- home
- Search
Filters
Clear AllYear range
-chevron_right GOCountry
Source
- Energy Research
- chemical engineering
- Transport Research
- Energy Research
- chemical engineering
- Transport Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Germany, United KingdomPublisher:Elsevier BV Funded by:UKRI | Quantifying and Monitorin..., EC | ECO2UKRI| Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage ,EC| ECO2David Long; Peter Taylor; Mark E. Vardy; Martin Sayer; Jerry Blackford; Maxine Akhurst; Chris Hauton; Dmitry Aleynik; Ian C. Wright; Rachael H. James; Anna Lichtschlag; Mark Naylor; Jonathan M. Bull; Henrik Stahl; Henrik Stahl; Steve Widdicombe; Matthew Toberman; David J. Smith; Douglas P. Connelly;AbstractCarbon capture and storage is a mitigation strategy that can be used to aid the reduction of anthropogenic CO2 emissions. This process aims to capture CO2 from large point-source emitters and transport it to a long-term storage site. For much of Europe, these deep storage sites are anticipated to be sited below the sea bed on continental shelves. A key operational requirement is an understanding of best practice of monitoring for potential leakage and of the environmental impact that could result from a diffusive leak from a storage complex. Here we describe a controlled CO2 release experiment beneath the seabed, which overcomes the limitations of laboratory simulations and natural analogues. The complex processes involved in setting up the experimental facility and ensuring its successful operation are discussed, including site selection, permissions, communications and facility construction. The experimental design and observational strategy are reviewed with respect to scientific outcomes along with lessons learnt in order to facilitate any similar future.
OceanRep arrow_drop_down OceanRepArticle . 2015 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/29194/1/Taylor.pdfData sources: OceanRepNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 22visibility views 22 download downloads 64 Powered bymore_vert OceanRep arrow_drop_down OceanRepArticle . 2015 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/29194/1/Taylor.pdfData sources: OceanRepNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Paulo Paz; Theodoro Antoun Netto;doi: 10.3390/jmse8110878
A new thermodynamic hydrate inhibitor (THI), is being proposed based on the analysis of its rheological properties leading to improvement of the injection process. The method is based on the viscosity changes during the injection process. The experimental tests analysing the viscosity, shear stress related to drag force of the MEG and ethanol mixture allowed us to develop a better injectable THI. Considering the results that we obtained, it can be said that the mixture of MEG/EtOH is more convenient for transportation and injection process, and also to be stored on the platform. The use of ethanol and MEG mixture as THI is novel in this field. It turns out that the benefits of the mixture overcome the benefits of using them alone. This discovery opens a window for more improvements to natural gas hydrate suppression. The mixture could also change the formation of gas hydrates, thereby destabilizing the ice-like structure. Since the hydrate suppression process is stoichiometric—directly proportional to water production—it is necessary to inject large amounts of THI, thus improving the injection with the proposed mixture could lead to a more economical process.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8110878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8110878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV María Martínez-Cabanas; Mario Esposito; Jonas Gros; Peter Linke; Mark Schmidt; Jack Triest; Eric P. Achterberg;Abstract Within the framework of the STEMM-CCS project, a controlled CO2 release experiment was conducted under real-life conditions in the Goldeneye complex area, a depleted gas field located in the UK sector of the North Sea. Here, the viability of water column monitoring for the detection of the injected CO2 is evaluated. Real-time pH and pCO2 measurements were taken in the water column during the CO2 release experiment. Monitoring was carried out throughout the full water column, from the near-seafloor to the sea surface, in order to assess the spatial extent of the CO2 release. The dispersion of the CO2 plume was strongly influenced by tidal circulation in the area. The strongest signals were detected within 8 m of the bubble stream during low tide. The lowest pH and highest pCO2 values were 7.965 and 942.1 µatm, respectively, corresponding to variations of 16.4% [H+] and 125.6% from baseline values. The pCO2 baseline dynamics of Goldeneye area were assessed by the evaluation of the natural pCO2-O2 covariance. The estimation of seasonal thresholds for anomalous pCO2 (pCO2:O2 ratio May= 1.63 ± 0.04) allowed us to assess with confidence the non-biological origin of the detected CO2 during the release experiment.
OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Yi Li; Xiangyun Zhao; Zhe Lin; Guang Zhang;doi: 10.3390/jmse11030490
The main engineering machinery for the hydrodynamic lifting of seafloor mineral particles is rotor machinery with rotating impeller motion. It is important to study the rebound mechanism of collisions between particles and rotating walls to improve the accuracy of numerical simulation of rotor machinery. In this study, the law of motion change after collisions between particles and rotating walls is investigated using an experimental research method. The results show that the deflection angle of the particles after collision decreases with increases in the rotational speed of the wall, and the spin angular velocity increases with increases in the rotational speed of the wall. The normal velocity coefficient of restitution under the rotating wall is not affected by the rotational speed of the wall. The tangential coefficient of restitution under rotational boundary condition is smaller than the tangential coefficient of restitution under the stationary wall, and the higher the rotational speed, the closer it is to the coefficient of restitution under the stationary wall. During collision in the experiment, the main mode of contact between the particle and the rotating wall is sliding contact. Sliding friction between the particle and the rotating wall results in energy loss in the tangential velocity of the particle, and also provides energy for deflection of the particle’s trajectory and increased kinetic energy from the spin angular velocity; sliding friction loss is affected by the speed of the wall.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11030490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11030490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Sandra Richter; Trupti Kathrotia; Marina Braun-Unkhoff; Clemens Naumann; Markus Köhler;doi: 10.3390/en14237848
Within this work the effects of blending oxymethylene ethers (OMEn) to a diesel surrogate (50 mol% n-dodecane, 30 mol% farnesane, and 20 mol% 1-methylnaphthalene) were investigated by performing two different types of experiments: measurements of the sooting propensity and of the laminar burning velocity, each in laminar premixed flames. For the sooting propensity, OME3, OME4, and OME5 were considered as blending compounds—each in mass fractions of 10%, 20%, and 30%. The sooting propensity was found to depend strongly on the OMEn blending grade but not on its chain length. In addition, the effect on the laminar burning velocity was studied for OME4 and the admixture of 30% OME4 with diesel surrogate for the first time. This admixture was found to lead to increased burning velocities; however, much less than might be foreseen when considering the respective values of the neat fuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14237848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14237848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Bingren Feng; Lijun Yang; Lizi Qin; Jingxuan Li;doi: 10.3390/jmse11050926
The use of gas energy includes a wide range of applications to directly accelerate the liquid in a pipeline without the aid of mechanical equipment, such as marine gas-liquid jet propulsion. To clarify the characteristics of energy transfer by interphase forces for gas-liquid flows in variable cross-section tubes, two-fluid models of annular flow, bubbly flow and homogeneous flow were adopted, respectively, along with four newly elaborated coefficients, which are the work factor of gas fg, reflecting the relative ability of gas to power liquid, the interface work transfer coefficient kg (representing the relative magnitude of mechanical work received by liquid from gas), the interphase work-to-energy conversion coefficient kl (denoting the capability of energy transfer through work performed by interphase forces) and the interphase mechanical efficiency ηw. The results reveal the interphase work transfer is strongly influenced by the structural parameters of the tubes (or nozzles), and an optimized design is necessary to improve the performance. The higher the degree of gas dispersion in the liquid, the more advantageous the conversion of gas work into the liquid’s mechanical energy. Of these three flow patterns, annular flow has the lowest kl and ηw (kl = 0.0797, ηw = 0.9885 in present example), while homogeneous flow displays the limit of interphase mechanical energy conversion because the gas-liquid momentum coupling reaches the maximum (kl = 0.9979, ηw = 1).
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11050926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11050926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Germany, United KingdomPublisher:Elsevier BV Funded by:UKRI | Quantifying and Monitorin...UKRI| Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon StorageAuthors: Lichtschlag, Anna; James, Rachael H.; Stahl, Henrik; Connelly, Douglas;AbstractThe potential for leakage of CO2 from a storage reservoir into the overlying marine sediments and into the water column and the impacts on benthic ecosystems are major challenges associated with carbon capture and storage (CCS) in subseafloor reservoirs. We have conducted a field-scale controlled CO2 release experiment in shallow, unconsolidated marine sediments, and documented the changes to the chemical composition of the sediments, their pore waters and overlying water column before, during and up to 1 year after the 37-day long CO2 release. Increased levels of dissolved inorganic carbon (DIC) were detected in the pore waters close to the sediment-seawater interface in sediments sampled closest to the subsurface injection point within 5 weeks of the start of the CO2 release. Highest DIC concentrations (28.8mmolL−1, compared to background levels of 2.4mmolL−1) were observed 6 days after the injection had stopped. The high DIC pore waters have high total alkalinity, and low δ13CDIC values (−20‰, compared to a background value of −2‰), due to the dissolution of the injected CO2 (δ13C=−26.6‰). The high DIC pore waters have enhanced concentrations of metals (including Ca, Fe, Mn) and dissolved silicon, relative to non-DIC enriched pore waters, indicating that dissolution of injected CO2 promotes dissolution of carbonate and silicate minerals. However, in this experiment, the pore water metal concentrations did not exceed levels considered to be harmful to the environment. The spatial extent of the impact of the injected CO2 in the sediments and pore waters was restricted to an area within 25m of the injection point, and no impact was observed in the overlying water column. Concentrations of all pore water constituents returned to background values within 18 days after the CO2 injection was stopped.
OceanRep arrow_drop_down OceanRepArticle . 2015 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/29187/1/mmc2.pdfData sources: OceanRepNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 10visibility views 10 download downloads 39 Powered bymore_vert OceanRep arrow_drop_down OceanRepArticle . 2015 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/29187/1/mmc2.pdfData sources: OceanRepNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Germany, United Kingdom, United Kingdom, FrancePublisher:Elsevier BV Funded by:EC | ECO2EC| ECO2D.G. Jones; S.E. Beaubien; J.C. Blackford; E.M. Foekema; J. Lions; C. De Vittor; J.M. West; S. Widdicombe; C. Hauton; A.M. Queirós;This paper reviews research into the potential environmental impacts of leakage from geological storage of CO2 since the publication of the IPCC Special Report on Carbon Dioxide Capture and Storage in 2005. Possible impacts are considered on onshore (including drinking water aquifers) and offshore ecosystems. The review does not consider direct impacts on man or other land animals from elevated atmospheric CO2 levels. Improvements in our understanding of the potential impacts have come directly from CO2 storage research but have also benefitted from studies of ocean acidification and other impacts on aquifers and onshore near surface ecosystems. Research has included observations at natural CO2 sites, laboratory and field experiments and modelling. Studies to date suggest that the impacts from many lower level fault- or well-related leakage scenarios are likely to be limited spatially and temporarily and recovery may be rapid. The effects are often ameliorated by mixing and dispersion of the leakage and by buffering and other reactions; potentially harmful elements have rarely breached drinking water guidelines. Larger releases, with potentially higher impact, would be possible from open wells or major pipeline leaks but these are of lower probability and should be easier and quicker to detect and remediate.
International Journa... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverInternational Journal of Greenhouse Gas ControlArticle . 2015Data sources: DANS (Data Archiving and Networked Services)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.05.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 91 citations 91 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 236 Powered bymore_vert International Journa... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverInternational Journal of Greenhouse Gas ControlArticle . 2015Data sources: DANS (Data Archiving and Networked Services)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.05.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Germany, United KingdomPublisher:Elsevier BV Funded by:UKRI | Quantifying and Monitorin..., EC | ECO2UKRI| Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage ,EC| ECO2David Long; Peter Taylor; Mark E. Vardy; Martin Sayer; Jerry Blackford; Maxine Akhurst; Chris Hauton; Dmitry Aleynik; Ian C. Wright; Rachael H. James; Anna Lichtschlag; Mark Naylor; Jonathan M. Bull; Henrik Stahl; Henrik Stahl; Steve Widdicombe; Matthew Toberman; David J. Smith; Douglas P. Connelly;AbstractCarbon capture and storage is a mitigation strategy that can be used to aid the reduction of anthropogenic CO2 emissions. This process aims to capture CO2 from large point-source emitters and transport it to a long-term storage site. For much of Europe, these deep storage sites are anticipated to be sited below the sea bed on continental shelves. A key operational requirement is an understanding of best practice of monitoring for potential leakage and of the environmental impact that could result from a diffusive leak from a storage complex. Here we describe a controlled CO2 release experiment beneath the seabed, which overcomes the limitations of laboratory simulations and natural analogues. The complex processes involved in setting up the experimental facility and ensuring its successful operation are discussed, including site selection, permissions, communications and facility construction. The experimental design and observational strategy are reviewed with respect to scientific outcomes along with lessons learnt in order to facilitate any similar future.
OceanRep arrow_drop_down OceanRepArticle . 2015 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/29194/1/Taylor.pdfData sources: OceanRepNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 22visibility views 22 download downloads 64 Powered bymore_vert OceanRep arrow_drop_down OceanRepArticle . 2015 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/29194/1/Taylor.pdfData sources: OceanRepNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Paulo Paz; Theodoro Antoun Netto;doi: 10.3390/jmse8110878
A new thermodynamic hydrate inhibitor (THI), is being proposed based on the analysis of its rheological properties leading to improvement of the injection process. The method is based on the viscosity changes during the injection process. The experimental tests analysing the viscosity, shear stress related to drag force of the MEG and ethanol mixture allowed us to develop a better injectable THI. Considering the results that we obtained, it can be said that the mixture of MEG/EtOH is more convenient for transportation and injection process, and also to be stored on the platform. The use of ethanol and MEG mixture as THI is novel in this field. It turns out that the benefits of the mixture overcome the benefits of using them alone. This discovery opens a window for more improvements to natural gas hydrate suppression. The mixture could also change the formation of gas hydrates, thereby destabilizing the ice-like structure. Since the hydrate suppression process is stoichiometric—directly proportional to water production—it is necessary to inject large amounts of THI, thus improving the injection with the proposed mixture could lead to a more economical process.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8110878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8110878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV María Martínez-Cabanas; Mario Esposito; Jonas Gros; Peter Linke; Mark Schmidt; Jack Triest; Eric P. Achterberg;Abstract Within the framework of the STEMM-CCS project, a controlled CO2 release experiment was conducted under real-life conditions in the Goldeneye complex area, a depleted gas field located in the UK sector of the North Sea. Here, the viability of water column monitoring for the detection of the injected CO2 is evaluated. Real-time pH and pCO2 measurements were taken in the water column during the CO2 release experiment. Monitoring was carried out throughout the full water column, from the near-seafloor to the sea surface, in order to assess the spatial extent of the CO2 release. The dispersion of the CO2 plume was strongly influenced by tidal circulation in the area. The strongest signals were detected within 8 m of the bubble stream during low tide. The lowest pH and highest pCO2 values were 7.965 and 942.1 µatm, respectively, corresponding to variations of 16.4% [H+] and 125.6% from baseline values. The pCO2 baseline dynamics of Goldeneye area were assessed by the evaluation of the natural pCO2-O2 covariance. The estimation of seasonal thresholds for anomalous pCO2 (pCO2:O2 ratio May= 1.63 ± 0.04) allowed us to assess with confidence the non-biological origin of the detected CO2 during the release experiment.
OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Yi Li; Xiangyun Zhao; Zhe Lin; Guang Zhang;doi: 10.3390/jmse11030490
The main engineering machinery for the hydrodynamic lifting of seafloor mineral particles is rotor machinery with rotating impeller motion. It is important to study the rebound mechanism of collisions between particles and rotating walls to improve the accuracy of numerical simulation of rotor machinery. In this study, the law of motion change after collisions between particles and rotating walls is investigated using an experimental research method. The results show that the deflection angle of the particles after collision decreases with increases in the rotational speed of the wall, and the spin angular velocity increases with increases in the rotational speed of the wall. The normal velocity coefficient of restitution under the rotating wall is not affected by the rotational speed of the wall. The tangential coefficient of restitution under rotational boundary condition is smaller than the tangential coefficient of restitution under the stationary wall, and the higher the rotational speed, the closer it is to the coefficient of restitution under the stationary wall. During collision in the experiment, the main mode of contact between the particle and the rotating wall is sliding contact. Sliding friction between the particle and the rotating wall results in energy loss in the tangential velocity of the particle, and also provides energy for deflection of the particle’s trajectory and increased kinetic energy from the spin angular velocity; sliding friction loss is affected by the speed of the wall.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11030490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11030490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Sandra Richter; Trupti Kathrotia; Marina Braun-Unkhoff; Clemens Naumann; Markus Köhler;doi: 10.3390/en14237848
Within this work the effects of blending oxymethylene ethers (OMEn) to a diesel surrogate (50 mol% n-dodecane, 30 mol% farnesane, and 20 mol% 1-methylnaphthalene) were investigated by performing two different types of experiments: measurements of the sooting propensity and of the laminar burning velocity, each in laminar premixed flames. For the sooting propensity, OME3, OME4, and OME5 were considered as blending compounds—each in mass fractions of 10%, 20%, and 30%. The sooting propensity was found to depend strongly on the OMEn blending grade but not on its chain length. In addition, the effect on the laminar burning velocity was studied for OME4 and the admixture of 30% OME4 with diesel surrogate for the first time. This admixture was found to lead to increased burning velocities; however, much less than might be foreseen when considering the respective values of the neat fuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14237848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14237848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Bingren Feng; Lijun Yang; Lizi Qin; Jingxuan Li;doi: 10.3390/jmse11050926
The use of gas energy includes a wide range of applications to directly accelerate the liquid in a pipeline without the aid of mechanical equipment, such as marine gas-liquid jet propulsion. To clarify the characteristics of energy transfer by interphase forces for gas-liquid flows in variable cross-section tubes, two-fluid models of annular flow, bubbly flow and homogeneous flow were adopted, respectively, along with four newly elaborated coefficients, which are the work factor of gas fg, reflecting the relative ability of gas to power liquid, the interface work transfer coefficient kg (representing the relative magnitude of mechanical work received by liquid from gas), the interphase work-to-energy conversion coefficient kl (denoting the capability of energy transfer through work performed by interphase forces) and the interphase mechanical efficiency ηw. The results reveal the interphase work transfer is strongly influenced by the structural parameters of the tubes (or nozzles), and an optimized design is necessary to improve the performance. The higher the degree of gas dispersion in the liquid, the more advantageous the conversion of gas work into the liquid’s mechanical energy. Of these three flow patterns, annular flow has the lowest kl and ηw (kl = 0.0797, ηw = 0.9885 in present example), while homogeneous flow displays the limit of interphase mechanical energy conversion because the gas-liquid momentum coupling reaches the maximum (kl = 0.9979, ηw = 1).
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11050926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11050926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Germany, United KingdomPublisher:Elsevier BV Funded by:UKRI | Quantifying and Monitorin...UKRI| Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon StorageAuthors: Lichtschlag, Anna; James, Rachael H.; Stahl, Henrik; Connelly, Douglas;AbstractThe potential for leakage of CO2 from a storage reservoir into the overlying marine sediments and into the water column and the impacts on benthic ecosystems are major challenges associated with carbon capture and storage (CCS) in subseafloor reservoirs. We have conducted a field-scale controlled CO2 release experiment in shallow, unconsolidated marine sediments, and documented the changes to the chemical composition of the sediments, their pore waters and overlying water column before, during and up to 1 year after the 37-day long CO2 release. Increased levels of dissolved inorganic carbon (DIC) were detected in the pore waters close to the sediment-seawater interface in sediments sampled closest to the subsurface injection point within 5 weeks of the start of the CO2 release. Highest DIC concentrations (28.8mmolL−1, compared to background levels of 2.4mmolL−1) were observed 6 days after the injection had stopped. The high DIC pore waters have high total alkalinity, and low δ13CDIC values (−20‰, compared to a background value of −2‰), due to the dissolution of the injected CO2 (δ13C=−26.6‰). The high DIC pore waters have enhanced concentrations of metals (including Ca, Fe, Mn) and dissolved silicon, relative to non-DIC enriched pore waters, indicating that dissolution of injected CO2 promotes dissolution of carbonate and silicate minerals. However, in this experiment, the pore water metal concentrations did not exceed levels considered to be harmful to the environment. The spatial extent of the impact of the injected CO2 in the sediments and pore waters was restricted to an area within 25m of the injection point, and no impact was observed in the overlying water column. Concentrations of all pore water constituents returned to background values within 18 days after the CO2 injection was stopped.
OceanRep arrow_drop_down OceanRepArticle . 2015 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/29187/1/mmc2.pdfData sources: OceanRepNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 10visibility views 10 download downloads 39 Powered bymore_vert OceanRep arrow_drop_down OceanRepArticle . 2015 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/29187/1/mmc2.pdfData sources: OceanRepNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Germany, United Kingdom, United Kingdom, FrancePublisher:Elsevier BV Funded by:EC | ECO2EC| ECO2D.G. Jones; S.E. Beaubien; J.C. Blackford; E.M. Foekema; J. Lions; C. De Vittor; J.M. West; S. Widdicombe; C. Hauton; A.M. Queirós;This paper reviews research into the potential environmental impacts of leakage from geological storage of CO2 since the publication of the IPCC Special Report on Carbon Dioxide Capture and Storage in 2005. Possible impacts are considered on onshore (including drinking water aquifers) and offshore ecosystems. The review does not consider direct impacts on man or other land animals from elevated atmospheric CO2 levels. Improvements in our understanding of the potential impacts have come directly from CO2 storage research but have also benefitted from studies of ocean acidification and other impacts on aquifers and onshore near surface ecosystems. Research has included observations at natural CO2 sites, laboratory and field experiments and modelling. Studies to date suggest that the impacts from many lower level fault- or well-related leakage scenarios are likely to be limited spatially and temporarily and recovery may be rapid. The effects are often ameliorated by mixing and dispersion of the leakage and by buffering and other reactions; potentially harmful elements have rarely breached drinking water guidelines. Larger releases, with potentially higher impact, would be possible from open wells or major pipeline leaks but these are of lower probability and should be easier and quicker to detect and remediate.
International Journa... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverInternational Journal of Greenhouse Gas ControlArticle . 2015Data sources: DANS (Data Archiving and Networked Services)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.05.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 91 citations 91 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 236 Powered bymore_vert International Journa... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverInternational Journal of Greenhouse Gas ControlArticle . 2015Data sources: DANS (Data Archiving and Networked Services)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.05.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu