply and demand more accurately. Moreover, reasonable experimental tests and case studies will also be designed and implemented to validate the developed methods and to disseminate research outcomes. Overall, this project will contribute new scientific findings and efficient engineering tools for active load matching in order to further improve energy efficiency and reduce CO2 emissions while improving the indoor thermal comfort.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=aka_________::cb21f0cc328fad3c0d0e1743ea3056dd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=aka_________::cb21f0cc328fad3c0d0e1743ea3056dd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2003 - 2006Partners:TKUTKUFunder: National Science Foundation Project Code: 0307203All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nsf_________::152af8364b0aa62734bb9c214626f3db&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nsf_________::152af8364b0aa62734bb9c214626f3db&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2012 - 2018Partners:Universität Linz, Universität Linz - Linzer Institut für Organische Solarzellen, Universität Linz - Linzer Institut für Organische SolarzellenUniversität Linz,Universität Linz - Linzer Institut für Organische Solarzellen,Universität Linz - Linzer Institut für Organische SolarzellenFunder: Austrian Science Fund (FWF) Project Code: Z 222Funder Contribution: 1,500,000 EURAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fwf_________::e6f8c5e426874dfc8b714b87010af677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fwf_________::e6f8c5e426874dfc8b714b87010af677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
assignment_turned_in Project2019 - 2020Partners:University of Warwick, University of Glasgow, NTU, BRE Trust, University of Strathclyde +10 partnersUniversity of Warwick,University of Glasgow,NTU,BRE Trust,University of Strathclyde,Durham University,Econotherm (United Kingdom),University of Birmingham,Confederation of Paper Industries,Durham University,BRE Trust,British Glass,Heat Pump Association,Heat Pump Association,Econotherm (United Kingdom)Funder: UK Research and Innovation Project Code: EP/P005667/2Funder Contribution: 33,590 GBPTackling climate change, providing energy security and delivering sustainable energy solutions are major challenges faced by civil society. The social, environmental and economic cost of these challenges means that it is vital that there is a research focus on improving the conversion and use of thermal energy. A great deal of research and development is continuing to take place to reduce energy consumption and deliver cost-effective solutions aimed at helping the UK achieve its target of reducing greenhouse gas emissions by 80 per cent by 2050. Improved thermal energy performance impacts on industry through reduced energy costs, reduced emissions, and enhanced energy security. Improving efficiency and reducing emissions is necessary to increase productivity, support growth in the economy and maintain a globally competitive manufacturing sector. In the UK, residential and commercial buildings are responsible for approximately 40% of the UK's total non-transport energy use, with space heating and hot water accounting for almost 80% of residential and 60% of commercial energy use. Thermal energy demand has continued to increase over the past 40 years, even though home thermal energy efficiency has been improving. Improved thermal energy conversion and utilisation results in reduced emissions, reduced costs for industrial and domestic consumers and supports a more stable energy security position. In the UK, thermal energy (heating and cooling) is the largest use of energy in our society and cooling demand set to increase as a result of climate change. The need to address the thermal energy challenge at a multi-disciplinary level is essential and consequently this newly established network will support the technical, social, economic and environmental challenges, and the potential solutions. It is crucial to take account of the current and future economic, social, environmental and legislative barriers and incentives associated with thermal energy. The Thermal Energy Challenge Network will support synergistic approaches which offer opportunities for improved sustainable use of thermal energy which has previously been largely neglected. This approach can result in substantial energy demand reductions but collaboration and networking is essential if this is to be achieved. A combination of technological solutions working in a multi-disciplinary manner with engineers, physical scientists, and social scientists is essential and this will be encouraged and supported by the Thermal Energy Challenge Network.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::57e59cb22c5db22d94b488cf94d13a0a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::57e59cb22c5db22d94b488cf94d13a0a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2019 - 2021Partners:EOLOGIX SENSOR TECHNOLOGY GMBH, EOLOGIX SENSOR TECHNOLOGY GMBHEOLOGIX SENSOR TECHNOLOGY GMBH,EOLOGIX SENSOR TECHNOLOGY GMBHFunder: European Commission Project Code: 874102Overall Budget: 1,619,820 EURFunder Contribution: 1,133,880 EURMaintenance costs are one of the largest problems in the wind energy market, adding to up to 40% of total wind turbine costs. Blades take the lion’s share of this, with 20-30% of all maintenance costs. Our solution, eolACC is the first condition-based monitoring on-blade sensor system to combine 3 features: blade crack detection, pitch angle measurements and blade icing detection. Monitoring all these features will save wind turbine owners up to €2.9 M across the turbine lifetime, recovering the investment in eolACC in the first 2 months. We studied the target market and competitors. Forecasts predict the wind power O&M market will grow to €22 bn by 2025. eolACC has full Freedom to Operate in our target markets of Europe, North America and Asia. We currently have over 50 customers which have purchased over 200 of our ice detection sensor system, many of which have been asking for an all-in-one solution as eolACC. We will leverage our connection with them to first expand into France, Belgium and the DACH region in 2021, then the rest of Europe and North America in 2022 and Asia in 2023. Our strategy will be to sell our product first to turbine owners directly, and then through large OEMs. We already have registered interest from several of our current customers (Enercon, e.on. Tecnocentre eolien, EVN, Verbund) to implement eolACC into their systems. We will use our current clients, our connection with Phoenix Contact and local sales partners to assist our dissemination efforts. We require a 24-month project with a budget of €1.62 M to bring eolACC to market. Our Work Plan is composed of 3 Technical Work Packages, one Commercial and one for Project Management. Our Phase 2 project will also result in the creation of 6 new jobs. The project is highly profitable, bringing a 4.01 ROI up to 2024 for the €1.62M required to bring our innovation to market. This will translate into a payback period of 2 years and total revenues of almost €12M per year to 2024.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::311066c18aaca9315d8ffe0eb9d9d827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::311066c18aaca9315d8ffe0eb9d9d827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2015Partners:STRUCTURAL RESEARCH, S.L., STRUCTURAL RESEARCH, S.L.STRUCTURAL RESEARCH, S.L.,STRUCTURAL RESEARCH, S.L.Funder: European Commission Project Code: 672559Overall Budget: 71,429 EURFunder Contribution: 50,000 EURBuilding methodology in skyscrapers marked a turning point in the construction sector. Due to the high altitude of those buildings, the only way of building them is a crane that rises in the same manner the skyscraper does. The main objective of the AIRCRANE project is to complete, qualify, standard setting and demonstrate in real working conditions a self-climbing telescopic crane (AIRCRANE) for the construction of full-concrete towers for wind turbines, at very low cost compared to current market solutions. This new solution has been inspired by the skyscraper’s building methodology. As a consequence of the development of this new crane, the second objective will be the introduction in the market of a new full-concrete tower with no height limit and with a new patented procedure of building that will bring reliability, time saving, quality and workers safety. In the current decade the main trend in the wind energy sector is to decrease the costs of the energy produced by wind turbines. One of the main strategies is the installation of the rotor axis (as well as nacelle and generator) at higher heights, as much as possible, where turbulences are minor and the efficiency of the equipment is higher. However, the wind industry has found some technical and economic constraints given by the construction of steel towers. This constraints are related to: size limitations in transport (larger diameters of tower segments), cost increase for heights greater than 100m., vibrations, etc.. Full concrete towers, built with precast concrete elements are a feasible solution: easy to transport, more durable (~50 years vs. ~25 years of steel), less vibrant, less required maintenance, etc. Another advantage is that concrete annual average price is significantly lower than steel. The development of the new AIRCRANE will help in the construction of full concrete towers, to reach heights unreachable with conventional nowadays crawler cranes (>140m) and at a much lower cost.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::a70878ece12279abc23e5d20fe8fa7bf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::a70878ece12279abc23e5d20fe8fa7bf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2020 - 2022Partners:FHG, University of Vaasa, Technical University of Ostrava, University of Vaasa, Technical University of OstravaFHG,University of Vaasa,Technical University of Ostrava,University of Vaasa,Technical University of OstravaFunder: European Commission Project Code: 856670Overall Budget: 796,250 EURFunder Contribution: 796,250 EURGeoUS will support increased research excellence in geothermal energy at VSB -Technical University of Ostrava, Czech Republic through close cooperation with Fraunhofer Institute, Germany and University of Vaasa, Finland. The ultimate goal is the development of multi-disciplinary research and innovation skills in the Czech Republic, focused on the fundamental and practical aspects of developing geothermal as a sustainable energy source. GeoUS will enable VSB to expand its network with leading research organisations in geothermal energy. It also involves young researchers to support future development of research activities impacting in the Moravia Region in line with the Regional and National Research and Innovation Strategy for Smart Specialization (RIS3 Strategy) and ESIF targets. The results will be widely shared with City Authority of Ostrava, Moravian-Silesian Regional Authority and also with authorities at national level. GeoUS will: 1. Transfer knowledge and build excellent research. 2. Increase scientific excellence in thermal characterization and mathematical modelling of heat flows and temperature fields and in measurement and control of energy flows. 3. Improve the scientific excellence and research capacity of VSB. 4. Increase the capacity of VSB for participation in future high-quality research activities and innovation in thermal energy in Central Europe. 5. Increase the interaction with and between the main players in the innovation process in Czech Republic for developing and exploiting geothermal energy. 6. Widen the visibility of VSB as a centre of excellence for thermal energy. 7. Engage with the public and citizens and young people on science related to thermal energy.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::e79c36a158723f57f81f5844934fb8a8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::e79c36a158723f57f81f5844934fb8a8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2018 - 2019Partners:EOLOGIX SENSOR TECHNOLOGY GMBH, EOLOGIX SENSOR TECHNOLOGY GMBHEOLOGIX SENSOR TECHNOLOGY GMBH,EOLOGIX SENSOR TECHNOLOGY GMBHFunder: European Commission Project Code: 836540Overall Budget: 71,429 EURFunder Contribution: 50,000 EURWind energy plants are increasingly becoming critical parts of electrical infrastructure around the world. Despite major technological advancements over the past decade, an estimated 5.500 wind turbine blades fail each year, resulting in long periods of unexpected downtime and repair costs. At eologix sensor technologies gmbh, we are developing an advanced system called eolACC that uses wireless accelerometers to detect damage to blades before they fail. The patented sensor technology is thin and flexible, allowing it to be easily applied to virtually any location, even on aerodynamic surfaces of blades. Together with a base station and our software, diagnostics will alert operators of poor blade conditions and thus enhance their ability to plan critical maintenance activities. Additionally, the insight from blade sensors will help operators manage assets more effectively, and make objective decisions about useful lifetimes and operating ranges. eolACC builds off of an ice detection system previously made by eologix by utilizing the same sensor profile, wireless data transmission, and ambient light power system. Initially eolACC will be sold to owners and operators of wind plants, and in the future we will pursue collaboration with large wind turbine manufacturers. The eolACC system will ultimately help wind power plants to operate more efficiently by reducing unexpected downtime. Owners and operators will be able to more effectively plan budgets and maximize the lifetime of their assets.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::61232a0deb9f1f09808ef4ab6e1db5dc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::61232a0deb9f1f09808ef4ab6e1db5dc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2017Partners:University of Michigan Ann ArborUniversity of Michigan Ann ArborFunder: National Science Foundation Project Code: 1362120All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nsf_________::36c49d2a8683b3e3b4c0e19f11e1ab49&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nsf_________::36c49d2a8683b3e3b4c0e19f11e1ab49&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2010Partners:University of Stuttgart, ZF WPA, Suzlon Energy GmbH, ZF WPA, ECN +5 partnersUniversity of Stuttgart,ZF WPA,Suzlon Energy GmbH,ZF WPA,ECN,UL INTERNATIONAL GMBH,ECN,Suzlon Energy GmbH,GERMANISCHER LLOYD INDUSTRIAL SERVICES GMBH,CRESFunder: European Commission Project Code: 212825All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::f49807a576fd9148120a2a0153cee5c3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::f49807a576fd9148120a2a0153cee5c3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2020 - 2025Partners:University of Zurich, Aalto UniversityUniversity of Zurich,Aalto UniversityFunder: Research Council of Finland Project Code: 334205Funder Contribution: 438,874 EURThis project studies the dynamic response characteristic of the thermal energy storage (TES) coupled with the district heating network (DHN) and the innovative active control technology for the indoor thermal comfort with efficient load matching. Therefore, this study will develop a more accurate spatiotemporal dynamic simulation model for the TES-DHN emphasizing the thermal inertia and time-delay properties. The research will also develop an active control technology and optimization tool from the viewpoint of system design and operation to match the heat supply and demand more accurately. Moreover, reasonable experimental tests and case studies will also be designed and implemented to validate the developed methods and to disseminate research outcomes. Overall, this project will contribute new scientific findings and efficient engineering tools for active load matching in order to further improve energy efficiency and reduce CO2 emissions while improving the indoor thermal comfort.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=aka_________::cb21f0cc328fad3c0d0e1743ea3056dd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=aka_________::cb21f0cc328fad3c0d0e1743ea3056dd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2003 - 2006Partners:TKUTKUFunder: National Science Foundation Project Code: 0307203All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nsf_________::152af8364b0aa62734bb9c214626f3db&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nsf_________::152af8364b0aa62734bb9c214626f3db&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2012 - 2018Partners:Universität Linz, Universität Linz - Linzer Institut für Organische Solarzellen, Universität Linz - Linzer Institut für Organische SolarzellenUniversität Linz,Universität Linz - Linzer Institut für Organische Solarzellen,Universität Linz - Linzer Institut für Organische SolarzellenFunder: Austrian Science Fund (FWF) Project Code: Z 222Funder Contribution: 1,500,000 EURAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fwf_________::e6f8c5e426874dfc8b714b87010af677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fwf_________::e6f8c5e426874dfc8b714b87010af677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu