Filters
Clear All- Energy Research
- 2015
- 2019
- Energy Research
- 2015
- 2019
assignment_turned_in Project2015 - 2019Partners:University of Birmingham, University of BirminghamUniversity of Birmingham,University of BirminghamFunder: UK Research and Innovation Project Code: 1633025In 2008, the UK Government pledged to reduce greenhouse gas emissions by 80% before 2050. Renewable energy solutions are a key part of this commitment with deep geothermal energy systems playing an important role in this strategy. The southern region of the Cheshire Basin in the northwest of the UK is one of only a handful of economically suitable sites in the country. The basin holds around 4.6M GWh of potentially available energy, more than 6 times the national heat demand of the UK. To exploit this resource, Cheshire East Council (the CASE partner) have instigated a programme of long-term Deep Geothermal Energy (DGE) research in collaboration with local universities and Public/Private sector partners. Over 250K pounds of initial research funding has been invested into the DGE project and this 4-year, collaborative CASE studentship with Keele University's Applied and Environmental Geophysics Group forms the next stage in this ambitious development programme. In order to evaluate, characterise and optimise the delivery of deep geothermal energy as heat to homes and business in the East Cheshire region (and potentially to some 2 million consumers in the future), this CASE studentship project will attempt to simulate the transfer of heat energy from the deep geothermal reservoir (at a depth of nearly 4km), through a borehole array system and across to potential customers as low-carbon, cost-effective heating in a single, combined 'multiphysics' geothermal model. The ultimate goal of the project is to create a realist, accurate, flexible model that can be used to predict, optimise and probabilistically characterise the energy return of the Deep Geothermal Energy system when it comes online in 3-4 years' time. In addition, it is expected that the model will help inform and optimise the design of future DGE systems planned by Cheshire East council in the future. To achieve this, the student will; 1) Use sophisticated geological modelling, characterisation and visualisation tools to generate a 3D model of the hydrogeological conditions at the depth of the intended borehole array using existing geophysical, borehole, structural and sedimentological data plus new information from the planned investigation work and borehole drilling at the DGE site. 2) Model/simulate the 3D coupling of fluid and thermal fluxes in the active region of the borehole array system in order to predict the volume, flow and temperate of extracted waters from DGE system. The model will utilise hydro/petrophysical data information gained from the boreholes and physical/geometrical design information from the installed borehole array. 3) Test, validate, revise and optimise the models (with reference to real thermal, flux and flow data provided by the licenced DGE system operators) in order to provide a single model that best simulates the whole of the energy system at the point of delivery. Cheshire East Council have an ambitious 25-year strategy to develop more DGE systems in the Cheshire Basin and the ability to model, characterise and optimise the design of future installations, based on the work undertaken in this studentship, has clear and significant financial, developmental and socio-economic benefits to all parties involved (i.e., the Council, consumers, developers and licenced operators). This studentship will also provide the selected candidate with a challenging, yet highly-rewarding project within one of Europe's leading near-surface geophysics research groups and, arguably, the most forward-looking local council with respect to renewable energy development. The project links the diverse and multidisciplinary fields of geology, geophysics and numerical modelling with the broader disciple of energy-related environmental engineering and district heat network design. As such, it represents an unrivalled opportunity for a talented student to work in a rapidly developing and increasing important sector of the energy market.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7d00a82297dae1ee52d33da47df11278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7d00a82297dae1ee52d33da47df11278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2015 - 2019Partners:Institut des Sciences et Ingénierie Chimiques EPFL-SB-ISIC-LSPN, EPFLInstitut des Sciences et Ingénierie Chimiques EPFL-SB-ISIC-LSPN,EPFLFunder: Swiss National Science Foundation Project Code: PYAPP2_154269All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=snsf________::ae4045ddf1fc98e2ae7af56f3d351441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=snsf________::ae4045ddf1fc98e2ae7af56f3d351441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2019Partners:AMPYX POWER BV, AMPYX POWER BVAMPYX POWER BV,AMPYX POWER BVFunder: European Commission Project Code: 666793Overall Budget: 3,701,940 EURFunder Contribution: 2,500,000 EURAmpyx Power develops the PowerPlane, an Airborne Wind Energy System (AWES). AWES are second generation wind turbines that use the stronger and more constant wind at altitudes between 100 and 600 meters. Project AMPYXAP3 concerns the design, construction and testing of the first article of an initial commercial PowerPlane, version AP3. The global transition to a sustainable energy supply is burdened by the exorbitant societal costs associated with it. Renewable energy infrastructure projects have extremely high capital costs, and in most cases the cost per kWh of renewable electricity produced exceeds the cost of fossil-fuelled alternatives, thus requiring subsidies or other supportive instruments from governments. The economic effects of the energy transition are very significant, including the deterioration of international competitive position of countries or regions with high ambition levels regarding climate change, such as the EU – caused by rising electricity prices for industry. PowerPlane technology will have a disruptive effect on the electricity generation sector; due to the low levelised cost of energy (LCoE) that can be achieved with it, and due to its low capital costs. The need for a low cost, low capital investment renewable energy technology is evident. The AP3 PowerPlane, to be developed in the AMPYXAP3 project, fulfils the customer need of PowerPlane technology demonstration in long-term continuous safe operation at costs and LCoE as predicted. Ampyx Power aspires to manufacture and sell PowerPlane systems, as well as deliver operational and maintenance services to wind park owners. As a consequence, Ampyx Power projects revenues from PowerPlane system sales and installations, as well as from operation and maintenance (O&M) contracts. Hence, the AMPYXAP3 project is core business for Ampyx Power.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::cd26539a7857145e3ec5a8d5750364e5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::cd26539a7857145e3ec5a8d5750364e5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2015 - 2019Partners:University of Leeds, University of LeedsUniversity of Leeds,University of LeedsFunder: UK Research and Innovation Project Code: 1827308Solar energy is our most abundant energy source and has enormous potential as a clean and economical energy supply. We wish to tap into this under-utilised source of power and address the direct conversion of solar energy to a renewable fuel; a major technological challenge of our time. This PhD project will use Synthetic Biology principles to mimic the principles of plant photosynthesis. Hybrid systems will be designed and build in which light-harvesting nanoparticles (e.g., TiO2 or quantum dots) are coupled to redox-active proteins and enzymes, combining the catalytic specificity of enzymes with the photo-stability and light-harvesting capabilities of semi-conducting nanoparticles for fuel production.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::405e064f5e27d04627c4b85af14de079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::405e064f5e27d04627c4b85af14de079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2019Partners:Plovdiv University, UAB, Plovdiv University, GENE ROWE EVALUATIONS GRE, FEDERAL STATE BUDGETARY INSTITUTION OF SCIENCE INSTITUTE OF HISTORY AND ARCHAEOLOGY OF THE URAL BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES +36 partnersPlovdiv University,UAB,Plovdiv University,GENE ROWE EVALUATIONS GRE,FEDERAL STATE BUDGETARY INSTITUTION OF SCIENCE INSTITUTE OF HISTORY AND ARCHAEOLOGY OF THE URAL BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES,Universidad Publica De Navarra,UPMC,SCIENCE MUSEUM GROUP,SEDU,GENE ROWE EVALUATIONS GRE,University of York,UAntwerpen,University of Sheffield,UCLan,UoA,KTH,UPF,LUT,LUT,COLBY COLLEGE,FSU,UCPH,UoA,SEDU,UCLan,SPI,TU/e,DIALOGIK GEMEINNUETZIGE GESELLSCHAFT FUER KOMMUNIKATIONS- UND KOOPERATIONSFORSCHUNG mbH,Universidad Publica De Navarra,CIEMAT,DIALOGIK GEMEINNUETZIGE GESELLSCHAFT FUER KOMMUNIKATIONS- UND KOOPERATIONSFORSCHUNG mbH,Kobe University,SPI,COLBY COLLEGE,PUBLIC INSTITUTIONEUROPEAN HUMANITIES UNIVERSITY E,SCIENCE MUSEUM GROUP,Sorbonne University,FEDERAL STATE BUDGETARY INSTITUTION OF SCIENCE INSTITUTE OF HISTORY AND ARCHAEOLOGY OF THE URAL BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES,DM,DM,EHUFunder: European Commission Project Code: 662268Overall Budget: 3,052,270 EURFunder Contribution: 3,052,270 EURHoNESt (History of Nuclear Energy and Society) involves an interdisciplinary team with many experienced researchers and 24 high profile research institutions. HoNESt’s goal is to conduct a three-year interdisciplinary analysis of the experience of nuclear developments and its relationship to contemporary society with the aim of improving the understanding of the dynamics over the last 60 years. HoNESt’s results will assist the current debate on future energy sources and the transition to affordable, secure, and clean energy production. Civil society's interaction with nuclear developments changes over time, and it is locally, nationally and transnationally specific. HoNESt will embrace the complexity of political, technological and economic challenges; safety; risk perception and communication, public engagement, media framing, social movements, etc. Research on these interactions has thus far been mostly fragmented. We will develop a pioneering integrated interdisciplinary approach, which is conceptually informed by Large Technological Systems (LTS) and Integrated Socio-technical System (IST), based on a close and innovative collaboration of historians and social scientists in this field. HoNESt will first collect extensive historical data from over 20 countries. These data will be jointly analyzed by historians and social scientists, through the lens of an innovative integrated approach, in order to improve our understanding of the mechanisms underlying decision making and associated citizen engagement with nuclear power. Through an innovative application of backcasting techniques, HoNESt will bring novel content to the debate on nuclear sustainable engagement futures. Looking backwards to the present, HoNESt will strategize and plan how these suitable engagement futures could be achieved. HoNESt will engage key stakeholders from industry, policy makers and civil society in a structured dialogue to insert the results into the public debate on nuclear energy.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::bf2f1d9e23eb8c66bf69510f2c98313c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::bf2f1d9e23eb8c66bf69510f2c98313c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2019Partners:UB, FHG, Muehlhan A/S, EC&R, MANKIEWICZ +7 partnersUB,FHG,Muehlhan A/S,EC&R,MANKIEWICZ,EC&R,ELTRONIC A/S,ELTRONIC A/S,MANKIEWICZ,Muehlhan A/S,BIONIC SURFACE,BIONIC SURFACEFunder: European Commission Project Code: 657652Overall Budget: 4,031,850 EURFunder Contribution: 3,307,170 EURThe main objective of Riblet4Wind is the transfer of a technology that has already demonstrated its capacity for increasing the energy efficiency in the aeronautics sector, to the wind energy industry. Application of functional coatings with riblet structure will improve the drag to lift ratio of rotor blades significantly. Wind tunnel experiments have proven the capability of this riblet-coating technology to increase the efficiency of wind turbines by up to 6%. This direct effect will allow gaining the same amount of electrical energy with smaller rotor blades. Indirect effects will increase the benefit to approximately more than 10%: • The improved drag to lift ratio will allow operation at lower wind speeds. The earlier cut-in of the WTG will improve the facility to balance in the electrical grid system. • The riblet structure improves the stall and turbulence behaviour of the rotor blades thus allowing also operation at higher wind speeds and/or operation in less optimum wind conditions, e.g. changing wind directions or gusts. • The improved drag to lift ratio will reveal design options due to changes of the design loads. • The riblet structure will also result in a substantial reduction of noise emissions. It is expected that the interaction of direct and indirect effects will contribute significantly to the targets of the European Wind Energy Technology Platform (TPWind) as declared in the new Strategic Research Agenda / Market Deployment Strategy (SRA / MDS) : a reduction of levelised costs of energy (LCoE) by 20% (onshore) respectively 50% (offshore) until 2028 (LCoE reference 2008). Beyond the focus of the topic H2020-LCE3-2014 the riblet-paint technology can also be applied on existing rotor blades, thus supporting retrofitting of existing wind turbines and maximising the benefit. In total Riblet4Wind aims at demonstrating the successful transfer of the riblet-coating technology and the semi-quantitative assessment of the direct and indirect effects.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::270f3ce47737101013b1970e45060ab8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::270f3ce47737101013b1970e45060ab8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2019Partners:SUMITOMO (SHI) CRYOGENICS OF EUROPE LIMITED, University of Twente, SUMITOMO (SHI) CRYOGENICS OF EUROPE LIMITED, FHG, ENVISION ENERGY +11 partnersSUMITOMO (SHI) CRYOGENICS OF EUROPE LIMITED,University of Twente,SUMITOMO (SHI) CRYOGENICS OF EUROPE LIMITED,FHG,ENVISION ENERGY,DELTA ENERGY SYSTEMS GMBH,ENVISION ENERGY,ECO 5 GMBH,JE,ECO 5 GMBH,GLIS,GLIS,THEVA,DELTA ENERGY SYSTEMS GMBH,THEVA,JEFunder: European Commission Project Code: 656024Overall Budget: 13,846,600 EURFunder Contribution: 10,591,700 EUREcoSwing aims at world's first demonstration of a superconducting low-cost, lightweight drive train on a modern 3.6 MW wind turbine. EcoSwing is quantifiable: The generator weight is reduced by 40% compared to commercial permanent magnet direct-drive generators (PMDD). For the nacelle this means a very significant weight reduction of 25%. Assuming series production, cost reduction for the generator can be 40% compared to PMDD. Finally, reliance on rare earth metals is down by at least two orders of magnitude. This demonstration is enabled by the increasing maturity of industrial superconductivity. In an ambitious step beyond present activities, EcoSwing will advance the TRL from 4-5 to 6-7. We are shifting paradigms: Previously, HTS was considered for very big, highly efficient turbines for future markets only. By means of cost-optimization, EcoSwing targets a turbine of great relevance already to the present large-scale wind power market. The design principles of EcoSwing are applicable to markets with a wide range of turbine ratings from 2 MW to 10 MW and beyond. Despite technological successes in superconductivity, turbine manufacturers and generator suppliers are hesitant to apply HTS into the wind sector, because of real and perceived risks. The environment inside a wind turbine has unique requirements to generators (parasitic loads and moments, vibration, amount of independent hours of operation). Therefore, a demonstration is required. The consortium represents a full value chain from materials, over components, up to a turbine manufacturer as an end-user providing market pull. It features competent partners on the engineering, the cryogenic, and the power conversion side. Also ground-based testing before turbine deployment, pre-certification activities, and training are included. EcoSwing can become tangible: The EcoSwing demonstrator will commence operation in 2018 on an existing very modern 3.6 MW wind turbine in Thyborøn, Denmark.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::8568061e5fab358bc745076ceb864a4c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::8568061e5fab358bc745076ceb864a4c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2015 - 2019Partners:CSUCSUFunder: National Science Foundation Project Code: 1452725All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nsf_________::3b1367aa85d9a043ef092bbce28633db&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nsf_________::3b1367aa85d9a043ef092bbce28633db&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2019Partners:BAV, ELECTRICITY TRANSMISSION SYSTEM OPERATOR, KIC SE, Kompetenzzentrum Holz, LANDESENERGIEVEREIN +21 partnersBAV,ELECTRICITY TRANSMISSION SYSTEM OPERATOR,KIC SE,Kompetenzzentrum Holz,LANDESENERGIEVEREIN,University of Twente,STYRIAN ENERGY AGENCY,ESEIA,LNEG,LANDESENERGIEVEREIN,ROTAX,STYRIAN ENERGY AGENCY,GTC,UL,ROTAX,UTBv,Graz University of Technology,TUHH,Kompetenzzentrum Holz,ASOCIATIA GREEN ENERGY,GTC,ESEIA,ELECTRICITY TRANSMISSION SYSTEM OPERATOR,BAV,ASOCIATIA GREEN ENERGY,KIC SEFunder: European Commission Project Code: 656760Overall Budget: 3,697,580 EURFunder Contribution: 3,697,580 EURThe development and adoption of renewable and sustainable energy has become a top priority in Europe, and is Horizon 2020’s most prominent theme. Research into new energy methods required to reduce humanity’s carbon footprint is an urgent and critical need, and is reliant upon a flow of newly qualified persons in areas as diverse as renewable energy infrastructure management, new energy materials and methods, and smart buildings and transport. Bioenergy is a particularly important field in this respect as it is at the cross-roads of several important European policies, from the Strategic Energy Technology Plan Roadmap on Education and Training (SET-Plan) to the European Bioeconomy Strategy to European Food Safety and Nutrition Policy. European development in this prioritised field is stalled due to a lack of qualified personnel, a lack of cohesion and integration among stakeholders, and poor linkage between professional training and industry needs. To address these problems, BioEnergyTrain brings together fifteen partners from six EU countries to create new post-graduate level curricula in key bioenergy disciplines, and a network of tertiary education institutions, research centres, professional associations, and industry stakeholders encompassing the whole value chain of bioenergy from field/forest to integration into the sustainable energy systems of buildings, settlements and regions. The project will foster European cooperation to provide a highly skilled and innovative workforce across the whole bioenergy value chain, closely following the recommendations of the SET-Plan Education Roadmap.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::3338369589be277097b26e688e496e30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::3338369589be277097b26e688e496e30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2015 - 2019Partners:University of Glasgow, University of GlasgowUniversity of Glasgow,University of GlasgowFunder: UK Research and Innovation Project Code: 1653889The project will take a holistic approach to evaluating the scope for accessing and deploying deep geothermal heating in a representative neighbourhood in Glasgow, drawing lessons for the wider application of this approach elsewhere in the city, the country and in other parts of the world with comparable geological and socio-economic circumstances. Directed by an expert, academic supervisory team and in close collaboration with key stakeholders (Glasgow City Council, the Scottish Government, specialist geothermal and district heating companies, fuel poverty NGOs and residents' groups), an integrated analysis shall be made of: The available geothermal resource associated with lowermost Carboniferous and Devonian sandstones at depths of greater than or equal to 1.5km beneath Glasgow The practicalities of drilling engineering in appropriate urban areas The optimal technology and delivery mode for geothermal district heat (including back-up systems to ensure resilience) Public acceptability and understanding of the technology (through targeted public engagement activities) Costs and benefits with particular reference to the substantial alleviation of fuel poverty.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::189abd6f8af06e91406fbd06040bba4c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::189abd6f8af06e91406fbd06040bba4c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
assignment_turned_in Project2015 - 2019Partners:University of Birmingham, University of BirminghamUniversity of Birmingham,University of BirminghamFunder: UK Research and Innovation Project Code: 1633025In 2008, the UK Government pledged to reduce greenhouse gas emissions by 80% before 2050. Renewable energy solutions are a key part of this commitment with deep geothermal energy systems playing an important role in this strategy. The southern region of the Cheshire Basin in the northwest of the UK is one of only a handful of economically suitable sites in the country. The basin holds around 4.6M GWh of potentially available energy, more than 6 times the national heat demand of the UK. To exploit this resource, Cheshire East Council (the CASE partner) have instigated a programme of long-term Deep Geothermal Energy (DGE) research in collaboration with local universities and Public/Private sector partners. Over 250K pounds of initial research funding has been invested into the DGE project and this 4-year, collaborative CASE studentship with Keele University's Applied and Environmental Geophysics Group forms the next stage in this ambitious development programme. In order to evaluate, characterise and optimise the delivery of deep geothermal energy as heat to homes and business in the East Cheshire region (and potentially to some 2 million consumers in the future), this CASE studentship project will attempt to simulate the transfer of heat energy from the deep geothermal reservoir (at a depth of nearly 4km), through a borehole array system and across to potential customers as low-carbon, cost-effective heating in a single, combined 'multiphysics' geothermal model. The ultimate goal of the project is to create a realist, accurate, flexible model that can be used to predict, optimise and probabilistically characterise the energy return of the Deep Geothermal Energy system when it comes online in 3-4 years' time. In addition, it is expected that the model will help inform and optimise the design of future DGE systems planned by Cheshire East council in the future. To achieve this, the student will; 1) Use sophisticated geological modelling, characterisation and visualisation tools to generate a 3D model of the hydrogeological conditions at the depth of the intended borehole array using existing geophysical, borehole, structural and sedimentological data plus new information from the planned investigation work and borehole drilling at the DGE site. 2) Model/simulate the 3D coupling of fluid and thermal fluxes in the active region of the borehole array system in order to predict the volume, flow and temperate of extracted waters from DGE system. The model will utilise hydro/petrophysical data information gained from the boreholes and physical/geometrical design information from the installed borehole array. 3) Test, validate, revise and optimise the models (with reference to real thermal, flux and flow data provided by the licenced DGE system operators) in order to provide a single model that best simulates the whole of the energy system at the point of delivery. Cheshire East Council have an ambitious 25-year strategy to develop more DGE systems in the Cheshire Basin and the ability to model, characterise and optimise the design of future installations, based on the work undertaken in this studentship, has clear and significant financial, developmental and socio-economic benefits to all parties involved (i.e., the Council, consumers, developers and licenced operators). This studentship will also provide the selected candidate with a challenging, yet highly-rewarding project within one of Europe's leading near-surface geophysics research groups and, arguably, the most forward-looking local council with respect to renewable energy development. The project links the diverse and multidisciplinary fields of geology, geophysics and numerical modelling with the broader disciple of energy-related environmental engineering and district heat network design. As such, it represents an unrivalled opportunity for a talented student to work in a rapidly developing and increasing important sector of the energy market.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7d00a82297dae1ee52d33da47df11278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7d00a82297dae1ee52d33da47df11278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2015 - 2019Partners:Institut des Sciences et Ingénierie Chimiques EPFL-SB-ISIC-LSPN, EPFLInstitut des Sciences et Ingénierie Chimiques EPFL-SB-ISIC-LSPN,EPFLFunder: Swiss National Science Foundation Project Code: PYAPP2_154269All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=snsf________::ae4045ddf1fc98e2ae7af56f3d351441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=snsf________::ae4045ddf1fc98e2ae7af56f3d351441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2019Partners:AMPYX POWER BV, AMPYX POWER BVAMPYX POWER BV,AMPYX POWER BVFunder: European Commission Project Code: 666793Overall Budget: 3,701,940 EURFunder Contribution: 2,500,000 EURAmpyx Power develops the PowerPlane, an Airborne Wind Energy System (AWES). AWES are second generation wind turbines that use the stronger and more constant wind at altitudes between 100 and 600 meters. Project AMPYXAP3 concerns the design, construction and testing of the first article of an initial commercial PowerPlane, version AP3. The global transition to a sustainable energy supply is burdened by the exorbitant societal costs associated with it. Renewable energy infrastructure projects have extremely high capital costs, and in most cases the cost per kWh of renewable electricity produced exceeds the cost of fossil-fuelled alternatives, thus requiring subsidies or other supportive instruments from governments. The economic effects of the energy transition are very significant, including the deterioration of international competitive position of countries or regions with high ambition levels regarding climate change, such as the EU – caused by rising electricity prices for industry. PowerPlane technology will have a disruptive effect on the electricity generation sector; due to the low levelised cost of energy (LCoE) that can be achieved with it, and due to its low capital costs. The need for a low cost, low capital investment renewable energy technology is evident. The AP3 PowerPlane, to be developed in the AMPYXAP3 project, fulfils the customer need of PowerPlane technology demonstration in long-term continuous safe operation at costs and LCoE as predicted. Ampyx Power aspires to manufacture and sell PowerPlane systems, as well as deliver operational and maintenance services to wind park owners. As a consequence, Ampyx Power projects revenues from PowerPlane system sales and installations, as well as from operation and maintenance (O&M) contracts. Hence, the AMPYXAP3 project is core business for Ampyx Power.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::cd26539a7857145e3ec5a8d5750364e5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::cd26539a7857145e3ec5a8d5750364e5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2015 - 2019Partners:University of Leeds, University of LeedsUniversity of Leeds,University of LeedsFunder: UK Research and Innovation Project Code: 1827308Solar energy is our most abundant energy source and has enormous potential as a clean and economical energy supply. We wish to tap into this under-utilised source of power and address the direct conversion of solar energy to a renewable fuel; a major technological challenge of our time. This PhD project will use Synthetic Biology principles to mimic the principles of plant photosynthesis. Hybrid systems will be designed and build in which light-harvesting nanoparticles (e.g., TiO2 or quantum dots) are coupled to redox-active proteins and enzymes, combining the catalytic specificity of enzymes with the photo-stability and light-harvesting capabilities of semi-conducting nanoparticles for fuel production.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::405e064f5e27d04627c4b85af14de079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::405e064f5e27d04627c4b85af14de079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2019Partners:Plovdiv University, UAB, Plovdiv University, GENE ROWE EVALUATIONS GRE, FEDERAL STATE BUDGETARY INSTITUTION OF SCIENCE INSTITUTE OF HISTORY AND ARCHAEOLOGY OF THE URAL BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES +36 partnersPlovdiv University,UAB,Plovdiv University,GENE ROWE EVALUATIONS GRE,FEDERAL STATE BUDGETARY INSTITUTION OF SCIENCE INSTITUTE OF HISTORY AND ARCHAEOLOGY OF THE URAL BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES,Universidad Publica De Navarra,UPMC,SCIENCE MUSEUM GROUP,SEDU,GENE ROWE EVALUATIONS GRE,University of York,UAntwerpen,University of Sheffield,UCLan,UoA,KTH,UPF,LUT,LUT,COLBY COLLEGE,FSU,UCPH,UoA,SEDU,UCLan,SPI,TU/e,DIALOGIK GEMEINNUETZIGE GESELLSCHAFT FUER KOMMUNIKATIONS- UND KOOPERATIONSFORSCHUNG mbH,Universidad Publica De Navarra,CIEMAT,DIALOGIK GEMEINNUETZIGE GESELLSCHAFT FUER KOMMUNIKATIONS- UND KOOPERATIONSFORSCHUNG mbH,Kobe University,SPI,COLBY COLLEGE,PUBLIC INSTITUTIONEUROPEAN HUMANITIES UNIVERSITY E,SCIENCE MUSEUM GROUP,Sorbonne University,FEDERAL STATE BUDGETARY INSTITUTION OF SCIENCE INSTITUTE OF HISTORY AND ARCHAEOLOGY OF THE URAL BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES,DM,DM,EHUFunder: European Commission Project Code: 662268Overall Budget: 3,052,270 EURFunder Contribution: 3,052,270 EURHoNESt (History of Nuclear Energy and Society) involves an interdisciplinary team with many experienced researchers and 24 high profile research institutions. HoNESt’s goal is to conduct a three-year interdisciplinary analysis of the experience of nuclear developments and its relationship to contemporary society with the aim of improving the understanding of the dynamics over the last 60 years. HoNESt’s results will assist the current debate on future energy sources and the transition to affordable, secure, and clean energy production. Civil society's interaction with nuclear developments changes over time, and it is locally, nationally and transnationally specific. HoNESt will embrace the complexity of political, technological and economic challenges; safety; risk perception and communication, public engagement, media framing, social movements, etc. Research on these interactions has thus far been mostly fragmented. We will develop a pioneering integrated interdisciplinary approach, which is conceptually informed by Large Technological Systems (LTS) and Integrated Socio-technical System (IST), based on a close and innovative collaboration of historians and social scientists in this field. HoNESt will first collect extensive historical data from over 20 countries. These data will be jointly analyzed by historians and social scientists, through the lens of an innovative integrated approach, in order to improve our understanding of the mechanisms underlying decision making and associated citizen engagement with nuclear power. Through an innovative application of backcasting techniques, HoNESt will bring novel content to the debate on nuclear sustainable engagement futures. Looking backwards to the present, HoNESt will strategize and plan how these suitable engagement futures could be achieved. HoNESt will engage key stakeholders from industry, policy makers and civil society in a structured dialogue to insert the results into the public debate on nuclear energy.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::bf2f1d9e23eb8c66bf69510f2c98313c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::bf2f1d9e23eb8c66bf69510f2c98313c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2019Partners:UB, FHG, Muehlhan A/S, EC&R, MANKIEWICZ +7 partnersUB,FHG,Muehlhan A/S,EC&R,MANKIEWICZ,EC&R,ELTRONIC A/S,ELTRONIC A/S,MANKIEWICZ,Muehlhan A/S,BIONIC SURFACE,BIONIC SURFACEFunder: European Commission Project Code: 657652Overall Budget: 4,031,850 EURFunder Contribution: 3,307,170 EURThe main objective of Riblet4Wind is the transfer of a technology that has already demonstrated its capacity for increasing the energy efficiency in the aeronautics sector, to the wind energy industry. Application of functional coatings with riblet structure will improve the drag to lift ratio of rotor blades significantly. Wind tunnel experiments have proven the capability of this riblet-coating technology to increase the efficiency of wind turbines by up to 6%. This direct effect will allow gaining the same amount of electrical energy with smaller rotor blades. Indirect effects will increase the benefit to approximately more than 10%: • The improved drag to lift ratio will allow operation at lower wind speeds. The earlier cut-in of the WTG will improve the facility to balance in the electrical grid system. • The riblet structure improves the stall and turbulence behaviour of the rotor blades thus allowing also operation at higher wind speeds and/or operation in less optimum wind conditions, e.g. changing wind directions or gusts. • The improved drag to lift ratio will reveal design options due to changes of the design loads. • The riblet structure will also result in a substantial reduction of noise emissions. It is expected that the interaction of direct and indirect effects will contribute significantly to the targets of the European Wind Energy Technology Platform (TPWind) as declared in the new Strategic Research Agenda / Market Deployment Strategy (SRA / MDS) : a reduction of levelised costs of energy (LCoE) by 20% (onshore) respectively 50% (offshore) until 2028 (LCoE reference 2008). Beyond the focus of the topic H2020-LCE3-2014 the riblet-paint technology can also be applied on existing rotor blades, thus supporting retrofitting of existing wind turbines and maximising the benefit. In total Riblet4Wind aims at demonstrating the successful transfer of the riblet-coating technology and the semi-quantitative assessment of the direct and indirect effects.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::270f3ce47737101013b1970e45060ab8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::270f3ce47737101013b1970e45060ab8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2019Partners:SUMITOMO (SHI) CRYOGENICS OF EUROPE LIMITED, University of Twente, SUMITOMO (SHI) CRYOGENICS OF EUROPE LIMITED, FHG, ENVISION ENERGY +11 partnersSUMITOMO (SHI) CRYOGENICS OF EUROPE LIMITED,University of Twente,SUMITOMO (SHI) CRYOGENICS OF EUROPE LIMITED,FHG,ENVISION ENERGY,DELTA ENERGY SYSTEMS GMBH,ENVISION ENERGY,ECO 5 GMBH,JE,ECO 5 GMBH,GLIS,GLIS,THEVA,DELTA ENERGY SYSTEMS GMBH,THEVA,JEFunder: European Commission Project Code: 656024Overall Budget: 13,846,600 EURFunder Contribution: 10,591,700 EUREcoSwing aims at world's first demonstration of a superconducting low-cost, lightweight drive train on a modern 3.6 MW wind turbine. EcoSwing is quantifiable: The generator weight is reduced by 40% compared to commercial permanent magnet direct-drive generators (PMDD). For the nacelle this means a very significant weight reduction of 25%. Assuming series production, cost reduction for the generator can be 40% compared to PMDD. Finally, reliance on rare earth metals is down by at least two orders of magnitude. This demonstration is enabled by the increasing maturity of industrial superconductivity. In an ambitious step beyond present activities, EcoSwing will advance the TRL from 4-5 to 6-7. We are shifting paradigms: Previously, HTS was considered for very big, highly efficient turbines for future markets only. By means of cost-optimization, EcoSwing targets a turbine of great relevance already to the present large-scale wind power market. The design principles of EcoSwing are applicable to markets with a wide range of turbine ratings from 2 MW to 10 MW and beyond. Despite technological successes in superconductivity, turbine manufacturers and generator suppliers are hesitant to apply HTS into the wind sector, because of real and perceived risks. The environment inside a wind turbine has unique requirements to generators (parasitic loads and moments, vibration, amount of independent hours of operation). Therefore, a demonstration is required. The consortium represents a full value chain from materials, over components, up to a turbine manufacturer as an end-user providing market pull. It features competent partners on the engineering, the cryogenic, and the power conversion side. Also ground-based testing before turbine deployment, pre-certification activities, and training are included. EcoSwing can become tangible: The EcoSwing demonstrator will commence operation in 2018 on an existing very modern 3.6 MW wind turbine in Thyborøn, Denmark.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::8568061e5fab358bc745076ceb864a4c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::8568061e5fab358bc745076ceb864a4c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2015 - 2019Partners:CSUCSUFunder: National Science Foundation Project Code: 1452725All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nsf_________::3b1367aa85d9a043ef092bbce28633db&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nsf_________::3b1367aa85d9a043ef092bbce28633db&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2019Partners:BAV, ELECTRICITY TRANSMISSION SYSTEM OPERATOR, KIC SE, Kompetenzzentrum Holz, LANDESENERGIEVEREIN +21 partnersBAV,ELECTRICITY TRANSMISSION SYSTEM OPERATOR,KIC SE,Kompetenzzentrum Holz,LANDESENERGIEVEREIN,University of Twente,STYRIAN ENERGY AGENCY,ESEIA,LNEG,LANDESENERGIEVEREIN,ROTAX,STYRIAN ENERGY AGENCY,GTC,UL,ROTAX,UTBv,Graz University of Technology,TUHH,Kompetenzzentrum Holz,ASOCIATIA GREEN ENERGY,GTC,ESEIA,ELECTRICITY TRANSMISSION SYSTEM OPERATOR,BAV,ASOCIATIA GREEN ENERGY,KIC SEFunder: European Commission Project Code: 656760Overall Budget: 3,697,580 EURFunder Contribution: 3,697,580 EURThe development and adoption of renewable and sustainable energy has become a top priority in Europe, and is Horizon 2020’s most prominent theme. Research into new energy methods required to reduce humanity’s carbon footprint is an urgent and critical need, and is reliant upon a flow of newly qualified persons in areas as diverse as renewable energy infrastructure management, new energy materials and methods, and smart buildings and transport. Bioenergy is a particularly important field in this respect as it is at the cross-roads of several important European policies, from the Strategic Energy Technology Plan Roadmap on Education and Training (SET-Plan) to the European Bioeconomy Strategy to European Food Safety and Nutrition Policy. European development in this prioritised field is stalled due to a lack of qualified personnel, a lack of cohesion and integration among stakeholders, and poor linkage between professional training and industry needs. To address these problems, BioEnergyTrain brings together fifteen partners from six EU countries to create new post-graduate level curricula in key bioenergy disciplines, and a network of tertiary education institutions, research centres, professional associations, and industry stakeholders encompassing the whole value chain of bioenergy from field/forest to integration into the sustainable energy systems of buildings, settlements and regions. The project will foster European cooperation to provide a highly skilled and innovative workforce across the whole bioenergy value chain, closely following the recommendations of the SET-Plan Education Roadmap.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::3338369589be277097b26e688e496e30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::3338369589be277097b26e688e496e30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2015 - 2019Partners:University of Glasgow, University of GlasgowUniversity of Glasgow,University of GlasgowFunder: UK Research and Innovation Project Code: 1653889The project will take a holistic approach to evaluating the scope for accessing and deploying deep geothermal heating in a representative neighbourhood in Glasgow, drawing lessons for the wider application of this approach elsewhere in the city, the country and in other parts of the world with comparable geological and socio-economic circumstances. Directed by an expert, academic supervisory team and in close collaboration with key stakeholders (Glasgow City Council, the Scottish Government, specialist geothermal and district heating companies, fuel poverty NGOs and residents' groups), an integrated analysis shall be made of: The available geothermal resource associated with lowermost Carboniferous and Devonian sandstones at depths of greater than or equal to 1.5km beneath Glasgow The practicalities of drilling engineering in appropriate urban areas The optimal technology and delivery mode for geothermal district heat (including back-up systems to ensure resilience) Public acceptability and understanding of the technology (through targeted public engagement activities) Costs and benefits with particular reference to the substantial alleviation of fuel poverty.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::189abd6f8af06e91406fbd06040bba4c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::189abd6f8af06e91406fbd06040bba4c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu