- home
- Search
- Energy Research
- 11. Sustainability
- AT
- Transport Research
- Energy Research
- 11. Sustainability
- AT
- Transport Research
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSHaberl, Helmut; Wiedenhofer, Dominik; Schug, Franz; Frantz, David; Virag, Doris; Plutzar, Christoph; Gruhler, Karin; Lederer, Jakob; Schiller, Georg; Fishman, Tomer; Lanau, Maud; Gattringer, Andreas; Kemper, Thomas; Liu, Gang; Tanikawa, Hiroki; van der Linden, Sebastian; Hostert, Patrick;Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures. This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Temporal extent The map is representative for ca. 2018. Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. The dataset features area and mass for different street types area and mass for different rail types area and mass for other infrastructure area, volume and mass for different building types Masses are reported as total values, and per material category. Units area in m² height in m volume in m³ mass in t for infrastructure and buildings Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 586visibility views 586 download downloads 70 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Authors: Kurt Fallast; Wolfgang Hirschberg; Mario Hirz; Helmut Brunner;Abstract Background Personal transportation in urban areas is characterised by different transportation technologies with significantly varying properties regarding usability, infrastructural requirements and environmental impacts. This characterisation motivates the objective evaluation of mobility solutions, based on different criteria. State of the art evaluations in the scientific literature mainly focus on one specific criterion at a time. The most common criteria investigated are found in energy demand or equivalent fuel consumption. Other parameters include the traffic space demand or mean velocity as a reference for the user-related criterion “travel time”. Since different modes of transport show various potentials in different criteria, an interesting point for scientific research is consideration of the different criteria in a more comprehensive evaluation approach. To address this issue, the aim of this study is to present a new approach for an objective evaluation and comparison of different transport technologies under consideration of pre-defined range of criteria and defined boundary conditions and requirements for personal mobility in cities. Besides technical-oriented aspects like driving range, transport capability and life cycle-related consumption of resources, additional factors influencing user-behaviour and traffic density are reflected. The evaluation method is presented, based on a generated exemplary data collection regarding technical and in-use characteristics of different modes of transport, mainly investigated in the city of Graz, Austria. Methods The study focuses on different means of transport, in particular walking, bicycling, the use of powered two-wheelers, passenger cars with different propulsion systems and public transport systems. It is based on the determination of selected criteria, considering ecologic, infrastructural and user-related aspects. With respect to ecologic criteria, the study considers resources and energy consumption as also the resulting CO2 equivalent emissions. The mean velocity and transport capacity are considered in the context of user-related criteria. Traffic space demand is an important and limited resource, especially in urban areas. The present study thus includes the determination and comparison of the relative traffic and parking space demands for the different modes of transport. The evaluation is based on a specifically developed evaluation methodology, considering weighted traffic performance indices, which are also proposed and discussed. Results Within the present study, a database providing specific mobility-related criteria and parameters has been generated, representing technical characteristics and the effects of the use of different vehicles and means of transportation in urban areas. The illustrated results allow an objective evaluation of a broad range of different means of transportation and vehicles, based on introduced “weighted traffic performance indices” (WTPI). Conclusions The study contributes to a discussion of transportation technologies and allows a derivation of measures for further research topics to face future intra-urban mobility demands. This represents a basis for decision making on the priorisation of the most suitable transport systems for urban areas. It is shown that the motorised individual passenger transport as dominated by the use of private passenger cars in particular represents today the most inefficient form of inner-urban mobility.
Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-018-0149-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-018-0149-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Guenter Essl;AbstractThe planning and control of a job and career development related to trainees and young technicians is indicated by three features at least: It is complex in the social context, dynamic with regard to the time and contradictory for the different topics. The proactive diagnosis of occupational developments has to meet these three challenges although the foresighted consultation and support of technicians are not trivial. The following research question can therefore be formulated: How can the professional field of technicians be investigated so that an adequate instrument can be designed for their job and career development?In this contribution the design of a ‚occupation (profession) field model’ is introduced. The author suggests a system-integrated point of view which has the concept “occupation/profession field” used both analytically and classifying. Three function modes being connected with each other are conceived on the basis of an activity theoretical approach. The target audience of these skills for the balanced assessment and consultation of developments in technical occupation fields embraces at least three relevant groups of people: (1) Vocational teachers should be able to represent technical work processes embedded in organizational, social and institutional conditions. Through this they can let future occupational profiles flow into their didactic long-term objectives. (2) The trainees themselves should be able to adapt their professional ideas to the complex and dynamic requirements of the globalization. Through these they become neither passive nor naive professional addressees since they also install contradictions meaning-orientedly in possible future scenarios. (3) The education/training management opens its perception and gates for junctions to thick institutional and social system partners to be able to guarantee the education of their trainees in different system contexts. The presented model is explained at the example of the Smart City approach which helps for the worldwide putting through of an ecologically and economically acceptable lifestyle in the metropolises of the 21st century.
Procedia - Social an... arrow_drop_down Procedia - Social and Behavioral SciencesArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sbspro.2015.08.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Procedia - Social an... arrow_drop_down Procedia - Social and Behavioral SciencesArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sbspro.2015.08.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | ROBUSTEC| ROBUSTLisa Bauchinger; Anna Reichenberger; Bryonny Goodwin-Hawkins; Jurij Kobal; Mojca Hrabar; Theresia Oedl-Wieser;doi: 10.3390/su13031280
Transport can play a key role in mitigating climate change, through reducing traffic, emissions and dependency on private vehicles. Transport is also crucial to connect remote areas to central or urban areas. Yet, sustainable and flexible transport is among the greatest challenges for rural areas and rural–urban regions. Innovative transport concepts and approaches are urgently needed to foster sustainable and integrated regional development. This article addresses challenges of sustainability, accessibility, and connectivity through examining complementary systems to existing public transport, including demand-responsive transport and multimodal mobility. We draw upon case studies from the Metropolitan Area of Styria, Ljubljana Urban Region and rural Wales (GUSTmobil, REGIOtim, EURBAN, Bicikelj, Bwcabus, Grass Routes). In-depth analysis through a mixed-methods case study design captures the complexity behind these chosen examples, which form a basis for analysing the effects of services on accessibility for different groups, connectivity to public transport and usability as a “first and last mile” feeder. We further explore the weaknesses of complementary transport systems, including legal, organisational and financial barriers, and offer potential solutions to structure and communicate complementary transport systems to improve access and use. Looking ahead, we use the case studies to anticipate innovative, sustainable “mobility as a service” (MaaS) solutions within and between urban and rural areas and consider how future public policy orientations and arrangements can enable positive change. A main concern of our article and the contribution to scientific literature is through exploring the benefit of well-established multi-level governance arrangements when introducing smaller-scale mobility solutions to improve rural–urban accessibility. It becomes clear that not a one-size-fits-all model but placed-based and tailored approaches lead to successful and sustainable concepts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13031280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 47visibility views 47 download downloads 210 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13031280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:F1000 Research Ltd Funded by:EC | USER-CHIEC| USER-CHIAuthors: Andrenacci, Natascia; Karagulian, Federico; Genovese, Antonino;Background: The correct design of electric vehicle (EV) charging infrastructures is of fundamental importance to maximize the benefits for users and infrastructure managers. In addition, the analysis and management of recharges can help evaluate integration with auxiliary systems, such as renewable energy resources and storage systems. EV charging data analysis can highlight informative behaviours and patterns for charging infrastructure planning and management. Methods: We present the analysis of two datasets about the recorded energy and duration required to charge EVs in the cities of Barcelona (Spain) and Turku (Finland). In particular, we investigated hourly, daily and seasonal patterns in charge duration and energy delivered. Simulated scenarios for the power request at charging stations (CSs) were obtained using statistical parameters of the Barcelona dataset and non-parametric distributions of the arrivals. Monte Carlo simulations were used to test different scenarios of users’ influx at the CSs, and determine the optimal size of an integrated renewable energy system (RES). Results: This study highlighted the difference between fast and slow charging users’ habits by analysing the occupancy at the charging stations. Aside from the charge duration, which was shorter for fast charges, distinct features emerged in the hourly distribution of the requests depending on whether slow or fast charges are considered. The distributions were different in the two analysed datasets. The investigation of CS power fluxes showed that results for the investment on a RES could substantially vary when considering synthetic input load profiles obtained with different approaches. The influence of incentives on the initial RES cost were investigated. Conclusions: The novelty of this work lies in testing the impact of different approach to design synthetic profiles in the determination of the optimal size of a photovoltaic (PV) system installed at a charging infrastructure, using the economic criterion of the net present value (NPV).
https://doi.org/10.1... arrow_drop_down https://doi.org/10.12688/openr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.12688/openr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.12688/openr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/openreseurope.14354.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 58visibility views 58 download downloads 79 Powered bymore_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.12688/openr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.12688/openr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.12688/openr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/openreseurope.14354.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Mario Hirz; Thu Trang Nguyen;doi: 10.3390/wevj13040061
As an important trend in the automotive industry, electrification of propulsion systems has potential to significantly reduce greenhouse-gas emissions of the transportation sector. Whereas electric vehicles do not produce exhaust emissions during driving, the impact of electricity provision for charging batteries, as well as the impact of vehicle production play an essential role in a holistic consideration of the carbon footprint. The paper introduces a comprehensive evaluation of greenhouse gas-emission-related factors of cars driven by different propulsion technologies, considering the entire product life cycle. This comprises vehicle production, including battery system, electric powertrain and other relevant components, the car’s use phase under consideration of different electricity mixes and the end-of-life phase. The results of the study give insights of influencing factors on life-cycle-related carbon-dioxide-equivalent emissions of cars driven by combustion engines, hybrid powertrains and battery-electric propulsion systems. In addition, a comparison of actual mass-production cars is made and the total life-cycle carbon footprints are discussed under different boundary conditions of electric power supply. In this way, the article comprehensively introduces an automotive life-cycle assessment and provides fundamental information, contributing to an objective discussion of different propulsion technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13040061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13040061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 CroatiaPublisher:SDEWES Centre Funded by:EC | TwinERGYEC| TwinERGYAuthors: Karameros, Anastasios; Chassiakos, Athanasios; Karatzas, Stylianos;Market penetration of electric vehicles is nowadays gaining considerable momentum and so is the move towards increasingly distributed clean and renewable electricity sources. The penetration rate varies among countries due to several factors, including the social and technical readiness of the community to adopt and use this technology. In addition, the increasing complexity of power grids, growing demand as well as environmental and energy sustainability concerns intensify the need for energy management solutions and energy demand reduction strategies. Hence, integration strategies for energy-efficiency in the building and transport sector are of increasing importance. The present study analyses key parameters leading to Electric Vehicle adoption, utilizing background data from countries where Electric Vehicles have already been introduced and adopted in everyday living, and presents a case study of an energy management scheme in Greece, where the penetration rate is still low. Based on the above, an optimization algorithm is proposed, where buildings, photovoltaic plants, storage systems, and Electric Vehicles (utilization of Vehicle to Grid technology) can efficiently meet the energy requirements and peak-hour energy demand, in both economic and sustainability terms. The study proposes a hybrid approach, based on Analytic Hierarchy Process methodology and Genetic algorithms, aiming to foster the diffusion of the Vehicle to Grid concept to support building energy demand.
Journal of Sustainab... arrow_drop_down Journal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2023Full-Text: https://hrcak.srce.hr/file/428905Data sources: HRČAK - Portal of scientific journals of CroatiaJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2023 . Peer-reviewedData sources: CrossrefJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2023Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13044/j.sdewes.d9.0413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 11 Powered bymore_vert Journal of Sustainab... arrow_drop_down Journal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2023Full-Text: https://hrcak.srce.hr/file/428905Data sources: HRČAK - Portal of scientific journals of CroatiaJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2023 . Peer-reviewedData sources: CrossrefJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2023Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13044/j.sdewes.d9.0413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2017Publisher:TU Wien Authors: Dhavle, Jaidev;There has been a tremendous increase in the level of human activity on Earth since the start Industrial Revolution which has promoted great development within societies. However, recent scientific studies have shown that our actions have caused detrimental damage to our environment resulting in the observable phenomenon known as climate change. Some of the adverse effects of climate change include the destruction of habitats, changes in weather patterns and propagation of diseases ��� to name a few. This trend impacts all systems inhabiting our planet and has very grievous implications for the future if no action is taken. A major contributor to climate change is the transport sector which causes significant CO2 and green house gas pollution ��� due the heavy reliance on consuming fossil fuels. These harmful gases have been proven to facilitate global warming. The international community has recognised these undeniable facts and therefore is taking decisive steps to ensure that all sectors to become sustainable. There is a strong advocacy by the global community to promote "sustainable Transport" and ensure that the transport sector becomes emission free and less carbon intensive. An innovative solution to facilitate this transition to sustainable transport is the adoption of electric vehicles (EV���s) which are environmentally friendly and very efficient. EV���s are developing at a rapid pace and the EU is taking a lead in this revolution. Within the EU, the Netherlands has taken proactive steps to deploy as many EV within the country and has set ambitious goal to go all-electric by 2030. Given this bold target; this prompted the question that if the EV market share is forecasted to increase in the Netherlands, how much will it cost to install the appropriate infrastructure to accompany these vehicles? Hence the scope is to answer the following research question: ���To determine the financial viability of installing public electric vehicle charging infrastructure (Level 2 and 3) in the Netherlands���. It was concluded that public charging infrastructure is capital intensive and the associated costs cannot be borne by the government alone - effective financial co-operation between the public and private sectors is required. To get a holistic view to address this research question, global EV trends, the Dutch EV market and Dutch policies have been included.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.34726/hss.2017.50672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.34726/hss.2017.50672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Elsevier BV Johannes Asamer; Mario Ruthmair; Mario Ruthmair; Jakob Puchinger; Jakob Puchinger; Martin Reinthaler; Markus Straub;Electric vehicles are gaining importance and help to reduce dependency on oil, increase energy efficiency of transportation, reduce carbon emissions and noise, and avoid tail pipe emissions. Because of short driving distances, high mileages, and intermediate waiting times, fossil-fuelled taxi vehicles are ideal candidates for being replaced by battery electric vehicles (BEVs). Moreover, taxis as BEVs would increase visibility of electric mobility and therefore encourage others to purchase an electric vehicle. Prior to replacing conventional taxis with BEVs, a suitable charging infrastructure has to be established. This infrastructure, which is a prerequisite for the use of BEVs in practice, consists of a sufficiently dense network of charging stations taking into account the lower driving ranges of BEVs. In this case study we propose a decision support system for placing charging stations to satisfy the charging demand of electric taxi vehicles. Operational taxi data from about 800 vehicles is used to identify and estimate the charging demand for electric taxis based on frequent origins and destinations of trips. Next, a variant of a set covering problem is formulated and solved, aiming at satisfying as much charging demand as possible with a limited number of charging stations. Already existing charging locations are considered in the optimization problem. In this work, we focus on finding regions in which charging stations should be placed, rather than exact locations. The exact location within an area is identified in a post-optimization phase (e.g., by authorities), where environmental conditions are considered, e.g., the capacity of the power network, availability of space, and legal issues. Our approach is implemented in the city of Vienna, Austria, in the course of an applied research project conducted in 2014. Local authorities, power network operators, representatives of taxi driver guilds as well as a radio taxi provider participated in the project and identified exact locations for charging stations based on our decision support system.
Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverTransportation Research Part A Policy and PracticeArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tra.2016.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 132 citations 132 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverTransportation Research Part A Policy and PracticeArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tra.2016.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Florian Hofbauer; Lisa-Maria Putz;doi: 10.3390/su12145874
Sustainable transport, such as using inland waterway transport (IWT), represents a major pillar of the European Green Deal to reduce global warming. To evaluate the different inland transport modes (road, rail, IWT), it is crucial to know the external costs of these modes. The goal of this paper is a critical review of external cost categories (e.g., accidents, noise, emissions) and external cost calculation methods of IWT to provide ideas for future research. We identified 13 relevant papers in a literature review dealing with external costs of IWT. In a meta-analysis, the papers were assigned to the seven external cost categories: accident, noise, congestion, habitat damage, air pollution, climate change and well-to-tank emissions. The most investigated external cost categories are climate change, air pollution and accidents. Two studies were identified as the major external cost calculation methods for IWT in the abstract. Our paper shows that the data basis of IWT is significantly lower than for road/rail. The measurement of energy consumption and related emissions of IWT needs to be qualitatively and quantitatively improved and brought up to the level of road traffic, to ensure an accurate comparison with other modes of transport.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSHaberl, Helmut; Wiedenhofer, Dominik; Schug, Franz; Frantz, David; Virag, Doris; Plutzar, Christoph; Gruhler, Karin; Lederer, Jakob; Schiller, Georg; Fishman, Tomer; Lanau, Maud; Gattringer, Andreas; Kemper, Thomas; Liu, Gang; Tanikawa, Hiroki; van der Linden, Sebastian; Hostert, Patrick;Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures. This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Temporal extent The map is representative for ca. 2018. Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. The dataset features area and mass for different street types area and mass for different rail types area and mass for other infrastructure area, volume and mass for different building types Masses are reported as total values, and per material category. Units area in m² height in m volume in m³ mass in t for infrastructure and buildings Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 586visibility views 586 download downloads 70 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Authors: Kurt Fallast; Wolfgang Hirschberg; Mario Hirz; Helmut Brunner;Abstract Background Personal transportation in urban areas is characterised by different transportation technologies with significantly varying properties regarding usability, infrastructural requirements and environmental impacts. This characterisation motivates the objective evaluation of mobility solutions, based on different criteria. State of the art evaluations in the scientific literature mainly focus on one specific criterion at a time. The most common criteria investigated are found in energy demand or equivalent fuel consumption. Other parameters include the traffic space demand or mean velocity as a reference for the user-related criterion “travel time”. Since different modes of transport show various potentials in different criteria, an interesting point for scientific research is consideration of the different criteria in a more comprehensive evaluation approach. To address this issue, the aim of this study is to present a new approach for an objective evaluation and comparison of different transport technologies under consideration of pre-defined range of criteria and defined boundary conditions and requirements for personal mobility in cities. Besides technical-oriented aspects like driving range, transport capability and life cycle-related consumption of resources, additional factors influencing user-behaviour and traffic density are reflected. The evaluation method is presented, based on a generated exemplary data collection regarding technical and in-use characteristics of different modes of transport, mainly investigated in the city of Graz, Austria. Methods The study focuses on different means of transport, in particular walking, bicycling, the use of powered two-wheelers, passenger cars with different propulsion systems and public transport systems. It is based on the determination of selected criteria, considering ecologic, infrastructural and user-related aspects. With respect to ecologic criteria, the study considers resources and energy consumption as also the resulting CO2 equivalent emissions. The mean velocity and transport capacity are considered in the context of user-related criteria. Traffic space demand is an important and limited resource, especially in urban areas. The present study thus includes the determination and comparison of the relative traffic and parking space demands for the different modes of transport. The evaluation is based on a specifically developed evaluation methodology, considering weighted traffic performance indices, which are also proposed and discussed. Results Within the present study, a database providing specific mobility-related criteria and parameters has been generated, representing technical characteristics and the effects of the use of different vehicles and means of transportation in urban areas. The illustrated results allow an objective evaluation of a broad range of different means of transportation and vehicles, based on introduced “weighted traffic performance indices” (WTPI). Conclusions The study contributes to a discussion of transportation technologies and allows a derivation of measures for further research topics to face future intra-urban mobility demands. This represents a basis for decision making on the priorisation of the most suitable transport systems for urban areas. It is shown that the motorised individual passenger transport as dominated by the use of private passenger cars in particular represents today the most inefficient form of inner-urban mobility.
Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-018-0149-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-018-0149-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Guenter Essl;AbstractThe planning and control of a job and career development related to trainees and young technicians is indicated by three features at least: It is complex in the social context, dynamic with regard to the time and contradictory for the different topics. The proactive diagnosis of occupational developments has to meet these three challenges although the foresighted consultation and support of technicians are not trivial. The following research question can therefore be formulated: How can the professional field of technicians be investigated so that an adequate instrument can be designed for their job and career development?In this contribution the design of a ‚occupation (profession) field model’ is introduced. The author suggests a system-integrated point of view which has the concept “occupation/profession field” used both analytically and classifying. Three function modes being connected with each other are conceived on the basis of an activity theoretical approach. The target audience of these skills for the balanced assessment and consultation of developments in technical occupation fields embraces at least three relevant groups of people: (1) Vocational teachers should be able to represent technical work processes embedded in organizational, social and institutional conditions. Through this they can let future occupational profiles flow into their didactic long-term objectives. (2) The trainees themselves should be able to adapt their professional ideas to the complex and dynamic requirements of the globalization. Through these they become neither passive nor naive professional addressees since they also install contradictions meaning-orientedly in possible future scenarios. (3) The education/training management opens its perception and gates for junctions to thick institutional and social system partners to be able to guarantee the education of their trainees in different system contexts. The presented model is explained at the example of the Smart City approach which helps for the worldwide putting through of an ecologically and economically acceptable lifestyle in the metropolises of the 21st century.
Procedia - Social an... arrow_drop_down Procedia - Social and Behavioral SciencesArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sbspro.2015.08.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Procedia - Social an... arrow_drop_down Procedia - Social and Behavioral SciencesArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sbspro.2015.08.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | ROBUSTEC| ROBUSTLisa Bauchinger; Anna Reichenberger; Bryonny Goodwin-Hawkins; Jurij Kobal; Mojca Hrabar; Theresia Oedl-Wieser;doi: 10.3390/su13031280
Transport can play a key role in mitigating climate change, through reducing traffic, emissions and dependency on private vehicles. Transport is also crucial to connect remote areas to central or urban areas. Yet, sustainable and flexible transport is among the greatest challenges for rural areas and rural–urban regions. Innovative transport concepts and approaches are urgently needed to foster sustainable and integrated regional development. This article addresses challenges of sustainability, accessibility, and connectivity through examining complementary systems to existing public transport, including demand-responsive transport and multimodal mobility. We draw upon case studies from the Metropolitan Area of Styria, Ljubljana Urban Region and rural Wales (GUSTmobil, REGIOtim, EURBAN, Bicikelj, Bwcabus, Grass Routes). In-depth analysis through a mixed-methods case study design captures the complexity behind these chosen examples, which form a basis for analysing the effects of services on accessibility for different groups, connectivity to public transport and usability as a “first and last mile” feeder. We further explore the weaknesses of complementary transport systems, including legal, organisational and financial barriers, and offer potential solutions to structure and communicate complementary transport systems to improve access and use. Looking ahead, we use the case studies to anticipate innovative, sustainable “mobility as a service” (MaaS) solutions within and between urban and rural areas and consider how future public policy orientations and arrangements can enable positive change. A main concern of our article and the contribution to scientific literature is through exploring the benefit of well-established multi-level governance arrangements when introducing smaller-scale mobility solutions to improve rural–urban accessibility. It becomes clear that not a one-size-fits-all model but placed-based and tailored approaches lead to successful and sustainable concepts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13031280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 47visibility views 47 download downloads 210 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13031280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:F1000 Research Ltd Funded by:EC | USER-CHIEC| USER-CHIAuthors: Andrenacci, Natascia; Karagulian, Federico; Genovese, Antonino;Background: The correct design of electric vehicle (EV) charging infrastructures is of fundamental importance to maximize the benefits for users and infrastructure managers. In addition, the analysis and management of recharges can help evaluate integration with auxiliary systems, such as renewable energy resources and storage systems. EV charging data analysis can highlight informative behaviours and patterns for charging infrastructure planning and management. Methods: We present the analysis of two datasets about the recorded energy and duration required to charge EVs in the cities of Barcelona (Spain) and Turku (Finland). In particular, we investigated hourly, daily and seasonal patterns in charge duration and energy delivered. Simulated scenarios for the power request at charging stations (CSs) were obtained using statistical parameters of the Barcelona dataset and non-parametric distributions of the arrivals. Monte Carlo simulations were used to test different scenarios of users’ influx at the CSs, and determine the optimal size of an integrated renewable energy system (RES). Results: This study highlighted the difference between fast and slow charging users’ habits by analysing the occupancy at the charging stations. Aside from the charge duration, which was shorter for fast charges, distinct features emerged in the hourly distribution of the requests depending on whether slow or fast charges are considered. The distributions were different in the two analysed datasets. The investigation of CS power fluxes showed that results for the investment on a RES could substantially vary when considering synthetic input load profiles obtained with different approaches. The influence of incentives on the initial RES cost were investigated. Conclusions: The novelty of this work lies in testing the impact of different approach to design synthetic profiles in the determination of the optimal size of a photovoltaic (PV) system installed at a charging infrastructure, using the economic criterion of the net present value (NPV).
https://doi.org/10.1... arrow_drop_down https://doi.org/10.12688/openr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.12688/openr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.12688/openr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/openreseurope.14354.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 58visibility views 58 download downloads 79 Powered bymore_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.12688/openr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.12688/openr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.12688/openr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/openreseurope.14354.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Mario Hirz; Thu Trang Nguyen;doi: 10.3390/wevj13040061
As an important trend in the automotive industry, electrification of propulsion systems has potential to significantly reduce greenhouse-gas emissions of the transportation sector. Whereas electric vehicles do not produce exhaust emissions during driving, the impact of electricity provision for charging batteries, as well as the impact of vehicle production play an essential role in a holistic consideration of the carbon footprint. The paper introduces a comprehensive evaluation of greenhouse gas-emission-related factors of cars driven by different propulsion technologies, considering the entire product life cycle. This comprises vehicle production, including battery system, electric powertrain and other relevant components, the car’s use phase under consideration of different electricity mixes and the end-of-life phase. The results of the study give insights of influencing factors on life-cycle-related carbon-dioxide-equivalent emissions of cars driven by combustion engines, hybrid powertrains and battery-electric propulsion systems. In addition, a comparison of actual mass-production cars is made and the total life-cycle carbon footprints are discussed under different boundary conditions of electric power supply. In this way, the article comprehensively introduces an automotive life-cycle assessment and provides fundamental information, contributing to an objective discussion of different propulsion technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13040061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13040061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 CroatiaPublisher:SDEWES Centre Funded by:EC | TwinERGYEC| TwinERGYAuthors: Karameros, Anastasios; Chassiakos, Athanasios; Karatzas, Stylianos;Market penetration of electric vehicles is nowadays gaining considerable momentum and so is the move towards increasingly distributed clean and renewable electricity sources. The penetration rate varies among countries due to several factors, including the social and technical readiness of the community to adopt and use this technology. In addition, the increasing complexity of power grids, growing demand as well as environmental and energy sustainability concerns intensify the need for energy management solutions and energy demand reduction strategies. Hence, integration strategies for energy-efficiency in the building and transport sector are of increasing importance. The present study analyses key parameters leading to Electric Vehicle adoption, utilizing background data from countries where Electric Vehicles have already been introduced and adopted in everyday living, and presents a case study of an energy management scheme in Greece, where the penetration rate is still low. Based on the above, an optimization algorithm is proposed, where buildings, photovoltaic plants, storage systems, and Electric Vehicles (utilization of Vehicle to Grid technology) can efficiently meet the energy requirements and peak-hour energy demand, in both economic and sustainability terms. The study proposes a hybrid approach, based on Analytic Hierarchy Process methodology and Genetic algorithms, aiming to foster the diffusion of the Vehicle to Grid concept to support building energy demand.
Journal of Sustainab... arrow_drop_down Journal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2023Full-Text: https://hrcak.srce.hr/file/428905Data sources: HRČAK - Portal of scientific journals of CroatiaJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2023 . Peer-reviewedData sources: CrossrefJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2023Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13044/j.sdewes.d9.0413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 11 Powered bymore_vert Journal of Sustainab... arrow_drop_down Journal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2023Full-Text: https://hrcak.srce.hr/file/428905Data sources: HRČAK - Portal of scientific journals of CroatiaJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2023 . Peer-reviewedData sources: CrossrefJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2023Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13044/j.sdewes.d9.0413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2017Publisher:TU Wien Authors: Dhavle, Jaidev;There has been a tremendous increase in the level of human activity on Earth since the start Industrial Revolution which has promoted great development within societies. However, recent scientific studies have shown that our actions have caused detrimental damage to our environment resulting in the observable phenomenon known as climate change. Some of the adverse effects of climate change include the destruction of habitats, changes in weather patterns and propagation of diseases ��� to name a few. This trend impacts all systems inhabiting our planet and has very grievous implications for the future if no action is taken. A major contributor to climate change is the transport sector which causes significant CO2 and green house gas pollution ��� due the heavy reliance on consuming fossil fuels. These harmful gases have been proven to facilitate global warming. The international community has recognised these undeniable facts and therefore is taking decisive steps to ensure that all sectors to become sustainable. There is a strong advocacy by the global community to promote "sustainable Transport" and ensure that the transport sector becomes emission free and less carbon intensive. An innovative solution to facilitate this transition to sustainable transport is the adoption of electric vehicles (EV���s) which are environmentally friendly and very efficient. EV���s are developing at a rapid pace and the EU is taking a lead in this revolution. Within the EU, the Netherlands has taken proactive steps to deploy as many EV within the country and has set ambitious goal to go all-electric by 2030. Given this bold target; this prompted the question that if the EV market share is forecasted to increase in the Netherlands, how much will it cost to install the appropriate infrastructure to accompany these vehicles? Hence the scope is to answer the following research question: ���To determine the financial viability of installing public electric vehicle charging infrastructure (Level 2 and 3) in the Netherlands���. It was concluded that public charging infrastructure is capital intensive and the associated costs cannot be borne by the government alone - effective financial co-operation between the public and private sectors is required. To get a holistic view to address this research question, global EV trends, the Dutch EV market and Dutch policies have been included.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.34726/hss.2017.50672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.34726/hss.2017.50672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Elsevier BV Johannes Asamer; Mario Ruthmair; Mario Ruthmair; Jakob Puchinger; Jakob Puchinger; Martin Reinthaler; Markus Straub;Electric vehicles are gaining importance and help to reduce dependency on oil, increase energy efficiency of transportation, reduce carbon emissions and noise, and avoid tail pipe emissions. Because of short driving distances, high mileages, and intermediate waiting times, fossil-fuelled taxi vehicles are ideal candidates for being replaced by battery electric vehicles (BEVs). Moreover, taxis as BEVs would increase visibility of electric mobility and therefore encourage others to purchase an electric vehicle. Prior to replacing conventional taxis with BEVs, a suitable charging infrastructure has to be established. This infrastructure, which is a prerequisite for the use of BEVs in practice, consists of a sufficiently dense network of charging stations taking into account the lower driving ranges of BEVs. In this case study we propose a decision support system for placing charging stations to satisfy the charging demand of electric taxi vehicles. Operational taxi data from about 800 vehicles is used to identify and estimate the charging demand for electric taxis based on frequent origins and destinations of trips. Next, a variant of a set covering problem is formulated and solved, aiming at satisfying as much charging demand as possible with a limited number of charging stations. Already existing charging locations are considered in the optimization problem. In this work, we focus on finding regions in which charging stations should be placed, rather than exact locations. The exact location within an area is identified in a post-optimization phase (e.g., by authorities), where environmental conditions are considered, e.g., the capacity of the power network, availability of space, and legal issues. Our approach is implemented in the city of Vienna, Austria, in the course of an applied research project conducted in 2014. Local authorities, power network operators, representatives of taxi driver guilds as well as a radio taxi provider participated in the project and identified exact locations for charging stations based on our decision support system.
Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverTransportation Research Part A Policy and PracticeArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tra.2016.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 132 citations 132 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverTransportation Research Part A Policy and PracticeArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tra.2016.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Florian Hofbauer; Lisa-Maria Putz;doi: 10.3390/su12145874
Sustainable transport, such as using inland waterway transport (IWT), represents a major pillar of the European Green Deal to reduce global warming. To evaluate the different inland transport modes (road, rail, IWT), it is crucial to know the external costs of these modes. The goal of this paper is a critical review of external cost categories (e.g., accidents, noise, emissions) and external cost calculation methods of IWT to provide ideas for future research. We identified 13 relevant papers in a literature review dealing with external costs of IWT. In a meta-analysis, the papers were assigned to the seven external cost categories: accident, noise, congestion, habitat damage, air pollution, climate change and well-to-tank emissions. The most investigated external cost categories are climate change, air pollution and accidents. Two studies were identified as the major external cost calculation methods for IWT in the abstract. Our paper shows that the data basis of IWT is significantly lower than for road/rail. The measurement of energy consumption and related emissions of IWT needs to be qualitatively and quantitatively improved and brought up to the level of road traffic, to ensure an accurate comparison with other modes of transport.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu