search
  • End Year
    Clear
  • Funder
  • Start Year
  • Active within
    Clear
  • OA Publications Mandate
    Clear
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.

  • Energy Research
  • 2016-2025
  • OA Publications Mandate: No
  • 2020

  • Funder: National Science Foundation Project Code: 1727371
    more_vert
  • Funder: National Science Foundation Project Code: 1705837
    more_vert
  • Funder: National Institutes of Health Project Code: 5SC3GM122614-02
    Funder Contribution: 97,680 USD
    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N009533/1
    Funder Contribution: 1,310,830 GBP

    One of the major current scientific and technological challenges concerns the conversion of carbon dioxide to fuels and useful products in effective and economically viable manner. This proposal responds to the major challenge of developing low energy routes to convert carbon dioxide to fuels and useful chemicals. The project has the following four main strands: (i) The use of electricity generated by renewable technologies to reduce CO2 electrocatalytically, where we will develop new approaches involving the use of ionic liquid solvents to activate the CO2 (ii) The use of hydrogen in the catalytic reduction of CO2, where we will apply computational procedures to predict new materials for this key catalytic process and subsequently test them experimentally (iii) The development of new materials for use in the efficient solar generation of hydrogen which will provide the reductant for the catalytic CO2 reduction (iv) A detailed life cycle analysis which will assess the extent to which the new technology achieves the overall objective of developing low carbon fuels. Our approach aims, therefore, to exploit renewably generated energy directly via the electrocatalytic route or indirectly via the solar generated hydrogen in CO2 utilisation for the formation of fuels and/or chemicals. The different components of the approach will be fully integrated to achieve coherent, new low energy technologies for this key process, while the rigorous life-cycle analysis will ensure that it satisfies the need for a low energy technology.

    more_vert
  • Funder: National Science Foundation Project Code: 1831166
    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N009096/1
    Funder Contribution: 1,151,000 GBP

    Photovoltaic (PV) devices convert sunlight directly into electricity and form an increasingly important part of the global renewable energy landscape. Today's PVs are based on conventional semiconductors which are energy-intensive to produce and restricted to rigid flat plate designs. The next generation of PVs will be based on very thin films of semiconductors that can be processed from solution at low temperature, which opens the door to exceptionally low cost manufacturing processes and new application areas not available to today's rigid flat plate PVs, particularly in the areas of transportation and buildings integration. The emerging generation of thin film PVs also offer exceptional carbon dioxide mitigation potential because they are expected to return the energy used in their fabrication within weeks of installation. However, this potential can only be achieved if the electrode that allows light into these devices is low cost and flexible, and at present no electrode technology meets both the cost constraint and technical specifications needed. This proposal seeks to address this complex and inherently interdisciplinary challenge using three new and distinct approaches based on the use of nano-structured films of metal less than 100 metal atoms in thickness. The first approach focuses on the development of a low cost, large area method for the fabrication of metal film electrodes with a dense array of holes through which light can pass unhindered. The second approach seeks to determine design rules for a new type of 'light-catching' electrode that interacts strongly with the incoming light, trapping and concentrating it at the interface with the semiconductor layer inside the device responsible for converting the light into electricity. The final approach is based on combining ultra-thin metal films with ultra-thin films of transparent semiconductor materials to achieve double layer electrodes with exceptional properties resulting from spontaneous intermixing of the two thin solid films. The UK is a global leader in the development of next generation PVs with a growing number of companies now focused on bringing them to market, and so the outputs of the proposed programme of research has strong potential to directly increase the economic competitiveness of the UK in this young sector and would help to address the now time critical challenge of climate change due to global warming.

    more_vert
  • Funder: National Institutes of Health Project Code: 1SC3GM122614-01
    Funder Contribution: 97,680 USD
    more_vert
  • Funder: National Science Foundation Project Code: 1739137
    more_vert
  • Funder: National Science Foundation Project Code: 1740042
    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S012141/1
    Funder Contribution: 138,217 GBP

    It has been well reported that wind farms can impact and degrade the performance of radar systems for air traffic control, air surveillance, early warning systems and navigational. The potential interference generated by the scattering characteristics of wind turbines on radar systems is considered a significant issue and has received a lot of attention from the research community and industry alike. However, due to the geometrical complexity of the turbine structure and its enormous electrical size at radar frequencies, the study and modelling of the radar scattering presented a substantial challenge to the research community. The use of commercial Computational Electromagnetic (CEM) tools and other full-wave solvers was limited to a small number of predefined turbine orientations due to the inherent requirement of supercomputing environment or extended modelling runtimes. To accommodate for the growth in demand for renewable energy, larger wind farms are being planned for deployment further offshore -in deeper waters and less favourable seabed conditions. Floating foundations are being widely proposed to reduce costs and enable more rapid growth of offshore wind turbines. Future wind developments (Such as Hornsea Project Two and Three) included floating foundations within their Design Envelope. Some of these projects are located near a number of key shipping routes as well as offshore O&G platforms with REWS installations. To date, the effects of floating foundation on the operation and efficiency of navigational and safety radar systems operating near or within the wind farm is currently largely unknown. Large floating wind turbines will have unique scattering characteristics due to its size, construction materials, vibration profile and movements under wind loading and adverse weather/sea conditions. Floating turbines are likely to dramatically change the radar cross section and its dynamics and consequently impact radar systems. This project will study the effects of wind turbines mounted on floating foundations on offshore radar operations. The project will develop radar scattering models for the floating foundations and account for important parameters such as geometry, materials and platform movement under adverse weather conditions. This project will build on the recently awarded Supergen funding to measure and model the radar scattering from the large 7MW turbine managed by ORE Catapult. The project will analyse the measured data from the ORE Catapult turbine as well as the large dataset of wind farm/radar measurements made available to the University of Manchester by the Council for Scientific and Industrial Research (CSIR) in South Africa to further develop the existing turbine models and integrate them with the new models of the floating foundations. The analysis, verification and integration of measurements with the modelling capabilities will give a good representation of future offshore turbine. This will then be used to model the static radar returns and Doppler signature generated from the turbines under typical and adverse conditions for safety critical radar operations such as navigation under poor visibility, search and rescue efforts and REWS for collision prevention with offshore O&G assets.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph