search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.

  • Energy Research
  • OA Publications Mandate: Yes
  • 2018

  • Funder: European Commission Project Code: 816706
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    High electricity prices and the lowering costs of renewable technologies and energy storage are leading European energy consumers towards a distributed generation and self-consumption model. Electricity consumers are progressively turning into prosumers (producers & consumers) who decide at a given moment whether to buy electricity from the grid, to self-consume or even to export it to the grid. Moreover, European energy regulations require EU consumers to commit to clean and energy efficient objectives. For instance, the Energy Performance of Buildings Directive requires all new buildings to be nearly zero-energy (NZEB) by the end of 2020 by reducing energy consumption and using renewable sources and all new public buildings to be NZEB by 2018. The most extended renewable energy in the world is wind power. However, wind power is not very common in urban areas where high speed laminar wind turns into a low speed turbulent one due to the existence of obstacles (buildings, houses, trees, structures, etc.). Traditional wind power turbines are not designed to work with low speed wind (2 m/s – 6m/s) and turbulent wind flows. Besides, traditional SWTs entail other serious problems such as the hazard of rotating machinery, vibrations, noise, the possibility of collapse atop buildings, blade shedding and visual impact. EOLI FPS is a patented rooftop vertical axis wind turbine (VAWT) specifically designed to work under low speed and turbulent wind profiles such as the existing in urban environments. EOLIS FPS works perfectly with horizontal laminar wind but also take advantage of turbulent flows that adversely affect traditional wind turbines. Its internal rotor design facilitates the creation of vortexes out of the wind turbulence that drastically increases the driving force of the laminar wind. Besides EOLI FPS is safe, noiseless, does not vibrate and integrates aesthetically in the urban landscape.

    more_vert
  • Funder: European Commission Project Code: 826010
    Overall Budget: 993,571 EURFunder Contribution: 993,570 EUR

    The transformation of Europe’s energy system creates both challenges and opportunities for the hydropower sector. Hydropower needs to seek out value within the electricity market aligned with other sources of renewable and sustainable energy, whilst operating and building plants in environmentally sensitive and acceptable ways. The call H2020 LC-SC3-CC-4-2018: “Support to sectorial fora”, item 2: “bringing together stakeholders of the hydropower sector in a forum” provides a unique opportunity to bring together the hydropower community and to develop a Research and Innovation Agenda, and a Technology Roadmap mapping implementation of that agenda. These will support implementation of research and innovation for new hydropower technologies and innovative mitigation measures. The HYDROPOWER-EUROPE project delivers these objectives through an extensive programme of stakeholder consultation. The consortium brings together six different associations and networks spanning the whole research and industry value chain. These networks, along with representatives of civil society and European and national authorities, will form the initial stakeholder consultation base. Through an extensive, cyclic programme of consultation – both online and through various regional, European and International workshops – research needs and priorities will be established supporting development of the Hydropower Research and Innovation Agenda. The consultation process also facilitates discussion around issues and perceptions affecting the implementation of hydropower in Europe. Conclusions from this will underpin development of the Technology Roadmap, addressing any issues affecting uptake of the research and innovation agenda. Finally, the HYDROPOWER-EUROPE project will also consider ways in which the forum, established through this initiative, may become sustainable beyond the 3-year project programme, so supporting uptake and implementation of the research and innovation agenda.

    more_vert
  • Funder: European Commission Project Code: 836540
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    Wind energy plants are increasingly becoming critical parts of electrical infrastructure around the world. Despite major technological advancements over the past decade, an estimated 5.500 wind turbine blades fail each year, resulting in long periods of unexpected downtime and repair costs. At eologix sensor technologies gmbh, we are developing an advanced system called eolACC that uses wireless accelerometers to detect damage to blades before they fail. The patented sensor technology is thin and flexible, allowing it to be easily applied to virtually any location, even on aerodynamic surfaces of blades. Together with a base station and our software, diagnostics will alert operators of poor blade conditions and thus enhance their ability to plan critical maintenance activities. Additionally, the insight from blade sensors will help operators manage assets more effectively, and make objective decisions about useful lifetimes and operating ranges. eolACC builds off of an ice detection system previously made by eologix by utilizing the same sensor profile, wireless data transmission, and ambient light power system. Initially eolACC will be sold to owners and operators of wind plants, and in the future we will pursue collaboration with large wind turbine manufacturers. The eolACC system will ultimately help wind power plants to operate more efficiently by reducing unexpected downtime. Owners and operators will be able to more effectively plan budgets and maximize the lifetime of their assets.

    more_vert
  • Funder: European Commission Project Code: 817390
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    Sistema Eólico Morcillo is a Spanish SME specialized in the development, construction and sales of innovative medium power wind turbine systems. We have developed and patented a disruptive multi-award winning wind turbine technology called INNOWIND. By 2050, the EU-28 aims to achieve CO2 emissions cuts of 80-95% compared to 1990 levels and to achieve a 20% share for renewable energy sources in its overall energy consumption by 2020. This requires a process of "decarbonising" Europe's economy, including the development and deployment of low-carbon technologies. Wind energy and Solar photovoltaic (PV) energy have been the leading sources of low carbon electricity generation in EU since 2011. The installation of wind turbines is characterized by very high construction costs that amortize slowly over the years through the sale of electricity to the grid. The amount of energy produced depends mainly on the nominal power of the installed generator and of the amount of wind that can be used. INNOWIND offers cost-effective mid-power wind turbine farms, with high flexibility in terms of size and area of construction, with low security requirements and no special construction permits required, making implementation in urban areas a possibility. INNOWIND offers for the first time the opportunity to make use of terrain not suitable for conventional wind farming. Furthermore, thanks to the easy scaling of the units from 50kW to 1000kW, it is possible to cater the specific power needs in a wider range of use-cases and scenarios. Other unique selling points include less visual and environmental impacts, safer in case of storm or fire damage,

    more_vert
  • Funder: European Commission Project Code: 825833
    Overall Budget: 148,890 EURFunder Contribution: 148,890 EUR

    Operation & Maintenance (O&M) costs may account for 30 % of the total cost of energy for offshore wind power. Alarmingly, only after a few years of installation, offshore wind turbines (WT) may need emergency repairs. They also feature an extremely short lifespan hindering investments to green energy, effectively designed to reduce CO2 emissions. We have designed real-time monitoring and diagnostics platform in the context of operation and maintenance scheduling of WT components. Using this architecture, we can quantify the risk of future failure of a given component and trace back the root-cause of the failure. This is business-critical information for Energy Companies and Wind Farm Operators. The platform consists of an autonomous software-hardware solution, implementing an Object Oriented Real-Time Decision Tree learning algorithm for smart monitoring and diagnostics of structural and mechanical WT components. The innovative concept lies in running WT telemetry data through a machine learning based decision tree classification algorithm in real-time for detecting faults, errors, damage patterns, anomalies and abnormal operation. We believe our innovation creates evident value and will raise great interest as decision-support tool for WT manufacturers, Wind Farm Operators, Service Companies and Insurers. In this project, we will carry out pre-commercialisation actions to position ourselves in the market, provide unique selling proposition for future customers as well as raise interest among potential R&D collaborators and pilot customers. We will also establish technology proof of concept for the platform. For the first time, we are applying our design in difficult-to-access energy infrastructure installations and deploying it on a real-world prototype wind turbine. The project will be carried out with technical and commercialisation support from key players within the wind energy industry.

    more_vert
  • Funder: European Commission Project Code: 792245
    Overall Budget: 11,616,800 EURFunder Contribution: 9,907,790 EUR

    SUPER PV is pursuing an ambitious bus realistic goal for innovative PV system cost reduction and consequently significant LCOE reduction (26%-37%) by adopting hybrid approach combining technological innovations and Data Management methods along the PV value chain. To achieve that, key actions will be implemented at three main levels within the PV value chain: PV module innovation level, power electronics innovation level and system integration level. To ensure fast uptake of the project results by industry, state of the art modules (c-Si and flexible CIGS) and power electronics products were utilised for adopting innovations developed by research centres. For cost reduction in system integration and operation, Digitalization and Data Management solutions based on Industry 4.0 approach will be adopted following successful utilization of Building Information Modelling approach in the construction sector. Selected for uptake innovations will be compatible with existing manufacturing technological processes thus reducing impact on Cost of Ownership and ensuring attractiveness of proposed technologies for PV manufacturers. Prototype SUPER PV systems will be produced in industrial environments and tested in different (including harsh) climate conditions to evaluate cost efficiency and demonstrate competitiveness of the proposed solutions. On the basis of test results, business cases for technologies under consideration will be performed, plans for production and market replication will be prepared. Project activities will be complemented by wide training and dissemination campaign ensuring highest visibility and social impact of the project activities. By delivering to the market SUPERior PV products, the project will have twofold impact on EU PV sector: 1. Will create conditions for accelerated large scale deployment of PV in Europe for both utility (non-urban) and residential (urban) scenarios and 2. Will help EU PV businesses to regain leadership on world market.

    more_vert
  • Funder: European Commission Project Code: 780662
    Overall Budget: 3,318,180 EURFunder Contribution: 2,716,910 EUR

    SheaRIOS is a solution for the Wind Turbine Blade (WTB) inspection industry that enables easier, faster and more accurate inspection utilising robotics and shearography, a high-quality method that is applied outside of the laboratory for the first time. A deployment platform will ascend on the wind turbine tower and deploy a work climber on the base of the blade. The climber will move on the blade by means of air-suction and carry out inspection with a shearography kit on a cantilever. The deployment platform will also act as the power and data link. Operational modeling is done by EDF, the end-users that drive this Innovation Action. Preliminary testing and validation of the market-readiness of SheaRIOS robotic application will take place at their site, both on-shore (EDF R&D) and off-shore (EDF Renewables). Three competitive small and mid-scale technology companies from three European countries will contribute so Europe will (1) integrate more wind power, (2) reduce operational costs, (3) keep the technology lead, and (4) remain a major export. As per Wind Europe, these are the targets for enabling wind to become the backbone of our electricity generation system. Based on our analysis, the non-destructive testing service provider would save 1,055€ per wind turbine inspection and payback of SheaRIOS investment will be achieved after 152 inspections, or the first 2 years. The wind farm operator will save more than 1 full day per wind turbine inspection, because of the reduced inspection time, which directly translates to less revenue lost due to idle wind turbines. Finally, the cumulative savings for a period of the first 5 years will translate to €92.74m, assuming SheaRIOS will be successful in averting just 20% of the unforeseen WTB failures and contributing to increased health and safety for the rope access workers that are involved in hundreds of accidents each year. [1] Wind Europe, “Making transition work”, September 2016

    more_vert
  • Funder: European Commission Project Code: 764048
    Overall Budget: 4,975,960 EURFunder Contribution: 4,975,960 EUR

    The main objective of POLYPHEM is to improve the flexibility and the performance of small-scale Concentrated Solar Power plants. The outcomes of the project will allow in the short term to reinforce the competitiveness of this new low carbon energy technology and therefore to favour its integration in the European energy mix. The technology consists of a solar-driven micro gas-turbine as top cycle and an Organic Rankine Cycle as bottom cycle. There is no water requirement for cooling. A thermal energy storage is integrated between both cycles. The resulting power block is a solar power generation system able to meet the requirements of a local variable demand of energy with a high average conversion efficiency of 18% and a low environmental profile with an investment cost target below 5 €/W. Besides electricity generation, other applications will be considered for future developments, such as heating/cooling of multi-family buildings or water desalination for small communities. The project will build a 60 kW prototype plant with a 2 MWh thermal storage unit and will validate this innovative power cycle in a relevant environment (TRL 5), assess its technical, economic and environmental performances and establish the guidelines for its commercial deployment. POLYPHEM will lead to a supply price of electricity of 21 c€/kWh under DNI of 2050 kWh/m2/year, thus meeting for small scale CSP plants the 40% cost reduction of the SET Plan. POLYPHEM will be carried out by 4 research centers and 5 private companies. The project makes a step forward beyond the state-of-the-art of thermodynamic cycles in CSP plants. The micro gas-turbine will be solarized to integrate solar energy in the cycle. A novel pressurized air solar receiver with 80% efficiency and 0.4 €/W will be developed from a technology of solar absorber currently patented by CEA and CNRS. A thermocline storage at 28 €/kWh will be developed with thermal oil and a filler material in a concrete tank.

    more_vert
  • Funder: European Commission Project Code: 811145
    Overall Budget: 140,192 EURFunder Contribution: 100,000 EUR

    The proposed Action will support analytical work carried out in the context of the IEA-Morocco Joint Work Programme (JWP). Under the JWP, which came into effect on 28 June 2017, the IEA will provide technical support and advice to assist Morocco in developing a strategy to design an integrated assessment of long-term low carbon energy transition pathways. The IEA-Morocco work programme will include capacity building and training in data and statistics; modelling and support for the de-carbonisation programme. The IEA will also provide advice on further energy price liberalisation and energy security in the oil, gas and electricity sectors. It will also advise the Moroccan Ministry of Energy, Mines and Sustainable Development (MEMDD) and related stakeholders on optimal technologies and best practices that can be implemented to help Morocco attain its Energy Efficiency and Renewable Energy targets. It is anticipated that EU support will cover the Energy Efficiency and Renewable Energy work streams outlined in the JWP. In addition to on-site visits, IEA experts will host interactive webinars in English with Moroccan energy efficiency stakeholders on mutually agreed priority areas. The IEA could also assist MEMDD and the Moroccan Agency for Energy Efficiency (AMEE) in assessing the economic and other conditions for a push towards clean, electric cooking. The main purpose of this activity would be to ensure that energy efficiency measures are accelerated and run parallel with renewable energy deployment. This proposal relates to item 57 in the Horizon 2020 Work Programme for 2016-2017. This action will be instrumental in supporting Morocco’s transition to a reliable, sustainable and competitive energy system, in particular in Horizon 2020 priority areas such as reduction in energy consumption and carbon footprint; generation and transmission of lower-cost, low-carbon electricity; new knowledge and technologies;

    more_vert
  • Funder: European Commission Project Code: 806844
    Overall Budget: 2,486,080 EURFunder Contribution: 1,740,260 EUR

    Extreme weather conditions (i.e. strong and unsteady winds, icing, etc.) - that countries such as Iceland and the other four Nordics (Sweden, Denmark, Norway, and Finland), the UK, Ireland, Canada´s Prairies, Northern US, Russia, and Nigeria along with high altitude sites face - make traditional wind turbines (horizontal-axis) to spin out of control resulting in catastrophic system failure in the first year of operation. As a result, these locations needed a different kind of wind technology capable of working over a wide production range (whether it’s in the stormy afternoon, in hurricanes or on calm and icy winter nights in the range of -10 to -30 °C) with mimimum maintenance. IceWind has therefore identified a business opportunity for a rugged and durable VAWT intended for extreme wind conditions with a power capacity range between 300W to 1,000W and focused on on-site small applications that require a continuous 100% green energy source of reduced carbon footprint and will bring down energy bills of customers through self-generation and consumption. The excellent match of aerodynamics and materials give our NJORD turbines unique features such as optimal structural stability, strength, and hence durability to withstand the most extreme wind conditions. Our VAWT can produce electricity at very low wind speeds, as well as spin elegantly, non-stop and noiseless at high speed winds. As for our commercial strategy, we plan to respond: 1) directly to individual end-users of isolated areas for residential applications (i.e. cabins, homes, and small farms) mainly in Iceland and other EU countries (i.e. the other four Nordics, the UK, and Ireland) and 2) owners of telecom towers worldwide. Expected total net income from selling NJORD turbines after deducting costs of purchase, manufacture and distribution fees amounts to a cumulative 10.32M€ along with the creation of over 140 skilled works in IceWind and partners worldwide for the 2020-2024 period.

    more_vert
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
39 Projects
  • Funder: European Commission Project Code: 816706
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    High electricity prices and the lowering costs of renewable technologies and energy storage are leading European energy consumers towards a distributed generation and self-consumption model. Electricity consumers are progressively turning into prosumers (producers & consumers) who decide at a given moment whether to buy electricity from the grid, to self-consume or even to export it to the grid. Moreover, European energy regulations require EU consumers to commit to clean and energy efficient objectives. For instance, the Energy Performance of Buildings Directive requires all new buildings to be nearly zero-energy (NZEB) by the end of 2020 by reducing energy consumption and using renewable sources and all new public buildings to be NZEB by 2018. The most extended renewable energy in the world is wind power. However, wind power is not very common in urban areas where high speed laminar wind turns into a low speed turbulent one due to the existence of obstacles (buildings, houses, trees, structures, etc.). Traditional wind power turbines are not designed to work with low speed wind (2 m/s – 6m/s) and turbulent wind flows. Besides, traditional SWTs entail other serious problems such as the hazard of rotating machinery, vibrations, noise, the possibility of collapse atop buildings, blade shedding and visual impact. EOLI FPS is a patented rooftop vertical axis wind turbine (VAWT) specifically designed to work under low speed and turbulent wind profiles such as the existing in urban environments. EOLIS FPS works perfectly with horizontal laminar wind but also take advantage of turbulent flows that adversely affect traditional wind turbines. Its internal rotor design facilitates the creation of vortexes out of the wind turbulence that drastically increases the driving force of the laminar wind. Besides EOLI FPS is safe, noiseless, does not vibrate and integrates aesthetically in the urban landscape.

    more_vert
  • Funder: European Commission Project Code: 826010
    Overall Budget: 993,571 EURFunder Contribution: 993,570 EUR

    The transformation of Europe’s energy system creates both challenges and opportunities for the hydropower sector. Hydropower needs to seek out value within the electricity market aligned with other sources of renewable and sustainable energy, whilst operating and building plants in environmentally sensitive and acceptable ways. The call H2020 LC-SC3-CC-4-2018: “Support to sectorial fora”, item 2: “bringing together stakeholders of the hydropower sector in a forum” provides a unique opportunity to bring together the hydropower community and to develop a Research and Innovation Agenda, and a Technology Roadmap mapping implementation of that agenda. These will support implementation of research and innovation for new hydropower technologies and innovative mitigation measures. The HYDROPOWER-EUROPE project delivers these objectives through an extensive programme of stakeholder consultation. The consortium brings together six different associations and networks spanning the whole research and industry value chain. These networks, along with representatives of civil society and European and national authorities, will form the initial stakeholder consultation base. Through an extensive, cyclic programme of consultation – both online and through various regional, European and International workshops – research needs and priorities will be established supporting development of the Hydropower Research and Innovation Agenda. The consultation process also facilitates discussion around issues and perceptions affecting the implementation of hydropower in Europe. Conclusions from this will underpin development of the Technology Roadmap, addressing any issues affecting uptake of the research and innovation agenda. Finally, the HYDROPOWER-EUROPE project will also consider ways in which the forum, established through this initiative, may become sustainable beyond the 3-year project programme, so supporting uptake and implementation of the research and innovation agenda.

    more_vert
  • Funder: European Commission Project Code: 836540
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    Wind energy plants are increasingly becoming critical parts of electrical infrastructure around the world. Despite major technological advancements over the past decade, an estimated 5.500 wind turbine blades fail each year, resulting in long periods of unexpected downtime and repair costs. At eologix sensor technologies gmbh, we are developing an advanced system called eolACC that uses wireless accelerometers to detect damage to blades before they fail. The patented sensor technology is thin and flexible, allowing it to be easily applied to virtually any location, even on aerodynamic surfaces of blades. Together with a base station and our software, diagnostics will alert operators of poor blade conditions and thus enhance their ability to plan critical maintenance activities. Additionally, the insight from blade sensors will help operators manage assets more effectively, and make objective decisions about useful lifetimes and operating ranges. eolACC builds off of an ice detection system previously made by eologix by utilizing the same sensor profile, wireless data transmission, and ambient light power system. Initially eolACC will be sold to owners and operators of wind plants, and in the future we will pursue collaboration with large wind turbine manufacturers. The eolACC system will ultimately help wind power plants to operate more efficiently by reducing unexpected downtime. Owners and operators will be able to more effectively plan budgets and maximize the lifetime of their assets.

    more_vert
  • Funder: European Commission Project Code: 817390
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    Sistema Eólico Morcillo is a Spanish SME specialized in the development, construction and sales of innovative medium power wind turbine systems. We have developed and patented a disruptive multi-award winning wind turbine technology called INNOWIND. By 2050, the EU-28 aims to achieve CO2 emissions cuts of 80-95% compared to 1990 levels and to achieve a 20% share for renewable energy sources in its overall energy consumption by 2020. This requires a process of "decarbonising" Europe's economy, including the development and deployment of low-carbon technologies. Wind energy and Solar photovoltaic (PV) energy have been the leading sources of low carbon electricity generation in EU since 2011. The installation of wind turbines is characterized by very high construction costs that amortize slowly over the years through the sale of electricity to the grid. The amount of energy produced depends mainly on the nominal power of the installed generator and of the amount of wind that can be used. INNOWIND offers cost-effective mid-power wind turbine farms, with high flexibility in terms of size and area of construction, with low security requirements and no special construction permits required, making implementation in urban areas a possibility. INNOWIND offers for the first time the opportunity to make use of terrain not suitable for conventional wind farming. Furthermore, thanks to the easy scaling of the units from 50kW to 1000kW, it is possible to cater the specific power needs in a wider range of use-cases and scenarios. Other unique selling points include less visual and environmental impacts, safer in case of storm or fire damage,

    more_vert
  • Funder: European Commission Project Code: 825833
    Overall Budget: 148,890 EURFunder Contribution: 148,890 EUR

    Operation & Maintenance (O&M) costs may account for 30 % of the total cost of energy for offshore wind power. Alarmingly, only after a few years of installation, offshore wind turbines (WT) may need emergency repairs. They also feature an extremely short lifespan hindering investments to green energy, effectively designed to reduce CO2 emissions. We have designed real-time monitoring and diagnostics platform in the context of operation and maintenance scheduling of WT components. Using this architecture, we can quantify the risk of future failure of a given component and trace back the root-cause of the failure. This is business-critical information for Energy Companies and Wind Farm Operators. The platform consists of an autonomous software-hardware solution, implementing an Object Oriented Real-Time Decision Tree learning algorithm for smart monitoring and diagnostics of structural and mechanical WT components. The innovative concept lies in running WT telemetry data through a machine learning based decision tree classification algorithm in real-time for detecting faults, errors, damage patterns, anomalies and abnormal operation. We believe our innovation creates evident value and will raise great interest as decision-support tool for WT manufacturers, Wind Farm Operators, Service Companies and Insurers. In this project, we will carry out pre-commercialisation actions to position ourselves in the market, provide unique selling proposition for future customers as well as raise interest among potential R&D collaborators and pilot customers. We will also establish technology proof of concept for the platform. For the first time, we are applying our design in difficult-to-access energy infrastructure installations and deploying it on a real-world prototype wind turbine. The project will be carried out with technical and commercialisation support from key players within the wind energy industry.

    more_vert
  • Funder: European Commission Project Code: 792245
    Overall Budget: 11,616,800 EURFunder Contribution: 9,907,790 EUR

    SUPER PV is pursuing an ambitious bus realistic goal for innovative PV system cost reduction and consequently significant LCOE reduction (26%-37%) by adopting hybrid approach combining technological innovations and Data Management methods along the PV value chain. To achieve that, key actions will be implemented at three main levels within the PV value chain: PV module innovation level, power electronics innovation level and system integration level. To ensure fast uptake of the project results by industry, state of the art modules (c-Si and flexible CIGS) and power electronics products were utilised for adopting innovations developed by research centres. For cost reduction in system integration and operation, Digitalization and Data Management solutions based on Industry 4.0 approach will be adopted following successful utilization of Building Information Modelling approach in the construction sector. Selected for uptake innovations will be compatible with existing manufacturing technological processes thus reducing impact on Cost of Ownership and ensuring attractiveness of proposed technologies for PV manufacturers. Prototype SUPER PV systems will be produced in industrial environments and tested in different (including harsh) climate conditions to evaluate cost efficiency and demonstrate competitiveness of the proposed solutions. On the basis of test results, business cases for technologies under consideration will be performed, plans for production and market replication will be prepared. Project activities will be complemented by wide training and dissemination campaign ensuring highest visibility and social impact of the project activities. By delivering to the market SUPERior PV products, the project will have twofold impact on EU PV sector: 1. Will create conditions for accelerated large scale deployment of PV in Europe for both utility (non-urban) and residential (urban) scenarios and 2. Will help EU PV businesses to regain leadership on world market.

    more_vert
  • Funder: European Commission Project Code: 780662
    Overall Budget: 3,318,180 EURFunder Contribution: 2,716,910 EUR

    SheaRIOS is a solution for the Wind Turbine Blade (WTB) inspection industry that enables easier, faster and more accurate inspection utilising robotics and shearography, a high-quality method that is applied outside of the laboratory for the first time. A deployment platform will ascend on the wind turbine tower and deploy a work climber on the base of the blade. The climber will move on the blade by means of air-suction and carry out inspection with a shearography kit on a cantilever. The deployment platform will also act as the power and data link. Operational modeling is done by EDF, the end-users that drive this Innovation Action. Preliminary testing and validation of the market-readiness of SheaRIOS robotic application will take place at their site, both on-shore (EDF R&D) and off-shore (EDF Renewables). Three competitive small and mid-scale technology companies from three European countries will contribute so Europe will (1) integrate more wind power, (2) reduce operational costs, (3) keep the technology lead, and (4) remain a major export. As per Wind Europe, these are the targets for enabling wind to become the backbone of our electricity generation system. Based on our analysis, the non-destructive testing service provider would save 1,055€ per wind turbine inspection and payback of SheaRIOS investment will be achieved after 152 inspections, or the first 2 years. The wind farm operator will save more than 1 full day per wind turbine inspection, because of the reduced inspection time, which directly translates to less revenue lost due to idle wind turbines. Finally, the cumulative savings for a period of the first 5 years will translate to €92.74m, assuming SheaRIOS will be successful in averting just 20% of the unforeseen WTB failures and contributing to increased health and safety for the rope access workers that are involved in hundreds of accidents each year. [1] Wind Europe, “Making transition work”, September 2016

    more_vert
  • Funder: European Commission Project Code: 764048
    Overall Budget: 4,975,960 EURFunder Contribution: 4,975,960 EUR

    The main objective of POLYPHEM is to improve the flexibility and the performance of small-scale Concentrated Solar Power plants. The outcomes of the project will allow in the short term to reinforce the competitiveness of this new low carbon energy technology and therefore to favour its integration in the European energy mix. The technology consists of a solar-driven micro gas-turbine as top cycle and an Organic Rankine Cycle as bottom cycle. There is no water requirement for cooling. A thermal energy storage is integrated between both cycles. The resulting power block is a solar power generation system able to meet the requirements of a local variable demand of energy with a high average conversion efficiency of 18% and a low environmental profile with an investment cost target below 5 €/W. Besides electricity generation, other applications will be considered for future developments, such as heating/cooling of multi-family buildings or water desalination for small communities. The project will build a 60 kW prototype plant with a 2 MWh thermal storage unit and will validate this innovative power cycle in a relevant environment (TRL 5), assess its technical, economic and environmental performances and establish the guidelines for its commercial deployment. POLYPHEM will lead to a supply price of electricity of 21 c€/kWh under DNI of 2050 kWh/m2/year, thus meeting for small scale CSP plants the 40% cost reduction of the SET Plan. POLYPHEM will be carried out by 4 research centers and 5 private companies. The project makes a step forward beyond the state-of-the-art of thermodynamic cycles in CSP plants. The micro gas-turbine will be solarized to integrate solar energy in the cycle. A novel pressurized air solar receiver with 80% efficiency and 0.4 €/W will be developed from a technology of solar absorber currently patented by CEA and CNRS. A thermocline storage at 28 €/kWh will be developed with thermal oil and a filler material in a concrete tank.

    more_vert
  • Funder: European Commission Project Code: 811145
    Overall Budget: 140,192 EURFunder Contribution: 100,000 EUR

    The proposed Action will support analytical work carried out in the context of the IEA-Morocco Joint Work Programme (JWP). Under the JWP, which came into effect on 28 June 2017, the IEA will provide technical support and advice to assist Morocco in developing a strategy to design an integrated assessment of long-term low carbon energy transition pathways. The IEA-Morocco work programme will include capacity building and training in data and statistics; modelling and support for the de-carbonisation programme. The IEA will also provide advice on further energy price liberalisation and energy security in the oil, gas and electricity sectors. It will also advise the Moroccan Ministry of Energy, Mines and Sustainable Development (MEMDD) and related stakeholders on optimal technologies and best practices that can be implemented to help Morocco attain its Energy Efficiency and Renewable Energy targets. It is anticipated that EU support will cover the Energy Efficiency and Renewable Energy work streams outlined in the JWP. In addition to on-site visits, IEA experts will host interactive webinars in English with Moroccan energy efficiency stakeholders on mutually agreed priority areas. The IEA could also assist MEMDD and the Moroccan Agency for Energy Efficiency (AMEE) in assessing the economic and other conditions for a push towards clean, electric cooking. The main purpose of this activity would be to ensure that energy efficiency measures are accelerated and run parallel with renewable energy deployment. This proposal relates to item 57 in the Horizon 2020 Work Programme for 2016-2017. This action will be instrumental in supporting Morocco’s transition to a reliable, sustainable and competitive energy system, in particular in Horizon 2020 priority areas such as reduction in energy consumption and carbon footprint; generation and transmission of lower-cost, low-carbon electricity; new knowledge and technologies;

    more_vert
  • Funder: European Commission Project Code: 806844
    Overall Budget: 2,486,080 EURFunder Contribution: 1,740,260 EUR

    Extreme weather conditions (i.e. strong and unsteady winds, icing, etc.) - that countries such as Iceland and the other four Nordics (Sweden, Denmark, Norway, and Finland), the UK, Ireland, Canada´s Prairies, Northern US, Russia, and Nigeria along with high altitude sites face - make traditional wind turbines (horizontal-axis) to spin out of control resulting in catastrophic system failure in the first year of operation. As a result, these locations needed a different kind of wind technology capable of working over a wide production range (whether it’s in the stormy afternoon, in hurricanes or on calm and icy winter nights in the range of -10 to -30 °C) with mimimum maintenance. IceWind has therefore identified a business opportunity for a rugged and durable VAWT intended for extreme wind conditions with a power capacity range between 300W to 1,000W and focused on on-site small applications that require a continuous 100% green energy source of reduced carbon footprint and will bring down energy bills of customers through self-generation and consumption. The excellent match of aerodynamics and materials give our NJORD turbines unique features such as optimal structural stability, strength, and hence durability to withstand the most extreme wind conditions. Our VAWT can produce electricity at very low wind speeds, as well as spin elegantly, non-stop and noiseless at high speed winds. As for our commercial strategy, we plan to respond: 1) directly to individual end-users of isolated areas for residential applications (i.e. cabins, homes, and small farms) mainly in Iceland and other EU countries (i.e. the other four Nordics, the UK, and Ireland) and 2) owners of telecom towers worldwide. Expected total net income from selling NJORD turbines after deducting costs of purchase, manufacture and distribution fees amounts to a cumulative 10.32M€ along with the creation of over 140 skilled works in IceWind and partners worldwide for the 2020-2024 period.

    more_vert