search
  • Access
  • Type
  • Year range
  • Field of Science
    Clear
  • Funder
  • SDG [Beta]
    Clear
  • Country
  • Language
  • Source
  • Research community
    Clear
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2,305 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • engineering and technology
  • 7. Clean energy
  • 2. Zero hunger
  • Aurora Universities Network

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Omar Hegazy; J. Van Mierlo; orcid P. Van den Bossche;
    P. Van den Bossche
    ORCID
    Harvested from ORCID Public Data File

    P. Van den Bossche in OpenAIRE
    P. Van den Bossche; +5 Authors

    Abstract This paper represents a novel lithium-ion capacitor model. The proposed model has significantly high accuracy (less 4%). The model is an extension of Zubieta model for EDLCs. The proposed model consists of three capacitors, representing the influence of temperature, current rate (ΔC1) and SoC (ΔC2) on the capacitance of LiCaps, respectively. Unlike to the electrical double-layer capacitors, the model contains two resistances, illustrating the charge and discharge processes. Then, a self-discharge resistance is added to demonstrate the long term effect on the LiCaps capabilities. This model is able to predict the lithium-ion behavior during constant charging and discharging as well as during short pulses duration. The parameters of the model have been derived based on the extended characterization tests that have been carried out. The investigated performance parameters are energy and power abilities, charge and discharge capabilities at different current rates. Furthermore, these parameters have been examined at different working temperatures (60 °C, 40 °C, 25 °C, 0 °C and −18 °C). The experimental results reveal that the type of lithium-ion capacitor used in this work has an energy density about 14 Wh/kg, which is two and half times higher than the used EDLC. These results also indicate similar properties as the electrical double-layer capacitors in the terms of internal resistance and state of charge determination. In contrast to EDLCs, the results show that lithium-ion capacitors suffer considerably at the low temperatures due to lower energy at high current rate. The same characteristics can be observed during discharge phase, due to the occurrence of the Peukert effect. Moreover, series of tests have been carried out at different state of charge values. Here we have found that the capacitance has a polynomial relationship against a linear equation for EDLC and it seems in function of applied current rates. From the point of view of the power capabilities, several approaches have been investigated based on the EDLC and battery methodologies. The results reveal that the power density according to EDLC method is about 1200 W/kg with a pulse efficiency of 90%. However, the W/kg based on the battery method during 2 s pulse is about 500 W/kg. Furthermore, a life cycle test has been done based on the load profile as reported in the forthcoming ISO 12405-2 standard. The preliminary results figure out that the life cycle of the lithium-ion capacitors is decreased with 3.4% till 1400 cycles. Then forward, the capacity reduction is stabilized until 4000 cycles.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Electrochimica Acta
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    90
    citations90
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Electrochimica Acta
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Thierry Coosemans; orcid Henok Ayele Behabtu;
    Henok Ayele Behabtu
    ORCID
    Harvested from ORCID Public Data File

    Henok Ayele Behabtu in OpenAIRE
    Henok Ayele Behabtu; Joeri Van Mierlo; +5 Authors

    Abstract Grid-connected renewable energy systems are considered a viable solution for satisfying the swiftly growing demand. Nevertheless, the intermittent nature of renewable energy sources (RESs) hinders their performance and can not be efficiently utilized, rather imposes power quality and instability problem on the grid system. To alleviate this challenge, it is common practice to integrate RESs with efficient battery energy storage technologies. Lead-acid batteries were playing the leading role utilized as stationary energy storage systems. However, currently, there are other battery technologies like lithium-ion (Li-ion), which are used in stationary storage applications though there is uncertainty in its cost-effectiveness. In this paper, a state-of-the-art simulation model and techno-economic analysis of Li-ion and lead-acid batteries integrated with Photovoltaic Grid-Connected System (PVGCS) were performed with consideration of real commercial load profiles and resource data. The Hybrid Optimization Model for Electric Renewables (HOMER) was used for the study of the techno-economic analysis. Besides, the performance of these batteries is greatly affected by the rate of charge and discharge cycling effects which gradually degrades the capacity of the battery. This effect was also investigated with Matlab using a simplified equivalent circuit model by considering a typical stationary application datasheet. The techno-economic simulation output provided that the system with Li-ion battery resulted in a Levelized Cost of Energy (LCOE) of 0.32 €/kWh compared to the system with lead-acid battery with LCOE of 0.34 €/kWh. Besides, the Net Present Cost (NPC) of the system with Li-ion batteries is found to be €14399 compared to the system with the lead-acid battery resulted in an NPC of €15106. According to the result found, Li-ion batteries are techno-economically more viable than lead-acid batteries under the considered specifications and application profile.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Energy St...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Energy Storage
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Energy Storage
    Article
    License: CC BY
    Data sources: UnpayWall
    addClaim
    Access Routes
    Green
    hybrid
    162
    citations162
    popularityTop 1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Energy St...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Energy Storage
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Energy Storage
      Article
      License: CC BY
      Data sources: UnpayWall
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Vincenzo Tufano; Paolo Ciambelli;

    Abstract The technical and economic feasibility of a single-stage water-sulphuric acid heat transformer, as evaluated through a simplified mathematical model, is discussed in this paper. Three different criteria of optimality are considered. The first two respectively account for the exergetic and the enthalpic value of the useful heat. The third criterion is based on an approximate evaluation of the fixed and operating costs, considered proportional to the inverse of the heat storage capacity. An analysis based on the values of the coefficient of performance and of the mass flow rates, expressed as a function of the gross temperature lift, points out the significance of the criterion based on the heat storage capacity. This result is also supported by considering the ability of the heat transformer to maintain its performance in different external conditions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Heat Recovery System...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Heat Recovery Systems and CHP
    Article . 1987 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    14
    citations14
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Heat Recovery System...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Heat Recovery Systems and CHP
      Article . 1987 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Raffaele Dragonetti;
    Raffaele Dragonetti
    ORCID
    Harvested from ORCID Public Data File

    Raffaele Dragonetti in OpenAIRE
    orcid Marialuisa Napolitano;
    Marialuisa Napolitano
    ORCID
    Harvested from ORCID Public Data File

    Marialuisa Napolitano in OpenAIRE
    Sabato Di Filippo; orcid Rosario Romano;
    Rosario Romano
    ORCID
    Harvested from ORCID Public Data File

    Rosario Romano in OpenAIRE

    Abstract The stack represents the core of standing wave engines since inside it the thermal energy is converted into mechanical energy. Commonly stacks are realized with straight pores whose sections have regular shapes (e.g. circular, rectangular). In these cases the viscous and thermal interactions are described by well-known spatially averaged thermal and viscous functions. Instead, for a materials having tortuous pore, there is a lack in theoretical description of the thermoacoustic phenomenon. This paper deals with the performance of a thermoacoustic engine in which a tortuous porous material is used as stack. The spatially averaged thermal and viscous functions are obtained by classical models used to describe the sound propagation inside a porous material. In particular the Johnson–Champoux–Allard model is considered. It requires the knowledge of five parameters instead of the only hydraulic radius used to describe the standard stack having straight pores (e.g. circular, slit or square pores). The physical meaning of these parameters is explained starting from a straight circular pore and modifying, step by step, the shape of the pore until it becomes tortuous. The proposed functions have been included in the Rott theory and implemented in a numerical procedure. The achieved results are useful to analyse the thermoacoustic performance of a standing wave engine and to understand how the gain factor as well as the viscous and thermal losses inside the stack are affected by the tortuosity. A validation of this procedure is given by comparing the obtained results with ones given by DeltaEC software. This work can be useful to understand the applicability of tortuous porous materials, such as fibrous material as well as open-cell material, for standing wave thermoacoustic engines.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Thermal Engineering
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    30
    citations30
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Thermal Engineering
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: C.B. von der Decken; K. Kugeler; H. Barnert;

    Abstract The High Temperature Reactor HTR offers beside the production of electricity the potential of the production of secondary energy carriers for the fuel and heat market. Therefore the HTR can considerably contribute to solutions of future problems in the energy supply of the Federal Republic of Germany as well as of the world. On the basis of the experiences with the power plants AVR, Fort St. Vrain and THTR-300 new concepts of reactors have been proposed: the medium size reactor HTR 500 and the Modular HTR concept. The high temperature heat application is directed towards the refinement of fossil fuels, the long distance energy system and other applications as e.g. process steam for chemical industry, enhanced oil recovery and water splitting. The research and development program in the projects Prototype Plant Nuclear Process Heat (PNP) and Nuclear Long Distance Energy (NFE) has shown very promising results. These results show that nuclear process heat is technically feasibly and that it is possible to reach a commercial application in the next decades.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nuclear Engineering ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nuclear Engineering and Design
    Article . 1984 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    6
    citations6
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nuclear Engineering ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nuclear Engineering and Design
      Article . 1984 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: N.A. Mahmoud; Osama Sharaf; orcid Mohamed Hany Abokersh;
    Mohamed Hany Abokersh
    ORCID
    Harvested from ORCID Public Data File

    Mohamed Hany Abokersh in OpenAIRE
    Mohamed El-Morsi; +2 Authors

    Abstract In this research, a multi-tube heat exchanger filled with phase change material (PCM) is constructed and investigated experimentally to evaluate its capability to serve as a heat storage unit in solar domestic water heating (SDWH) systems. Several operational conditions comprising the PCM initial temperature and the water discharge flowrates are included in the test as external factors to evaluate the performance of the proposed shell-and-tube latent-heat storage unit (STLHS) as a part of a SDWH system. The STLHS unit is assessed according to several quantitative, qualitative, and economic key performance indicators extracted from the Egyptian plumbing code (EPC). Firstly, the quantitative results show that the proposed STLHS unit increased the water temperature by a range of 7–12 °C and maintained a constant hot water supply for extended periods, 2–3 h. Secondly, from the qualitative point of view, the achieved heating levels are insufficient to fulfill the domestic needs according to the benchmark water temperature established by the EPC. Thirdly, evaluating the STLHS unit on an economic basis shows that the annual fuel saving increases by increasing the unit initial temperature, where the annual fuel consumption savings reach 130 m3 of natural gas. Finally, the acquired techno-economic performance measurements emphasize that the proposed unit has a notable possibility for several design modifications to achieve more improvements in its performance.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • Authors: Douglas Crawford-Brown; Andrew Skelton; orcid Dabo Guan;
    Dabo Guan
    ORCID
    Harvested from ORCID Public Data File

    Dabo Guan in OpenAIRE
    Dabo Guan; +1 Authors

    Environmentally extended multiregional input-output (MRIO) analysis can be used to investigate final production and consumption attributions of emissions. As the distinction between the two attributions has been brought to the attention of policy-makers, there is an ever greater need to understand how and why they differ, by analyzing the connections between production and consumption activities. Seeking to meet this need, we present an approach for mapping flows of embodied emissions through a Leontief production system. The approach, seen as an extension of Structural Path Analysis (SPA), provides an exhaustive map of supply chain linkages between final production and consumption attributions of emissions. Whereas SPA is traditionally used to extract and rank individual supply chains according to the emissions occurring at the end of each chain, the mapping approach considers emissions embodied in the flows of intermediate products linking different economic sectors along supply chains. Illustrative results are presented from a global MRIO model and CO(2) emissions for 2004. The emissions embodied in a sector's total output of products is also of interest: a method for calculating this is presented and shown to provide further insight into where in the production system a sector's overall emissions impact is concentrated.

    addClaim
    156
    citations156
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Williamson, Phil;

    The viability and environmental risks of removing carbon dioxide from the air must be assessed if we are to achieve the Paris goals, writes Phil Williamson.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2016 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    Nature
    Article . 2016
    addClaim
    247
    citations247
    popularityTop 1%
    influenceTop 1%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2016 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      Nature
      Article . 2016
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Lauro André Ribeiro;
    Lauro André Ribeiro
    ORCID
    Harvested from ORCID Public Data File

    Lauro André Ribeiro in OpenAIRE
    Érica Geraldes Castanheira; Nuno Carvalho Figueiredo; orcid P. Miguel;
    P. Miguel
    ORCID
    Harvested from ORCID Public Data File

    P. Miguel in OpenAIRE
    +13 Authors

    Abstract This paper brings together several contemporary topics in energy systems aiming to provide a literature review based reflection on how several interrelated energy systems can contribute together to a more sustainable world. Some directions are discussed, such as the improvement of the energy efficiency and environmental performance of systems, the development of new technologies, the increase of the use of renewable energy sources, the promotion of holistic and multidisciplinary studies, and the implementation of new management rules and "eco-friendly and sustainable" oriented policies at different scales. The interrelations of the diverse energy systems are also discussed in order to address their main social, economic and environmental impacts. The subjects covered include the assessment of the electricity market and its main players (demand, supply, distribution), the evaluation of urban systems (buildings, transportation, commuting), the analysis of the implementation of renewable energy cooperatives, the discussion of the diffusion of the electric vehicle and the importance of new bioenergy systems. This paper also presents relevant research carried out in the framework of the Energy for Sustainability (EfS) Initiative of the University of Coimbra, linking the reviewed areas to the multidisciplinary approach adopted by the EfS Initiative. To conclude, several research topics that should be addressed in the near future are proposed.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable and Sustai...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Renewable and Sustainable Energy Reviews
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Estudo Geral
    Article . 2018
    Data sources: Estudo Geral
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    Access Routes
    Green
    hybrid
    45
    citations45
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    download64
    downloaddownloads64
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable and Sustai...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Renewable and Sustainable Energy Reviews
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Estudo Geral
      Article . 2018
      Data sources: Estudo Geral
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Colomba Di Blasi;

    Abstract A two-dimensional, unsteady, nonconstant property mathematical model of the degradation of porous cellulosic fuels to volatiles and chars, including convective and conductive heat transfer, is coupled to a quasi-steady, two-dimensional mathematical model, including gas phase momentum, energy and chemical species mass equations, to simulate downward flame spread. Three main regimes of flame spread are established as the fuel thickness is varied. The first, where the spread rate increases with the solid thickness, is observed for a narrow range of very thin solids and is controlled by gas-phase chemical kinetics. In the second regime, the spread rates, which compare favorably with experimental measurements, decrease as the solid thickness is increased (thermally thin regime). Finally, as the fuel thickness is increased beyond a certain limit, the thermally thick regime, that is a constant spread rate, is simulated. Good agreement between the spread rates predicted by the numerical model and the analytical theory by de Ris is obtained in the limit of the thermally thin and thermally thick regime. However, the transition from one regime to the other occurs for largely different fuel thicknesses. The mechanisms of energy feedback to the unburned solid ahead of the flame have also been investigated. Gas-phase heat conduction dominates the first and the second regime of flame spread. The contribution of solid-phase heat conduction to the energy transfer ahead of the flame increases with the fuel thickness reaching, for thermally thick solids, a maximum of about 50% of the total energy transferred.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Combustion and Flamearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Combustion and Flame
    Article . 1994 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    68
    citations68
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Combustion and Flamearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Combustion and Flame
      Article . 1994 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph