- home
- Search
- Energy Research
- US
- DE
- EU
- Aurora Universities Network
- Transport Research
- Energy Research
- US
- DE
- EU
- Aurora Universities Network
- Transport Research
description Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2020 United KingdomPublisher:Elsevier BV Precht, William F.; Aronson, Richard B.; Gardner, Toby A.; Gill, Jennifer A.; Hawkins, Julie P.; Hernández-Delgado, Edwin A.; Jaap, Walter C.; McClanahan, Tim R.; McField, Melanie D.; Murdoch, Thaddeus J.T.; Nugues, Maggy M.; Roberts, Callum M.; Schelten, Christiane K.; Watkinson, Andrew R.; Côté, Isabelle M.;pmid: 33293016
Caribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift-grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in)-still remain somewhat controversial in the coral-reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977-2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ~35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United States, Sweden, GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | Eco-DAS 2.0: Ecological D...NSF| Eco-DAS 2.0: Ecological Dissertations in the Aquatic SciencesTamar Guy-Haim; Harriet Alexander; Tom W. Bell; Raven L. Bier; Lauren E. Bortolotti; Christian Briseño-Avena; Xiaoli Dong; Alison M. Flanagan; Julia Grosse; Lars Grossmann; Sarah Hasnain; Rachel Hovel; Cora A. Johnston; Dan R. Miller; Mario Muscarella; Akana E. Noto; Alexander J. Reisinger; Heidi J. Smith; Karen Stamieszkin;handle: 1903/27562
Mesocosm experiments have become increasingly popular in climate change research as they bridge the gap between small-scale, less realistic, microcosm experiments, and large-scale, more complex, natural systems. Characteristics of aquatic mesocosm designs (e.g., mesocosm volume, study duration, and replication) vary widely, potentially affecting the magnitude and direction of effect sizes measured in experiments. In this global systematic review we aim to identify the type, direction and strength of climate warming effects on aquatic species, communities and ecosystems in mesocosm experiments. Furthermore, we will investigate the context-dependency of the observed effects on several a priori determined effect moderators (ecological and methodological). Our conclusions will provide recommendations for aquatic scientists designing mesocosm experiments, as well as guidelines for interpretation of experimental results by scientists, policy-makers and the general public. We will conduct a systematic search using multiple online databases to gather evidence from the scientific literature on the effects of warming experimentally tested in aquatic mesocosms. Data from relevant studies will be extracted and used in a random effects meta-analysis to estimate the overall effect sizes of warming experiments on species performance, biodiversity and ecosystem functions. Experimental characteristics (e.g., mesocosm size and shape, replication-level, experimental duration and design, biogeographic region, community type, crossed manipulation) will be further analysed using subgroup analyses.
OceanRep arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, United States, GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | Quantifying the Duration ...NSF| Quantifying the Duration and Impact of Human-Megafauna Overlap in AustraliaScott J. Lehman; Gifford H. Miller; Gifford H. Miller; Joachim Schönfeld; Ellyn J. Cook; A. Peter Kershaw; Sander van der Kaars; Sander van der Kaars; Chris S. M. Turney; Dirk Nürnberg;AbstractEnvironmental histories that span the last full glacial cycle and are representative of regional change in Australia are scarce, hampering assessment of environmental change preceding and concurrent with human dispersal on the continent ca. 47,000 years ago. Here we present a continuous 150,000-year record offshore south-western Australia and identify the timing of two critical late Pleistocene events: wide-scale ecosystem change and regional megafaunal population collapse. We establish that substantial changes in vegetation and fire regime occurred ∼70,000 years ago under a climate much drier than today. We record high levels of the dung fungus Sporormiella, a proxy for herbivore biomass, from 150,000 to 45,000 years ago, then a marked decline indicating megafaunal population collapse, from 45,000 to 43,100 years ago, placing the extinctions within 4,000 years of human dispersal across Australia. These findings rule out climate change, and implicate humans, as the primary extinction cause.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms14142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms14142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, Norway, United Kingdom, United Kingdom, NorwayPublisher:Elsevier BV Funded by:RCN | Bayesian monitoring desig...RCN| Bayesian monitoring design.Abdirahman M. Omar; Maribel I. García-Ibáñez; Allison Schaap; Anna Oleynik; Mario Esposito; Emil Jeansson; Socratis Loucaides; Helmuth Thomas; Guttorm Alendal;handle: 11250/2985459 , 11250/2992692
Abstract Carbon Capture and Storage (CCS) is a potential significant mitigation strategy to combat climate change and ocean acidification. The technology is well understood but its current implementation must be scaled up nearly by a hundredfold to become an effective tool that helps meet mitigation targets. Regulations require monitoring and verification at storage sites, and reliable monitoring strategies for detection and quantification of seepage of the stored carbon need to be developed. The Cseep method was developed for reliable determination of CO2 seepage signal in seawater by estimating and filtering out natural variations in dissolved inorganic carbon (C). In this work, we analysed data from the first-ever subsea CO2 release experiment performed in the north-western North Sea by the EU STEMM−CCS project. We successfully demonstrated the ability of the Cseep method to (i) predict natural C variations around the Goldeneye site over seasonal to interannual time scales; (ii) establish a process-based baseline C concentration with minimal variability; (iii) determine CO2 seepage detection threshold (DT) to reliably differentiate released−CO2 signal from natural variability and quantify released−CO2 dissolved in the sampled seawater. DT values were around 20 % of the natural C variations indicating high sensitivity of the method. Moreover, with the availability of DT value, the identification of released−CO2 required no pre-knowledge of seepage occurrence, but we used additional available information to assess the confidence of the results. Overall, the Cseep method features high sensitivity, automation suitability, and represents a powerful future monitoring tool both for large and confined marine areas.
OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2985459Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2992692Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 22 Powered bymore_vert OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2985459Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2992692Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Germany, FrancePublisher:Elsevier BV Victor Brun; Salvatore Arico; Françoise Gaill; Valérie Masson-Delmotte; Norma Patricia Muñoz; Laurent Bopp; Julian Barbière; Silva Osvaldina; Nele Matz-Lück; William W. L. Cheung; Hans-Otto Pörtner; Frédéric Ménard; Jacqueline Uku; Marie-Alexandrine Sicre; Chris Bowler; Ricardo S. Santos; Johanna J. Heymans; Amadou Thierno Gaye; Stéphanie Thiébault; Agathe Euzen; Nathalie Hilmi; M. Araujo; Denis Bailly; Robert T. Watson; Cyrille Barnerias; Cameron Diver; Anna Zivian; Joachim Claudet; Alexander Turra; Romain Troublé; Torsten Thiele; Rodolphe Devillers; Rodolphe Devillers; Remi Parmentier; Patricia Ricard; Antoine Pebayle; Martin Visbeck; Peter M. Haugan; Isabelle Ansorge; Elva Escobar-Briones; Lauren S. Mullineaux; Anny Cazenave; Cyril Moulin; Patricia Miloslavich;The health of the ocean, central to human well-being, has now reached a critical point. Most fish stocks are overexploited, climate change and increased dissolved carbon dioxide are changing ocean chemistry and disrupting species throughout food webs, and the fundamental capacity of the ocean to regulate the climate has been altered. However, key technical, organizational, and conceptual scientific barriers have prevented the identification of policy levers for sustainability and transformative action. Here, we recommend key strategies to address these challenges, including (1) stronger integration of sciences and (2) ocean-observing systems, (3) improved science-policy interfaces, (4) new partnerships supported by (5) a new ocean-climate finance system, and (6) improved ocean literacy and education to modify social norms and behaviors. Adopting these strategies could help establish ocean science as a key foundation of broader sustainability transformations.
OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oneear.2019.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 195 citations 195 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oneear.2019.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Yuan Zhang; Xuanyu Chen; Peng Xu; Xizeng Zhao; Ould el Moctar; Changqing Jiang;doi: 10.3390/jmse11122352
The development and utilization of wave energy, heralded as a potential leading source of clean energy worldwide, have garnered considerable attention from the global research community. Among the diverse array of wave energy converters (WECs), the raft-type WEC stands out for its potential to efficiently harness and utilize wave energy, offering high energy conversion rates and a broad frequency response range. This paper delves into the evaluation of a raft-type WEC’s performance in various mooring configurations under different wave conditions. Our analysis primarily focuses on the dynamics of the two-body WEC using a weakly nonlinear three-dimensional potential flow solver. The considered device comprises two interconnected floating barges, incorporating a power take-off system at the hinged connection point. This investigation involves the use of equivalent linear damping to model the power take-off (PTO) system. To validate the numerical simulations, we conduct physical model experiments with WECs. Additionally, the coupling of the raft-type WEC’s dynamics and its mooring dynamics was examined, highlighting the performance differences between various mooring systems through a comparative analysis.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11122352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11122352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Emerald Authors: Dimitris Zissis; Dimitris Zissis; Emel Aktas; Michael Bourlakis;Purpose Population growth, urbanisation and the increased use of online shopping are some of the key challenges affecting the traditional logistics model. The purpose of this paper is to focus on the distribution of grocery products ordered online and the subsequent home delivery and click and collect services offered by online retailers to fulfil these orders. These services are unsustainable due to increased operational costs, carbon emissions, traffic and noise. The main objective of the research is to propose sustainable logistics models to reduce economic, environmental and social costs whilst maintaining service levels. Design/methodology/approach The authors have a mixed methodology based on simulation and mathematical modelling to evaluate the proposed shared logistics model using: primary data from a major UK retailer, secondary data from online retailers and primary data from a consumer survey on preferences for receiving groceries purchased online. Integration of these three data sets serves as input to vehicle routing models that reveal the benefits from collaboration by solving individual distribution problems of two retailers first, followed by the joint distribution problem under single decision maker assumption. Findings The benefits from collaboration could be more than 10 per cent in the distance travelled and 16 per cent in the time required to deliver the orders when two online grocery retailers collaborate in distribution activities. Originality/value The collaborative model developed for the online grocery market incentivises retailers to switch from current unsustainable logistics models to the proposed collaborative models.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BY NCFull-Text: https://doi.org/10.1108/IJLM-11-2017-0303Data sources: Bielefeld Academic Search Engine (BASE)The International Journal of Logistics ManagementArticle . 2018 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ijlm-11-2017-0303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 18visibility views 18 download downloads 710 Powered bymore_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BY NCFull-Text: https://doi.org/10.1108/IJLM-11-2017-0303Data sources: Bielefeld Academic Search Engine (BASE)The International Journal of Logistics ManagementArticle . 2018 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ijlm-11-2017-0303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Tema. Journal of Land Use, Mobility and Environment Funded by:EC | DIAPREPPEC| DIAPREPPAuthors: Battarra, Rosaria; Gargiulo, Carmela; Lombardi, Chiara; Raimondo, Marco;The Smart City model is now considered one of the opportunities to rethink cities and, in general, the development of urban communities. One of the most relevant themes in the application of the Smart City paradigm is the city/energy relationship and Italian cities are fielding several actions to effectively cope with the energy issues. Nevertheless, actions and projects are often uncritically promoted as ‘smart’, but actually lack innovative contents and methods. Therefore, the aim of this research, of which we present the first findings, is the drafting of a survey, tested through field analysis, of the experimentations of Italian metropolitan areas on the Smart City topic. The in-depth analysis of two case studies, Genoa and Naples, allowed us to compare the actual state of the two cities. We have that they have undertaken a common path in the implementation of strategies to try to transform themselves into Smart Cities, focusing especially on the energy aspects. Tema. Journal of Land Use, Mobility and Environment, Vol 8, N° 2 (2015): Cities, Energy and Built Environment
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6092/1970-9870/3008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6092/1970-9870/3008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:MDPI AG Funded by:EC | NANOSELECT, EC | MEDEASEC| NANOSELECT ,EC| MEDEASAuthors: Antonio García-Olivares; Jordi Solé; Roger Samsó; Joaquim Ballabrera-Poy;doi: 10.3390/su12125091
handle: 10261/215733
Europe must move towards a 100% renewable transportation system for climate, energy and sustainability reasons. We estimate the capital and energy required for building and operating a renewable transportation system providing similar services as the EU-28 transport system of 2016. It could be based on: biogas or fuel cell vessels; liquid biogas powered aircrafts; electric railways and fuel cell or electric vehicles between major cities; and car sharing, electric buses and electric two- and three-wheelers, for short journeys. A system of charging posts on the streets and roads for passenger and commercial e-vehicles is studied. Alternatively, a Tracked Electric Vehicle system of continuous power on European roads would improve energy efficiency and the saving of scarce metals (Ni, Li), at a lower cost, if only national roads were electrified. The investment for the construction of the whole system would be 2.3–2.7% of the EU’s GDP per year for 30 years. The new system operation would require 16% less energy than that of 2016, with reduction of 70% in road transport. However, shipping and aviation would demand 162% and 149% more energy, respectively, if liquefied biogas were used as fuel. A type of land transport fully based on trains would provide a similar service to that of an electric vehicle fleet, with a 29% lower energy consumption.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2020License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12125091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 55visibility views 55 download downloads 177 Powered bymore_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2020License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12125091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017Embargo end date: 01 Jan 2017 France, Germany, United States, United Kingdom, United Kingdom, United Kingdom, United Kingdom, United States, Norway, United StatesPublisher:Copernicus GmbH Funded by:NSERC, EC | CDREG, EC | METLAKE +3 projectsNSERC ,EC| CDREG ,EC| METLAKE ,EC| MACC II ,EC| MACC-III ,RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyM. Saunois; P. Bousquet; B. Poulter; A. Peregon; P. Ciais; J. G. Canadell; E. J. Dlugokencky; G. Etiope; G. Etiope; D. Bastviken; S. Houweling; S. Houweling; G. Janssens-Maenhout; F. N. Tubiello; S. Castaldi; S. Castaldi; S. Castaldi; R. B. Jackson; M. Alexe; V. K. Arora; D. J. Beerling; P. Bergamaschi; D. R. Blake; G. Brailsford; L. Bruhwiler; C. Crevoisier; P. Crill; K. Covey; C. Frankenberg; C. Frankenberg; N. Gedney; L. Höglund-Isaksson; M. Ishizawa; A. Ito; F. Joos; H.-S. Kim; T. Kleinen; P. Krummel; J.-F. Lamarque; R. Langenfelds; R. Locatelli; T. Machida; S. Maksyutov; J. R. Melton; I. Morino; V. Naik; S. O'Doherty; F.-J. W. Parmentier; P. K. Patra; C. Peng; C. Peng; S. Peng; S. Peng; G. P. Peters; I. Pison; R. Prinn; M. Ramonet; W. J. Riley; M. Saito; M. Santini; M. Santini; R. Schroeder; I. J. Simpson; R. Spahni; A. Takizawa; B. F. Thornton; H. Tian; Y. Tohjima; N. Viovy; A. Voulgarakis; R. Weiss; D. J. Wilton; A. Wiltshire; D. Worthy; D. Wunch; X. Xu; X. Xu; Y. Yoshida; B. Zhang; Z. Zhang; Z. Zhang; Q. Zhu;Abstract. Following the recent Global Carbon Project (GCP) synthesis of the decadal methane (CH4) budget over 2000–2012 (Saunois et al., 2016), we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models (including process-based models for estimating land surface emissions and atmospheric chemistry), inventories of anthropogenic emissions, and data-driven approaches. The annual global methane emissions from top-down studies, which by construction match the observed methane growth rate within their uncertainties, all show an increase in total methane emissions over the period 2000–2012, but this increase is not linear over the 13 years. Despite differences between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total methane emissions over the period 2000–2006, during the plateau of atmospheric methane mole fractions, and also over the period 2008–2012, during the renewed atmospheric methane increase. However, the top-down ensemble mean produces an emission shift between 2006 and 2008, leading to 22 [16–32] Tg CH4 yr−1 higher methane emissions over the period 2008–2012 compared to 2002–2006. This emission increase mostly originated from the tropics, with a smaller contribution from mid-latitudes and no significant change from boreal regions. The regional contributions remain uncertain in top-down studies. Tropical South America and South and East Asia seem to contribute the most to the emission increase in the tropics. However, these two regions have only limited atmospheric measurements and remain therefore poorly constrained. The sectorial partitioning of this emission increase between the periods 2002–2006 and 2008–2012 differs from one atmospheric inversion study to another. However, all top-down studies suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries) compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the Emission Database for Global Atmospheric Research (EDGARv4.2) inventory, which should be revised to smaller values in a near future. We apply isotopic signatures to the emission changes estimated for individual studies based on five emission sectors and find that for six individual top-down studies (out of eight) the average isotopic signature of the emission changes is not consistent with the observed change in atmospheric 13CH4. However, the partitioning in emission change derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands), with an uncertain but smaller contribution from fossil CH4 emissions. In addition, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases) makes the balance of sources consistent with atmospheric 13CH4 observations. In most of the top-down studies included here, OH concentrations are considered constant over the years (seasonal variations but without any inter-annual variability). As a result, the methane loss (in particular through OH oxidation) varies mainly through the change in methane concentrations and not its oxidants. For these reasons, changes in the methane loss could not be properly investigated in this study, although it may play a significant role in the recent atmospheric methane changes as briefly discussed at the end of the paper.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/55004Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.5194/ACP-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2017Full-Text: https://doi.org/10.5194/acp-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and PhysicsOther literature type . 2017Data sources: DANS (Data Archiving and Networked Services)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaMunin - Open Research ArchiveArticle . 2017 . Peer-reviewedData sources: Munin - Open Research ArchiveAtmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-17-11135-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 36 Powered bymore_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/55004Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.5194/ACP-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2017Full-Text: https://doi.org/10.5194/acp-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and PhysicsOther literature type . 2017Data sources: DANS (Data Archiving and Networked Services)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaMunin - Open Research ArchiveArticle . 2017 . Peer-reviewedData sources: Munin - Open Research ArchiveAtmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-17-11135-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2020 United KingdomPublisher:Elsevier BV Precht, William F.; Aronson, Richard B.; Gardner, Toby A.; Gill, Jennifer A.; Hawkins, Julie P.; Hernández-Delgado, Edwin A.; Jaap, Walter C.; McClanahan, Tim R.; McField, Melanie D.; Murdoch, Thaddeus J.T.; Nugues, Maggy M.; Roberts, Callum M.; Schelten, Christiane K.; Watkinson, Andrew R.; Côté, Isabelle M.;pmid: 33293016
Caribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift-grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in)-still remain somewhat controversial in the coral-reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977-2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ~35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United States, Sweden, GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | Eco-DAS 2.0: Ecological D...NSF| Eco-DAS 2.0: Ecological Dissertations in the Aquatic SciencesTamar Guy-Haim; Harriet Alexander; Tom W. Bell; Raven L. Bier; Lauren E. Bortolotti; Christian Briseño-Avena; Xiaoli Dong; Alison M. Flanagan; Julia Grosse; Lars Grossmann; Sarah Hasnain; Rachel Hovel; Cora A. Johnston; Dan R. Miller; Mario Muscarella; Akana E. Noto; Alexander J. Reisinger; Heidi J. Smith; Karen Stamieszkin;handle: 1903/27562
Mesocosm experiments have become increasingly popular in climate change research as they bridge the gap between small-scale, less realistic, microcosm experiments, and large-scale, more complex, natural systems. Characteristics of aquatic mesocosm designs (e.g., mesocosm volume, study duration, and replication) vary widely, potentially affecting the magnitude and direction of effect sizes measured in experiments. In this global systematic review we aim to identify the type, direction and strength of climate warming effects on aquatic species, communities and ecosystems in mesocosm experiments. Furthermore, we will investigate the context-dependency of the observed effects on several a priori determined effect moderators (ecological and methodological). Our conclusions will provide recommendations for aquatic scientists designing mesocosm experiments, as well as guidelines for interpretation of experimental results by scientists, policy-makers and the general public. We will conduct a systematic search using multiple online databases to gather evidence from the scientific literature on the effects of warming experimentally tested in aquatic mesocosms. Data from relevant studies will be extracted and used in a random effects meta-analysis to estimate the overall effect sizes of warming experiments on species performance, biodiversity and ecosystem functions. Experimental characteristics (e.g., mesocosm size and shape, replication-level, experimental duration and design, biogeographic region, community type, crossed manipulation) will be further analysed using subgroup analyses.
OceanRep arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, United States, GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | Quantifying the Duration ...NSF| Quantifying the Duration and Impact of Human-Megafauna Overlap in AustraliaScott J. Lehman; Gifford H. Miller; Gifford H. Miller; Joachim Schönfeld; Ellyn J. Cook; A. Peter Kershaw; Sander van der Kaars; Sander van der Kaars; Chris S. M. Turney; Dirk Nürnberg;AbstractEnvironmental histories that span the last full glacial cycle and are representative of regional change in Australia are scarce, hampering assessment of environmental change preceding and concurrent with human dispersal on the continent ca. 47,000 years ago. Here we present a continuous 150,000-year record offshore south-western Australia and identify the timing of two critical late Pleistocene events: wide-scale ecosystem change and regional megafaunal population collapse. We establish that substantial changes in vegetation and fire regime occurred ∼70,000 years ago under a climate much drier than today. We record high levels of the dung fungus Sporormiella, a proxy for herbivore biomass, from 150,000 to 45,000 years ago, then a marked decline indicating megafaunal population collapse, from 45,000 to 43,100 years ago, placing the extinctions within 4,000 years of human dispersal across Australia. These findings rule out climate change, and implicate humans, as the primary extinction cause.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms14142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms14142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, Norway, United Kingdom, United Kingdom, NorwayPublisher:Elsevier BV Funded by:RCN | Bayesian monitoring desig...RCN| Bayesian monitoring design.Abdirahman M. Omar; Maribel I. García-Ibáñez; Allison Schaap; Anna Oleynik; Mario Esposito; Emil Jeansson; Socratis Loucaides; Helmuth Thomas; Guttorm Alendal;handle: 11250/2985459 , 11250/2992692
Abstract Carbon Capture and Storage (CCS) is a potential significant mitigation strategy to combat climate change and ocean acidification. The technology is well understood but its current implementation must be scaled up nearly by a hundredfold to become an effective tool that helps meet mitigation targets. Regulations require monitoring and verification at storage sites, and reliable monitoring strategies for detection and quantification of seepage of the stored carbon need to be developed. The Cseep method was developed for reliable determination of CO2 seepage signal in seawater by estimating and filtering out natural variations in dissolved inorganic carbon (C). In this work, we analysed data from the first-ever subsea CO2 release experiment performed in the north-western North Sea by the EU STEMM−CCS project. We successfully demonstrated the ability of the Cseep method to (i) predict natural C variations around the Goldeneye site over seasonal to interannual time scales; (ii) establish a process-based baseline C concentration with minimal variability; (iii) determine CO2 seepage detection threshold (DT) to reliably differentiate released−CO2 signal from natural variability and quantify released−CO2 dissolved in the sampled seawater. DT values were around 20 % of the natural C variations indicating high sensitivity of the method. Moreover, with the availability of DT value, the identification of released−CO2 required no pre-knowledge of seepage occurrence, but we used additional available information to assess the confidence of the results. Overall, the Cseep method features high sensitivity, automation suitability, and represents a powerful future monitoring tool both for large and confined marine areas.
OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2985459Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2992692Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 22 Powered bymore_vert OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2985459Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2992692Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Germany, FrancePublisher:Elsevier BV Victor Brun; Salvatore Arico; Françoise Gaill; Valérie Masson-Delmotte; Norma Patricia Muñoz; Laurent Bopp; Julian Barbière; Silva Osvaldina; Nele Matz-Lück; William W. L. Cheung; Hans-Otto Pörtner; Frédéric Ménard; Jacqueline Uku; Marie-Alexandrine Sicre; Chris Bowler; Ricardo S. Santos; Johanna J. Heymans; Amadou Thierno Gaye; Stéphanie Thiébault; Agathe Euzen; Nathalie Hilmi; M. Araujo; Denis Bailly; Robert T. Watson; Cyrille Barnerias; Cameron Diver; Anna Zivian; Joachim Claudet; Alexander Turra; Romain Troublé; Torsten Thiele; Rodolphe Devillers; Rodolphe Devillers; Remi Parmentier; Patricia Ricard; Antoine Pebayle; Martin Visbeck; Peter M. Haugan; Isabelle Ansorge; Elva Escobar-Briones; Lauren S. Mullineaux; Anny Cazenave; Cyril Moulin; Patricia Miloslavich;The health of the ocean, central to human well-being, has now reached a critical point. Most fish stocks are overexploited, climate change and increased dissolved carbon dioxide are changing ocean chemistry and disrupting species throughout food webs, and the fundamental capacity of the ocean to regulate the climate has been altered. However, key technical, organizational, and conceptual scientific barriers have prevented the identification of policy levers for sustainability and transformative action. Here, we recommend key strategies to address these challenges, including (1) stronger integration of sciences and (2) ocean-observing systems, (3) improved science-policy interfaces, (4) new partnerships supported by (5) a new ocean-climate finance system, and (6) improved ocean literacy and education to modify social norms and behaviors. Adopting these strategies could help establish ocean science as a key foundation of broader sustainability transformations.
OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oneear.2019.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 195 citations 195 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oneear.2019.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Yuan Zhang; Xuanyu Chen; Peng Xu; Xizeng Zhao; Ould el Moctar; Changqing Jiang;doi: 10.3390/jmse11122352
The development and utilization of wave energy, heralded as a potential leading source of clean energy worldwide, have garnered considerable attention from the global research community. Among the diverse array of wave energy converters (WECs), the raft-type WEC stands out for its potential to efficiently harness and utilize wave energy, offering high energy conversion rates and a broad frequency response range. This paper delves into the evaluation of a raft-type WEC’s performance in various mooring configurations under different wave conditions. Our analysis primarily focuses on the dynamics of the two-body WEC using a weakly nonlinear three-dimensional potential flow solver. The considered device comprises two interconnected floating barges, incorporating a power take-off system at the hinged connection point. This investigation involves the use of equivalent linear damping to model the power take-off (PTO) system. To validate the numerical simulations, we conduct physical model experiments with WECs. Additionally, the coupling of the raft-type WEC’s dynamics and its mooring dynamics was examined, highlighting the performance differences between various mooring systems through a comparative analysis.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11122352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11122352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Emerald Authors: Dimitris Zissis; Dimitris Zissis; Emel Aktas; Michael Bourlakis;Purpose Population growth, urbanisation and the increased use of online shopping are some of the key challenges affecting the traditional logistics model. The purpose of this paper is to focus on the distribution of grocery products ordered online and the subsequent home delivery and click and collect services offered by online retailers to fulfil these orders. These services are unsustainable due to increased operational costs, carbon emissions, traffic and noise. The main objective of the research is to propose sustainable logistics models to reduce economic, environmental and social costs whilst maintaining service levels. Design/methodology/approach The authors have a mixed methodology based on simulation and mathematical modelling to evaluate the proposed shared logistics model using: primary data from a major UK retailer, secondary data from online retailers and primary data from a consumer survey on preferences for receiving groceries purchased online. Integration of these three data sets serves as input to vehicle routing models that reveal the benefits from collaboration by solving individual distribution problems of two retailers first, followed by the joint distribution problem under single decision maker assumption. Findings The benefits from collaboration could be more than 10 per cent in the distance travelled and 16 per cent in the time required to deliver the orders when two online grocery retailers collaborate in distribution activities. Originality/value The collaborative model developed for the online grocery market incentivises retailers to switch from current unsustainable logistics models to the proposed collaborative models.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BY NCFull-Text: https://doi.org/10.1108/IJLM-11-2017-0303Data sources: Bielefeld Academic Search Engine (BASE)The International Journal of Logistics ManagementArticle . 2018 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ijlm-11-2017-0303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 18visibility views 18 download downloads 710 Powered bymore_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BY NCFull-Text: https://doi.org/10.1108/IJLM-11-2017-0303Data sources: Bielefeld Academic Search Engine (BASE)The International Journal of Logistics ManagementArticle . 2018 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ijlm-11-2017-0303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Tema. Journal of Land Use, Mobility and Environment Funded by:EC | DIAPREPPEC| DIAPREPPAuthors: Battarra, Rosaria; Gargiulo, Carmela; Lombardi, Chiara; Raimondo, Marco;The Smart City model is now considered one of the opportunities to rethink cities and, in general, the development of urban communities. One of the most relevant themes in the application of the Smart City paradigm is the city/energy relationship and Italian cities are fielding several actions to effectively cope with the energy issues. Nevertheless, actions and projects are often uncritically promoted as ‘smart’, but actually lack innovative contents and methods. Therefore, the aim of this research, of which we present the first findings, is the drafting of a survey, tested through field analysis, of the experimentations of Italian metropolitan areas on the Smart City topic. The in-depth analysis of two case studies, Genoa and Naples, allowed us to compare the actual state of the two cities. We have that they have undertaken a common path in the implementation of strategies to try to transform themselves into Smart Cities, focusing especially on the energy aspects. Tema. Journal of Land Use, Mobility and Environment, Vol 8, N° 2 (2015): Cities, Energy and Built Environment
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6092/1970-9870/3008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6092/1970-9870/3008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:MDPI AG Funded by:EC | NANOSELECT, EC | MEDEASEC| NANOSELECT ,EC| MEDEASAuthors: Antonio García-Olivares; Jordi Solé; Roger Samsó; Joaquim Ballabrera-Poy;doi: 10.3390/su12125091
handle: 10261/215733
Europe must move towards a 100% renewable transportation system for climate, energy and sustainability reasons. We estimate the capital and energy required for building and operating a renewable transportation system providing similar services as the EU-28 transport system of 2016. It could be based on: biogas or fuel cell vessels; liquid biogas powered aircrafts; electric railways and fuel cell or electric vehicles between major cities; and car sharing, electric buses and electric two- and three-wheelers, for short journeys. A system of charging posts on the streets and roads for passenger and commercial e-vehicles is studied. Alternatively, a Tracked Electric Vehicle system of continuous power on European roads would improve energy efficiency and the saving of scarce metals (Ni, Li), at a lower cost, if only national roads were electrified. The investment for the construction of the whole system would be 2.3–2.7% of the EU’s GDP per year for 30 years. The new system operation would require 16% less energy than that of 2016, with reduction of 70% in road transport. However, shipping and aviation would demand 162% and 149% more energy, respectively, if liquefied biogas were used as fuel. A type of land transport fully based on trains would provide a similar service to that of an electric vehicle fleet, with a 29% lower energy consumption.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2020License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12125091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 55visibility views 55 download downloads 177 Powered bymore_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2020License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12125091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017Embargo end date: 01 Jan 2017 France, Germany, United States, United Kingdom, United Kingdom, United Kingdom, United Kingdom, United States, Norway, United StatesPublisher:Copernicus GmbH Funded by:NSERC, EC | CDREG, EC | METLAKE +3 projectsNSERC ,EC| CDREG ,EC| METLAKE ,EC| MACC II ,EC| MACC-III ,RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyM. Saunois; P. Bousquet; B. Poulter; A. Peregon; P. Ciais; J. G. Canadell; E. J. Dlugokencky; G. Etiope; G. Etiope; D. Bastviken; S. Houweling; S. Houweling; G. Janssens-Maenhout; F. N. Tubiello; S. Castaldi; S. Castaldi; S. Castaldi; R. B. Jackson; M. Alexe; V. K. Arora; D. J. Beerling; P. Bergamaschi; D. R. Blake; G. Brailsford; L. Bruhwiler; C. Crevoisier; P. Crill; K. Covey; C. Frankenberg; C. Frankenberg; N. Gedney; L. Höglund-Isaksson; M. Ishizawa; A. Ito; F. Joos; H.-S. Kim; T. Kleinen; P. Krummel; J.-F. Lamarque; R. Langenfelds; R. Locatelli; T. Machida; S. Maksyutov; J. R. Melton; I. Morino; V. Naik; S. O'Doherty; F.-J. W. Parmentier; P. K. Patra; C. Peng; C. Peng; S. Peng; S. Peng; G. P. Peters; I. Pison; R. Prinn; M. Ramonet; W. J. Riley; M. Saito; M. Santini; M. Santini; R. Schroeder; I. J. Simpson; R. Spahni; A. Takizawa; B. F. Thornton; H. Tian; Y. Tohjima; N. Viovy; A. Voulgarakis; R. Weiss; D. J. Wilton; A. Wiltshire; D. Worthy; D. Wunch; X. Xu; X. Xu; Y. Yoshida; B. Zhang; Z. Zhang; Z. Zhang; Q. Zhu;Abstract. Following the recent Global Carbon Project (GCP) synthesis of the decadal methane (CH4) budget over 2000–2012 (Saunois et al., 2016), we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models (including process-based models for estimating land surface emissions and atmospheric chemistry), inventories of anthropogenic emissions, and data-driven approaches. The annual global methane emissions from top-down studies, which by construction match the observed methane growth rate within their uncertainties, all show an increase in total methane emissions over the period 2000–2012, but this increase is not linear over the 13 years. Despite differences between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total methane emissions over the period 2000–2006, during the plateau of atmospheric methane mole fractions, and also over the period 2008–2012, during the renewed atmospheric methane increase. However, the top-down ensemble mean produces an emission shift between 2006 and 2008, leading to 22 [16–32] Tg CH4 yr−1 higher methane emissions over the period 2008–2012 compared to 2002–2006. This emission increase mostly originated from the tropics, with a smaller contribution from mid-latitudes and no significant change from boreal regions. The regional contributions remain uncertain in top-down studies. Tropical South America and South and East Asia seem to contribute the most to the emission increase in the tropics. However, these two regions have only limited atmospheric measurements and remain therefore poorly constrained. The sectorial partitioning of this emission increase between the periods 2002–2006 and 2008–2012 differs from one atmospheric inversion study to another. However, all top-down studies suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries) compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the Emission Database for Global Atmospheric Research (EDGARv4.2) inventory, which should be revised to smaller values in a near future. We apply isotopic signatures to the emission changes estimated for individual studies based on five emission sectors and find that for six individual top-down studies (out of eight) the average isotopic signature of the emission changes is not consistent with the observed change in atmospheric 13CH4. However, the partitioning in emission change derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands), with an uncertain but smaller contribution from fossil CH4 emissions. In addition, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases) makes the balance of sources consistent with atmospheric 13CH4 observations. In most of the top-down studies included here, OH concentrations are considered constant over the years (seasonal variations but without any inter-annual variability). As a result, the methane loss (in particular through OH oxidation) varies mainly through the change in methane concentrations and not its oxidants. For these reasons, changes in the methane loss could not be properly investigated in this study, although it may play a significant role in the recent atmospheric methane changes as briefly discussed at the end of the paper.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/55004Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.5194/ACP-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2017Full-Text: https://doi.org/10.5194/acp-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and PhysicsOther literature type . 2017Data sources: DANS (Data Archiving and Networked Services)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaMunin - Open Research ArchiveArticle . 2017 . Peer-reviewedData sources: Munin - Open Research ArchiveAtmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-17-11135-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 36 Powered bymore_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/55004Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.5194/ACP-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2017Full-Text: https://doi.org/10.5194/acp-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and PhysicsOther literature type . 2017Data sources: DANS (Data Archiving and Networked Services)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaMunin - Open Research ArchiveArticle . 2017 . Peer-reviewedData sources: Munin - Open Research ArchiveAtmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-17-11135-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu