- home
- Search
- Energy Research
- 6. Clean water
- GB
- AU
- Aurora Universities Network
- Energy Research
- 6. Clean water
- GB
- AU
- Aurora Universities Network
description Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Funded by:EC | DELTA-MIN, EC | CARBFIXEC| DELTA-MIN ,EC| CARBFIXAuthors:Iwona Galeczka;
Iwona Galeczka
Iwona Galeczka in OpenAIREDomenik Wolff-Boenisch;
Domenik Wolff-Boenisch;Domenik Wolff-Boenisch
Domenik Wolff-Boenisch in OpenAIREhandle: 20.500.11937/60306
Abstract Recent publications on the successful mineralisation of carbon dioxide in basalts in Iceland and Washington State, USA, have shown that mineral storage can be a serious alternative to more mainstream geologic carbon storage efforts to lock away permanently carbon dioxide. In this study we look at the pore solution chemistry and mineralogy of basaltic glass and crystalline basalt under post-injection conditions, i.e. after rise of the pH via matrix dissolution and the first phase of carbonate formation. Experimental findings indicate that further precipitation of carbonates under more alkaline conditions is highly dependent on the availability of divalent cations. If the pore water is deficient in divalent cations, smectites and/or zeolites will dominate the secondary mineralogy of the pore space, depending on the basalt matrix. At low carbonate alkalinity no additional secondary carbonates are expected to form meaning the remaining pore space is lost to secondary silicates, irrespective of the basalt matrix. At high carbonate alkalinity, some of this limited storage volume may additionally be occupied by dawsonite −if the Na concentration in the percolating groundwater (brine) is high. Using synthetic seawater as a proxy for the groundwater composition and thus furnishing considerable amounts of divalent cations to the carbonated solution, results in massive precipitation of calcite, magnesite, and other Ca/Mg-carbonates under already moderate carbonate alkalinity. More efficient use of the basaltic storage volume can thus be attained by promoting formation of secondary carbonates compared to the inevitable formation of secondary silicate phases at higher pH. This can be done by ensuring that the pore water does not become depleted in divalent cations, even after carbonate formation. Using seawater as carbonating fluid or injection of CO2 into the basaltic oceanic crust, where saline fluids percolate, can reach this goal. However, such an approach needs sophisticated reactive transport modelling to adjust CO2 injection rates in order to avoid too rapid carbonate deposition and clogging of the pore space too close to the injection well.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:IOP Publishing Funded by:UKRI | Comparative assessment an..., UKRI | Integrated assessment of ..., UKRI | Euro-China GE: Dynamics o...UKRI| Comparative assessment and region-specific optimisation of GGR ,UKRI| Integrated assessment of the emission-health-socioeconomics nexus and air pollution mitigation solutions and interventions in Beijing (INHANCE) ,UKRI| Euro-China GE: Dynamics of Green Growth in European and Chinese Cities (DRAGON)Authors:Jing Meng;
Jing Meng
Jing Meng in OpenAIREZongyong Zhang;
Zongyong Zhang;Zongyong Zhang
Zongyong Zhang in OpenAIREYuli Shan;
+6 AuthorsYuli Shan
Yuli Shan in OpenAIREJing Meng;
Jing Meng
Jing Meng in OpenAIREZongyong Zhang;
Zongyong Zhang;Zongyong Zhang
Zongyong Zhang in OpenAIREYuli Shan;
Lili Yang; Lili Yang; Dabo Guan; Dabo Guan; Xian Li; Xian Li;Yuli Shan
Yuli Shan in OpenAIREChina is confronted with an unprecedented water crisis regarding its quantity and quality. In this study, we quantified the dynamics of China?s embodied water use and chemical oxygen demand (COD) discharge from 2010 to 2015. The analysis was conducted with the latest available water use data across sectors in primary, secondary and tertiary industries and input?output models. The results showed that (1) China?s water crisis was alleviated under urbanisation. Urban consumption occupied the largest percentages (over 30%) of embodied water use and COD discharge, but embodied water intensities in urban consumption were far lower than those in rural consumption. (2) The ?new normal? phase witnessed the optimisation of China?s water use structures. Embodied water use in light-manufacturing and tertiary sectors increased while those in heavy-manufacturing sectors (except chemicals and transport equipment) dropped. (3) Transformation of China?s international market brought positive effects on its domestic water use. China?s water use (116?80 billion tonnes (Bts))(9) and COD discharge (3.95?2.22 million tonnes (Mts)) embodied in export tremendously decreased while its total export values (11?25 trillion CNY) soared. Furthermore, embodied water use and COD discharge in relatively low-end sectors, such as textile, started to transfer from international to domestic markets when a part of China?s production activities had been relocated to other developing countries.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab4e54&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 8 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab4e54&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Netherlands, NorwayPublisher:IOP Publishing Funded by:EC | SIZEEC| SIZEAuthors:Arnald Puy;
Bruce Lankford;Arnald Puy
Arnald Puy in OpenAIREJonas Meier;
Saskia van der Kooij; +1 AuthorsJonas Meier
Jonas Meier in OpenAIREArnald Puy;
Bruce Lankford;Arnald Puy
Arnald Puy in OpenAIREJonas Meier;
Saskia van der Kooij;Jonas Meier
Jonas Meier in OpenAIREAndrea Saltelli;
Andrea Saltelli
Andrea Saltelli in OpenAIREhandle: 11250/3039998
Abstract An assessment of the human impact on the global water cycle requires estimating the volume of water withdrawn for irrigated agriculture. A key parameter in this calculation is the irrigation efficiency, which corrects for the fraction of water lost between irrigation withdrawals and the crop due to management, distribution or conveyance losses. Here we show that the irrigation efficiency used in global irrigation models is flawed for it overlooks key ambiguities in partial efficiencies, irrigation technologies, the definition of ‘large-scale’ irrigated areas or managerial factors. Once accounted for, these uncertainties can make irrigation withdrawal estimates fluctuate by more than one order of magnitude at the country level. Such variability is larger and leads to more extreme values than that caused by the uncertainties related with climate change. Our results highlight the need to embrace deep uncertainties in irrigation efficiency to prevent the design of shortsighted policies at the river basin-water-agricultural interface.
University of Bergen... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3039998Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac5768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 18visibility views 18 download downloads 30 Powered bymore_vert University of Bergen... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3039998Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac5768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Springer Science and Business Media LLC Funded by:SNSF | Fate and effects of engin..., EC | MICRONANOTOXSNSF| Fate and effects of engineered nanoparticles in stream periphyton ,EC| MICRONANOTOXAuthors:Kroll, Alexandra;
Kroll, Alexandra
Kroll, Alexandra in OpenAIREMatzke, Marianne;
Rybicki, Marcus; Obert-Rauser, Patrick; +7 AuthorsMatzke, Marianne
Matzke, Marianne in OpenAIREKroll, Alexandra;
Kroll, Alexandra
Kroll, Alexandra in OpenAIREMatzke, Marianne;
Rybicki, Marcus; Obert-Rauser, Patrick; Burkart, Corinna; Jurkschat, Kerstin; Verweij, Rudo; Sgier, Linn; Jungmann, Dirk; Backhaus, Thomas;Matzke, Marianne
Matzke, Marianne in OpenAIRESvendsen, Claus;
Svendsen, Claus
Svendsen, Claus in OpenAIREpmid: 26122573
pmc: PMC4766215
Silver nanoparticles (AgNP) are currently defined as emerging pollutants in surface water ecosystems. Whether the toxic effects of AgNP towards freshwater organisms are fully explainable by the release of ionic silver (Ag(+)) has not been conclusively elucidated. Long-term effects to benthic microbial communities (periphyton) that provide essential functions in stream ecosystems are unknown. The effects of exposure of periphyton to 2 and 20 μg/L Ag(+) (AgNO3) and AgNP (polyvinylpyrrolidone stabilised) were investigated in artificial indoor streams. The extracellular polymeric substances (EPS) and 3D biofilm structure, biomass, algae species, Ag concentrations in the water phase and bioassociated Ag were analysed. A strong decrease in total Ag was observed within 4 days. Bioassociated Ag was proportional to dissolved Ag indicating a rate limitation by diffusion across the diffusive boundary layer. Two micrograms per liter of AgNO3 or AgNP did not induce significant effects despite detectable bioassociation of Ag. The 20-μg/L AgNO3 affected green algae and diatom communities, biomass and the ratio of polysaccharides to proteins in EPS. The 20-μg/L AgNO3 and AgNP decreased biofilm volume to about 50 %, while the decrease of biomass was lower in 20 μg/L AgNP samples than the 20-μg/L AgNO3 indicating a compaction of the NP-exposed biofilms. Roughness coefficients were lower in 20 μg/L AgNP-treated samples. The more traditional endpoints (biomass and diversity) indicated silver ion concentration-dependent effects, while the newly introduced parameters (3D structure and EPS) indicated both silver ion concentration-dependent effects and effects related to the silver species applied.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-4887-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 16 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-4887-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 12 Jun 2018 Germany, United Kingdom, United Kingdom, United Kingdom, SwitzerlandPublisher:IOP Publishing Authors: Yadu Pokhrel;Yusuke Satoh;
Yusuke Satoh
Yusuke Satoh in OpenAIREDieter Gerten;
Dieter Gerten; +19 AuthorsDieter Gerten
Dieter Gerten in OpenAIREYadu Pokhrel;Yusuke Satoh;
Yusuke Satoh
Yusuke Satoh in OpenAIREDieter Gerten;
Dieter Gerten;Dieter Gerten
Dieter Gerten in OpenAIREGuoyong Leng;
Guoyong Leng
Guoyong Leng in OpenAIRETaikan Oki;
Taikan Oki; Ingjerd Haddeland;Taikan Oki
Taikan Oki in OpenAIREJamal Zaherpour;
Jamal Zaherpour
Jamal Zaherpour in OpenAIRETed Veldkamp;
Ted Veldkamp; Nick J. Mount; Yoshimitsu Masaki;Ted Veldkamp
Ted Veldkamp in OpenAIRERutger Dankers;
Rutger Dankers
Rutger Dankers in OpenAIREJacob Schewe;
Jacob Schewe
Jacob Schewe in OpenAIRENaota Hanasaki;
Hyungjun Kim;Naota Hanasaki
Naota Hanasaki in OpenAIREYoshihide Wada;
Yoshihide Wada
Yoshihide Wada in OpenAIREJunguo Liu;
Stephanie Eisner;Junguo Liu
Junguo Liu in OpenAIRELukas Gudmundsson;
Lukas Gudmundsson
Lukas Gudmundsson in OpenAIRESimon N. Gosling;
Simon N. Gosling
Simon N. Gosling in OpenAIREHannes Müller Schmied;
Hannes Müller Schmied
Hannes Müller Schmied in OpenAIREGlobal-scale hydrological models are routinely used to assess water scarcity, flood hazards and droughts worldwide. Recent efforts to incorporate anthropogenic activities in these models have enabled more realistic comparisons with observations. Here we evaluate simulations from an ensemble of six models participating in the second phase of the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP2a). We simulate monthly runoff in 40 catchments, spatially distributed across eight global hydrobelts. The performance of each model and the ensemble mean is examined with respect to their ability to replicate observed mean and extreme runoff under human-influenced conditions. Application of a novel integrated evaluation metric to quantify the models' ability to simulate timeseries of monthly runoff suggests that the models generally perform better in the wetter equatorial and northern hydrobelts than in drier southern hydrobelts. When model outputs are temporally aggregated to assess mean annual and extreme runoff, the models perform better. Nevertheless, we find a general trend in the majority of models towards the overestimation of mean annual runoff and all indicators of upper and lower extreme runoff. The models struggle to capture the timing of the seasonal cycle, particularly in northern hydrobelts, while in southern hydrobelts the models struggle to reproduce the magnitude of the seasonal cycle. It is noteworthy that over all hydrological indicators, the ensemble mean fails to perform better than any individual model—a finding that challenges the commonly held perception that model ensemble estimates deliver superior performance over individual models. The study highlights the need for continued model development and improvement. It also suggests that caution should be taken when summarising the simulations from a model ensemble based upon its mean output. Environmental Research Letters, 13 (6) ISSN:1748-9326 ISSN:1748-9318
Nottingham Research ... arrow_drop_down Nottingham Research RepositoryArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)IIASA DAREArticle . 2018License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aac547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 1visibility views 1 download downloads 11 Powered bymore_vert Nottingham Research ... arrow_drop_down Nottingham Research RepositoryArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)IIASA DAREArticle . 2018License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aac547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 United KingdomPublisher:Elsevier BV Authors: Rahman, Munsur; Haque, Anisul; Nicholls, Robert J.;Darby, Stephen;
+7 AuthorsDarby, Stephen
Darby, Stephen in OpenAIRERahman, Munsur; Haque, Anisul; Nicholls, Robert J.;Darby, Stephen;
Urmi, Mahmida Tul; Dustegir, Maruf;Darby, Stephen
Darby, Stephen in OpenAIREDunn, Frances;
Tahsin, Anika; Razzaque, Sadmina; Horsburgh, Kevin; Talukder, Md Aminul Haque;Dunn, Frances
Dunn, Frances in OpenAIREpmid: 35302026
The Ganges-Brahmaputra-Meghna (GBM) delta is one of the world's largest deltas. It is currently experiencing high rates of relative sea-level rise of about 5 mm/year, reflecting anthropogenic climate change and land subsidence. This is expected to accelerate further through the 21st Century, so there are concerns that the GBM delta will be progressively submerged. In this context, a core question is: can sedimentation on the delta surface maintain its elevation relative to sea level? This research seeks to answer this question by applying a two-dimensional flow and morphological model which is capable of handling dynamic interactions between the river and floodplain systems and simulating floodplain sedimentation under different flow-sediment regimes and anthropogenic interventions. We find that across a range of flood frequencies and adaptation scenarios (including the natural polder-free state), the retained volume of sediment varies between 22% and 50% of the corresponding sediment input. This translates to average rates of sedimentation on the delta surface of 5.5 mm/yr to 7.5 mm/yr. Hence, under present conditions, sedimentation associated with quasi-natural conditions can exceed current rates of relative sea-level rise and potentially create new land mass. These findings highlight that encouraging quasi-natural conditions through the widespread application of active sediment management measures has the potential to promote more sustainable outcomes for the GBM delta. Practical measures to promote include tidal river management, and appropriate combinations of cross-dams, bandal-like structures, and dredging.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2022License: CC BY NC NDFull-Text: https://eprints.soton.ac.uk/456343/1/Revised_Manuscript_STOTEN_D_21_29720R2_clean_version.pdfData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.154547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2022License: CC BY NC NDFull-Text: https://eprints.soton.ac.uk/456343/1/Revised_Manuscript_STOTEN_D_21_29720R2_clean_version.pdfData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.154547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, Spain, Italy, Spain, Germany, Spain, France, Spain, FinlandPublisher:Wiley Authors:Tatiana A. Shestakova;
Tatiana A. Shestakova
Tatiana A. Shestakova in OpenAIREJordi Voltas;
Matthias Saurer; Frank Berninger; +41 AuthorsJordi Voltas
Jordi Voltas in OpenAIRETatiana A. Shestakova;
Tatiana A. Shestakova
Tatiana A. Shestakova in OpenAIREJordi Voltas;
Matthias Saurer; Frank Berninger;Jordi Voltas
Jordi Voltas in OpenAIREJan Esper;
Jan Esper
Jan Esper in OpenAIRELaia Andreu‐Hayles;
Valérie Daux; Gerhard Helle;Laia Andreu‐Hayles
Laia Andreu‐Hayles in OpenAIREMarkus Leuenberger;
Neil J. Loader; Valérie Masson‐Delmotte;Markus Leuenberger
Markus Leuenberger in OpenAIREAntonio Saracino;
John S. Waterhouse; Gerhard H. Schleser; Zdzisław Bednarz; Tatjana Boettger;Antonio Saracino
Antonio Saracino in OpenAIREIsabel Dorado‐Liñán;
Marc Filot;Isabel Dorado‐Liñán
Isabel Dorado‐Liñán in OpenAIREDavid Frank;
Michael Grabner; Marika Haupt; Emmi Hilasvuori; Högne Jungner; Maarit Kalela‐Brundin;David Frank
David Frank in OpenAIREMarek Krąpiec;
Hamid Marah; Sławomira Pawełczyk; Anna Pazdur; Monique Pierre; Octavi Planells;Marek Krąpiec
Marek Krąpiec in OpenAIRERūtilė Pukienė;
Christina E. Reynolds‐Henne;Rūtilė Pukienė
Rūtilė Pukienė in OpenAIREKatja T. Rinne‐Garmston (Rinne);
Katja T. Rinne‐Garmston (Rinne)
Katja T. Rinne‐Garmston (Rinne) in OpenAIREAngelo Rita;
Eloni Sonninen; Michel Stiévenard; Vincent R. Switsur; Elżbieta Szychowska‐Kra̧piec; Malgorzata Szymaszek;Angelo Rita
Angelo Rita in OpenAIRELuigi Todaro;
Luigi Todaro
Luigi Todaro in OpenAIREKerstin Treydte;
Kerstin Treydte
Kerstin Treydte in OpenAIREAdomas Vitas;
Martin Weigl; Rupert Wimmer; Emilia Gutiérrez;Adomas Vitas
Adomas Vitas in OpenAIREdoi: 10.1111/geb.12933
handle: 11563/137461
AbstractAimThe aim was to decipher Europe‐wide spatio‐temporal patterns of forest growth dynamics and their associations with carbon isotope fractionation processes inferred from tree rings as modulated by climate warming.LocationEurope and North Africa (30‒70° N, 10° W‒35° E).Time period1901‒2003.Major taxa studiedTemperate and Euro‐Siberian trees.MethodsWe characterize changes in the relationship between tree growth and carbon isotope fractionation over the 20th century using a European network consisting of 20 site chronologies. Using indexed tree‐ring widths (TRWi), we assess shifts in the temporal coherence of radial growth across sites (synchrony) for five forest ecosystems (Atlantic, boreal, cold continental, Mediterranean and temperate). We also examine whether TRWi shows variable coupling with leaf‐level gas exchange, inferred from indexed carbon isotope discrimination of tree‐ring cellulose (Δ13Ci).ResultsWe find spatial autocorrelation for TRWi and Δ13Ci extending over a maximum of 1,000 km among forest stands. However, growth synchrony is not uniform across Europe, but increases along a latitudinal gradient concurrent with decreasing temperature and evapotranspiration. Latitudinal relationships between TRWi and Δ13Ci (changing from negative to positive southwards) point to drought impairing carbon uptake via stomatal regulation for water saving occurring at forests below 60° N in continental Europe. An increase in forest growth synchrony over the 20th century together with increasingly positive relationships between TRWi and Δ13Ci indicate intensifying impacts of drought on tree performance. These effects are noticeable in drought‐prone biomes (Mediterranean, temperate and cold continental).Main conclusionsAt the turn of this century, convergence in growth synchrony across European forest ecosystems is coupled with coordinated warming‐induced effects of drought on leaf physiology and tree growth spreading northwards. Such a tendency towards exacerbated moisture‐sensitive growth and physiology could override positive effects of enhanced leaf intercellular CO2 concentrations, possibly resulting in Europe‐wide declines of forest carbon gain in the coming decades.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2019Full-Text: http://hdl.handle.net/11563/137461Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Ecology and BiogeographyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2019Full-Text: http://hdl.handle.net/11563/137461Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Ecology and BiogeographyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Authors: Xiawei Liao;Li Chai;
Junping Ji;
Junping Ji
Junping Ji in OpenAIREZhifu Mi;
+2 AuthorsZhifu Mi
Zhifu Mi in OpenAIREXiawei Liao;Li Chai;
Junping Ji;
Junping Ji
Junping Ji in OpenAIREZhifu Mi;
Zhifu Mi
Zhifu Mi in OpenAIREDabo Guan;
Dabo Guan
Dabo Guan in OpenAIREXu Zhao;
pmid: 30602260
China's household energy demands' life-cycle water uses from 2002 to 2015 are quantified with an Input-Output analysis disaggregating rural and urban impacts. 9.73 and 1.60 km3 of water was withdrawn and consumed respectively in the life cycle of Chinese household energy demands in 2015, which was dominated by power and heat uses. An average urbanite's household energy uses, including coal, gas, petroleum products, power and heat, require about four times of life-cycle water uses than its rural counterpart. Among all upstream sectors, while agricultural sectors accounted for the largest shares for all energy uses, oil and gas extraction made significant contributions to petroleum products and gas consumption. A Structural Decomposition Analysis is conducted to disentangle the impacts of four driving factors, i.e. population, demand, economic structure and technology. Population change reduced energy consumption's life-cycle water use for rural households but increased that for urban households. Each economic sector's water intensity decreases, which represent technology advancement, played the dominant role curbing household energy consumption's life-cycle water uses. While power and heat dominates the household energy use profile, urbanization is accompanied by household consumption shifting from coal to gas and petroleum products. In order to reduce household energy consumption's impacts and reliance on water resources, it is imperative to reduce energy production's water use by adopting water-saving technologies, such as air cooling, as well as to reduce upstream sectors' water intensities, such as by promoting drip irrigation.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2018.10.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 147 Powered bymore_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2018.10.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 FrancePublisher:Springer Science and Business Media LLC Authors:Martina Schmidt;
Stanley C. Tyler;Martina Schmidt
Martina Schmidt in OpenAIREFabrice Papa;
Fabrice Papa
Fabrice Papa in OpenAIREDidier Hauglustaine;
+16 AuthorsDidier Hauglustaine
Didier Hauglustaine in OpenAIREMartina Schmidt;
Stanley C. Tyler;Martina Schmidt
Martina Schmidt in OpenAIREFabrice Papa;
Fabrice Papa
Fabrice Papa in OpenAIREDidier Hauglustaine;
M. Ramonet; Philippe Ciais;Didier Hauglustaine
Didier Hauglustaine in OpenAIREG. R. van der Werf;
G. R. van der Werf
G. R. van der Werf in OpenAIREPhilippe Peylin;
C. Carouge; Edward J. Dlugokencky; J. Lathière; Ray L. Langenfelds;Philippe Peylin
Philippe Peylin in OpenAIREJohn B. Miller;
John B. Miller; Catherine Prigent; E. G. Brunke; L. P. Steele; James W. C. White;John B. Miller
John B. Miller in OpenAIREPhilippe Bousquet;
Philippe Bousquet;Philippe Bousquet
Philippe Bousquet in OpenAIREMethane is an important greenhouse gas, and its atmospheric concentration has nearly tripled since pre-industrial times. The growth rate of atmospheric methane is determined by the balance between surface emissions and photochemical destruction by the hydroxyl radical, the major atmospheric oxidant. Remarkably, this growth rate has decreased markedly since the early 1990s, and the level of methane has remained relatively constant since 1999, leading to a downward revision of its projected influence on global temperatures. Large fluctuations in the growth rate of atmospheric methane are also observed from one year to the next, but their causes remain uncertain. Here we quantify the processes that controlled variations in methane emissions between 1984 and 2003 using an inversion model of atmospheric transport and chemistry. Our results indicate that wetland emissions dominated the inter-annual variability of methane sources, whereas fire emissions played a smaller role, except during the 1997-1998 El Niño event. These top-down estimates of changes in wetland and fire emissions are in good agreement with independent estimates based on remote sensing information and biogeochemical models. On longer timescales, our results show that the decrease in atmospheric methane growth during the 1990s was caused by a decline in anthropogenic emissions. Since 1999, however, they indicate that anthropogenic emissions of methane have risen again. The effect of this increase on the growth rate of atmospheric methane has been masked by a coincident decrease in wetland emissions, but atmospheric methane levels may increase in the near future if wetland emissions return to their mean 1990s levels.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature05132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 815 citations 815 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature05132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | CLOCKEC| CLOCKAuthors:Christopher M. Free;
Christopher M. Free
Christopher M. Free in OpenAIREReniel B. Cabral;
Reniel B. Cabral
Reniel B. Cabral in OpenAIREHalley E. Froehlich;
Halley E. Froehlich
Halley E. Froehlich in OpenAIREWillow Battista;
+10 AuthorsWillow Battista
Willow Battista in OpenAIREChristopher M. Free;
Christopher M. Free
Christopher M. Free in OpenAIREReniel B. Cabral;
Reniel B. Cabral
Reniel B. Cabral in OpenAIREHalley E. Froehlich;
Halley E. Froehlich
Halley E. Froehlich in OpenAIREWillow Battista;
Willow Battista
Willow Battista in OpenAIREElena Ojea;
Erin O’Reilly;Elena Ojea
Elena Ojea in OpenAIREJames E. Palardy;
James E. Palardy
James E. Palardy in OpenAIREJorge García Molinos;
Jorge García Molinos
Jorge García Molinos in OpenAIREKatherine J. Siegel;
Ragnar Arnason;Katherine J. Siegel
Katherine J. Siegel in OpenAIREMarie Antonette Juinio-Meñez;
Marie Antonette Juinio-Meñez
Marie Antonette Juinio-Meñez in OpenAIREKatharina Fabricius;
Carol Turley;Katharina Fabricius
Katharina Fabricius in OpenAIRESteven D. Gaines;
Steven D. Gaines
Steven D. Gaines in OpenAIREpmid: 35477762
As the human population and demand for food grow1, the ocean will be called on to provide increasing amounts of seafood. Although fisheries reforms and advances in offshore aquaculture (hereafter 'mariculture') could increase production2, the true future of seafood depends on human responses to climate change3. Here we investigated whether coordinated reforms in fisheries and mariculture could increase seafood production per capita under climate change. We find that climate-adaptive fisheries reforms will be necessary but insufficient to maintain global seafood production per capita, even with aggressive reductions in greenhouse-gas emissions. However, the potential for sustainable mariculture to increase seafood per capita is vast and could increase seafood production per capita under all but the most severe emissions scenario. These increases are contingent on fisheries reforms, continued advances in feed technology and the establishment of effective mariculture governance and best practices. Furthermore, dramatically curbing emissions is essential for reducing inequities, increasing reform efficacy and mitigating risks unaccounted for in our analysis. Although climate change will challenge the ocean's ability to meet growing food demands, the ocean could produce more food than it does currently through swift and ambitious action to reduce emissions, reform capture fisheries and expand sustainable mariculture operations.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAJames Cook University, Australia: ResearchOnline@JCUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-04674-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAJames Cook University, Australia: ResearchOnline@JCUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-04674-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu