- home
- Search
- Energy Research
- CN
- AU
- SG
- Transport Research
- Energy Research
- CN
- AU
- SG
- Transport Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Hindawi Limited Authors:Wenhui Zhang;
Wenhui Zhang
Wenhui Zhang in OpenAIREFan Gao;
Shurui Sun; Qiuying Yu; +2 AuthorsWenhui Zhang;
Wenhui Zhang
Wenhui Zhang in OpenAIREFan Gao;
Shurui Sun; Qiuying Yu;Jinjun Tang;
Jinjun Tang
Jinjun Tang in OpenAIREBohang Liu;
Bohang Liu
Bohang Liu in OpenAIREdoi: 10.1155/2020/6147974
Efficient parking tends to be challenging in most large cities in China. Drivers often spend substantial amounts of time looking for parking lots while driving at low speeds, thereby resulting in interference with road traffic. This paper focuses on efficiently allocating parking spaces to the demanders. A double-objective model is proposed that considers both the utilizing rate and the walking distance. First, managers want to utilize parking resources fully. Therefore, they tend to prioritize the efficient distribution of parking spaces in response to parking demands. However, demanders typically choose parking spaces according to convenience. The second objective is the acceptable walking distance from the parking space to the destination. The particle swarm optimization (PSO) algorithm is used to solve this model. We collected parking demand and supply data in a central business district (CBD) of Harbin in China and evaluated the feasibility of the model. The results demonstrate that the proposed model increases the occupying rates of parking lots in residential zones while decreasing the walking distance. The shared use of parking spaces maximizes the utility and alleviates the shortage of parking spaces in downtown.
Journal of Advanced ... arrow_drop_down Journal of Advanced TransportationArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2020/6147974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Advanced ... arrow_drop_down Journal of Advanced TransportationArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2020/6147974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG doi: 10.3390/en11061594
Recently, a traction blockade in the depots of numerous electric multiple units (EMUs) of high-speed railways has occured and resulted in some accidents in train operation. The traction blockade is caused by the low-frequency oscillation (LFO) of the vehicle–grid (EMUs–traction network) system. To suppress the LFO, a scheme of EMUs line-side converter based on the H∞ control is proposed in this paper. First, the mathematical model of the four-quadrant converter in EMUs is presented. Second, the state variables are determined and the weighting functions are selected. Then, an H∞ controller based on the dq coordinate is designed. Moreover, compared with the simulation results of traditional proportional integral (PI) control, auto-disturbance rejection control (ADRC) and multivariable control (MC) based on Matlab/Simulink and the RT-LAB platform, the simulation results of the proposed H∞ control confirm that the H∞ controller applied in EMUs of China Railway High-Speed 3 has better dynamic and static performances. Finally, a whole cascade system model of EMUs and a traction network is built, in which a reduced-order model of a traction network is adopted. The experimental results of multi-EMUs accessed in the traction network indicate that the H∞ controller has good suppression performance for the LFO of the vehicle–grid system. In addition, through the analysis of sensitivity of the H∞ controller and the traditional PI controller, it is indicated that the H∞ controller has better robustness.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Jun Niu;Shan Lin;
Erlong Lou; Zongdian Li; Kaiqun Chen;Shan Lin
Shan Lin in OpenAIREHaijian Li;
Haijian Li
Haijian Li in OpenAIREdoi: 10.3390/su15010162
Freeway bottleneck areas are prone to congestion and have high accident risk. A variable speed limit provides technical support for alleviating congestion and improving traffic safety in such areas. The existing variable speed limit rules in the related literature have a single focus, and most of them do not give specific quantitative speed limits. In this study, a variable speed limit system suitable for freeway bottleneck areas was constructed. Variable speed limit rules under different levels of traffic congestion and adverse weather conditions were designed, and the parameters for freeways were defined. Then, the VISSIM microscopic traffic simulation software was used to build two bottleneck scenarios of a tunnel area and a merging area for simulation tests. The research shows that in these two scenarios, reasonable speed limits can effectively reduce roadway delays and improve the operational efficiency of bottleneck areas in certain traffic flow ranges (e.g., a medium flow of around 900 pcu/h/lane). Unreasonable speed limits in low flow inhibit freeway efficiency more significantly. When congestion has already formed with high flow, different speed limits have a limited effect on efficiency improvement. The research results reported in this paper can provide a theoretical reference for the design and practical application of variable speed limit systems in freeway bottleneck areas. This provides a certain contribution to sustainable traffic development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15010162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15010162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Li Cai;Quanwen Zhang;
Nina Dai; Qingshan Xu; +4 AuthorsQuanwen Zhang
Quanwen Zhang in OpenAIRELi Cai;Quanwen Zhang;
Nina Dai; Qingshan Xu; Le Gao; Bingjie Shang; Lihong Xiang; Hao Chen;Quanwen Zhang
Quanwen Zhang in OpenAIREdoi: 10.3390/wevj13100195
In light of the increasing number of electric vehicles (EV), disorderly charging in mountainous cities has implications for the stability and efficient utilization of the power grid. It is a roadblock to lowering carbon emissions. EV aggregators are a bridge between EV users and the grid, a platform to achieve energy and information interoperability, and a study of the orderly charging of EVs to reach carbon emission targets. As for the objective function, the EV aggregator considers the probability of EV charging access in mountainous cities, the SOC expectation of EV users, the transformer capacity constraint, the charging start time, and other constraints to maximize revenue. Considering the access probability of charging for users in mountainous cities, the optimized Lagrange relaxation method is used to solve the objective function. The disorderly charging, centralized optimized charging, and decentralized optimized charging modes are investigated using simulation calculations. Their load profiles, economic benefits, and computational efficiency are compared in three ways. Decentralized optimal charging using the Lagrange relaxation method is shown to be 50% more effective and to converge 279% faster than centralized optimal charging.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13100195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13100195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Ziquan Liu; Yanchun Zhang;doi: 10.3390/su141912065
Railways play an essential role in China’s development, driving economic and social progress while negatively impacting the environment. Assessing different railway projects’ sustainability can maximize the positive effects and minimize the side effects. This article aims to propose a methodological framework containing a series of indicators to evaluate the sustainability of four railway projects in China. A hybrid MCDM (multi-criteria decision-making) method was adopted to analyze the interrelationships among the dimensions and indicators and then present the projects’ differences. The weights of each indicator in the research were studied according to experts’ advice, and the same indicators were of different importance when placed in different research environments, such as developing and developed countries. This helps to establish a developing-country-centered evaluation indicator system. After comparison, it can be seen that Railway A is the best in terms of sustainability, mainly because it is in an economically developed region of China that is rich in construction resources, and is less constrained by natural conditions than other projects. The results show that although environmental sustainability has been improved over the past few years, its low level of influence still urges people to invest more attention and take more actions with significant effects in this respect. Furthermore, railways show significant differences in economic sustainability, while the differences in social sustainability have reduced considerably. This study provides further insight into the investigated measures and proposes recommendations for improving railway transport in China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141912065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141912065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG doi: 10.3390/jmse8080562
To take advantage of the high tidal current velocity near the free surface, the horizontal axis turbine is installed, which inevitably causes hydrodynamic characteristics to effect the turbine by the waves. In this article, we established a numerical calculation method for the hydrodynamic load of a horizontal axis turbine under wave-current conditions. Based on the numerical calculation results, the hydrodynamic loads were decomposed and the influence rules of wave parameters and blade tip immersion depth on the hydrodynamic load were obtained. The study found the following: (1) the multi-frequency fluctuations based on the rotation frequency and incident wave frequency occurred in instantaneous values of the axial load coefficients and energy utilization ratios, and the fluctuation amplitude decreased with the increase of the blade tip immersion depth; (2) the fluctuation amplitude, according to rotation frequency, changed less with the increase of wave period and wave height, and was smaller according to wave frequency; (3) the fluctuation amplitude based on wave frequency increased linearly with the increase of wave height and wave period. The research results can provide the basis and reference for the design and engineering application of tidal current power station.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8080562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8080562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors:Yuting Li;
Yuting Li
Yuting Li in OpenAIRERong Yang;
Zhengteng Wu; Wei Huang; +1 AuthorsRong Yang
Rong Yang in OpenAIREYuting Li;
Yuting Li
Yuting Li in OpenAIRERong Yang;
Zhengteng Wu; Wei Huang; Minmin Xu;Rong Yang
Rong Yang in OpenAIREdoi: 10.3390/wevj14070194
The power coupling equation and energy consumption model for enhancing the fuel economy and power performance of plug-in hybrid electric trucks (PHETs) are proposed based on the economic velocity planning strategy (EVPS-DSIDP), which takes into account the driving style and an improved dynamic programming (IDP) algorithm. This strategy employs a fuzzy controller to identify the driving style, and optimizes the efficiency and accuracy of the conventional dynamic programming (DP) algorithm by associating decision variables, dynamically adjusting the discretization step size, and restricting the state space. Additionally, a penalty function is introduced to enhance the robustness of the DP algorithm. Under our EVPS-DSIDP, the variation of velocity is liberated from the constraints of fixed driving conditions, and directly correlates with road information and driving styles, which is of significant importance for addressing energy management issues in real-time traffic conditions. Moreover, the proposed IDP algorithm can improve computational efficiency while ensuring calculation accuracy, thereby greatly enhancing the potential for the practical application of this algorithm in real-world vehicle scenarios. The simulation results demonstrate that compared to the rule-based control strategy, the application of the proposed EVPS-DSIDP in the economy velocity planning strategy can achieve an average reduction of 2.88% in economic costs and 10.6% in travel time across different driving styles. This approach offers a more comprehensive optimization of both fuel economy and power performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj14070194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj14070194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Xianzhuang Ma;Yujing Jiang;
Peng Yan; Hengjie Luan; +3 AuthorsYujing Jiang
Yujing Jiang in OpenAIREXianzhuang Ma;Yujing Jiang;
Peng Yan; Hengjie Luan;Yujing Jiang
Yujing Jiang in OpenAIREChangsheng Wang;
Qinglin Shan; Xianzhen Cheng;Changsheng Wang
Changsheng Wang in OpenAIREdoi: 10.3390/jmse12050840
The safe and efficient production of marine natural gas hydrates faces the challenges of seabed geological risk issues. Geological risk issues can be categorized from weak to strong threats in four aspects: sand production, wellbore instability, seafloor subsidence, and submarine landslides, with the potential risk of natural gas leakage, and the geological risk problems that can cause secondary disasters dominated by gas eruptions and seawater intrusion. If the gas in a reservoir is not discharged in a smooth and timely manner during production, it can build up inside the formation to form super pore pressure leading to a sudden gas eruption when the overburden is damaged. There is a high risk of overburden destabilization around production wells, and reservoirs are prone to forming a connection with the seafloor resulting in seawater intrusion under osmotic pressure. This paper summarizes the application of field observation, experimental research, and numerical simulation methods in evaluating the stability problem of the seafloor surface. The theoretical model of multi-field coupling can be used to describe and evaluate the seafloor geologic risk issues during depressurization production, and the controlling equations accurately describing the characteristics of the reservoir are the key theoretical basis for evaluating the stability of the seafloor geomechanics. It is necessary to seek a balance between submarine formation stability and reservoir production efficiency in order to assess the optimal production and predict the region of plastic damage in the reservoir. Prediction and assessment allow measures to be taken at fixed points to improve reservoir mechanical stability with the numerical simulation method. Hydrate reservoirs need to be filled with gravel to enhance mechanical strength and permeability, and overburden need to be grouted to reinforce stability.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse12050840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse12050840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors:Wei Zhao;
Wei Zhao
Wei Zhao in OpenAIREYan Wang;
Zhanshuo Zhang;Yan Wang
Yan Wang in OpenAIREHongbo Wang;
Hongbo Wang
Hongbo Wang in OpenAIREdoi: 10.3390/jmse9040357
With the continuous prosperity and development of the shipping industry, it is necessary and meaningful to plan a safe, green, and efficient route for ships sailing far away. In this study, a hybrid multicriteria ship route planning method based on improved particle swarm optimization–genetic algorithm is presented, which aims to optimize the meteorological risk, fuel consumption, and navigation time associated with a ship. The proposed algorithm not only has the fast convergence of the particle swarm algorithm but also improves the diversity of solutions by applying the crossover operation, selection operation, and multigroup elite selection operation of the genetic algorithm and improving the Pareto optimal frontier distribution. Based on the Pareto optimal solution set obtained by the algorithm, the minimum-navigation-time route, the minimum-fuel-consumption route, the minimum-navigation-risk route, and the recommended route can be obtained. Herein, a simulation experiment is conducted with respect to a container ship, and the optimization route is compared and analyzed. Experimental results show that the proposed algorithm can plan a series of feasible ship routes to ensure safety, greenness, and economy and that it provides route selection references for captains and shipping companies.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9040357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9040357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Authors: Wanxin Fu; Minjie Wei;Once a distribution network failure occurs, it can spread to the traffic network through the coupling point, causing electric vehicles (EVs) to change their charging paths. To address this problem, this paper presents an EV charging path planning approach that considers coupled faults in the distribution-transportation network. First, the cascading failure model of the distribution-transportation network and the model for choosing charging stations are presented to transfer the information of coupling faults propagation and coupling points power interaction to the follow-up path planning scheme. Second, a time occupancy road resistance model that considers congested and unobstructed traffic states is proposed to calculate the road section travel time, based on the analysis results of the evolution process of road traffic flow queuing using traffic wave theory. For the speed and density parameters in the traffic wave model, values are calculated using the logistics speed-density model and the time occupancy model. Third, a multi-objective optimization function that integrates travel cost and coupling network operation state is determined from the perspective of hindering the propagation of coupling faults. The function is solved to recommend optimal charging paths using an improved A* searching algorithm. Finally, a 90-bus road network and three 33-bus distribution networks are selected as examples to verify the veracity and validity of the proposed model and method. The research results demonstrate that the proposed method can alleviate traffic congestion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1206749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1206749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu