- home
- Search
- Energy Research
- Energies
- Transport Research
- Energy Research
- Energies
- Transport Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 QatarPublisher:MDPI AG Authors: Aya Amer; Khaled Shaban; Ahmed Gaouda; Ahmed Massoud;doi: 10.3390/en14020257
handle: 10576/28721
This paper proposes a Home Energy Management System (HEMS) that optimizes the load demand and distributed energy resources. The optimal demand/generation profile is presented while considering utility price signal, customer satisfaction, and distribution transformer condition. The electricity home demand considers electric vehicles (EVs), Battery Energy Storage Systems (BESSs), and all types of non-shiftable, shiftable, and controllable appliances. Furthermore, PV-based renewable energy resources, EVs, and BESSs are utilized as sources of generated power during specific time intervals. In this model, customers can only perform Demand Response (DR) actions with contracts with utility operators. A multi-objective demand/generation response is proposed to optimize the scheduling of various loads/supplies based on the pricing schemes. The customers’ behavior comfort level and a degradation cost that reflects the distribution transformer Loss-of-Life (LoL) are integrated into the multi-objective optimization problem. Simulation results demonstrate the mutual benefits that the proposed HEMS provides to customers and utility operators by minimizing electricity costs while meeting customer comfort needs and minimizing transformer LoL to enhance operators’ assets. The results show that the electricity operation cost and demand peak are reduced by 31% and 18%, respectively, along with transformer LoL % which is reduced by 28% compared with the case when no DR was applied.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:MDPI AG Authors: Mohammad Seydali Seyf Abad; Jin Ma; Ahmad Ahmadyar; Hesamoddin Marzooghi;doi: 10.3390/en11112981
Uncertainties associated with the loads and the output power of distributed generations create challenges in quantifying the integration limits of distributed generations in distribution networks, i.e., hosting capacity. To address this, we propose a distributionally robust optimization-based method to determine the hosting capacity considering the voltage rise, thermal capacity of the feeders and short circuit level constraints. In the proposed method, the uncertain variables are modeled as stochastic variables following ambiguous distributions defined based on the historical data. The distributionally robust optimization model guarantees that the probability of the constraint violation does not exceed a given risk level, which can control robustness of the solution. To solve the distributionally robust optimization model of the hosting capacity, we reformulated it as a joint chance constrained problem, which is solved using the sample average approximation technique. To demonstrate the efficacy of the proposed method, a modified IEEE 33-bus distribution system is used as the test-bed. Simulation results demonstrate how the sample size of historical data affects the hosting capacity. Furthermore, using the proposed method, the impact of electric vehicles aggregated demand and charging stations are investigated on the hosting capacity of different distributed generation technologies.
aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2018License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1266925Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11112981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2018License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1266925Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11112981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Asfand Yar Ali; Akhtar Hussain; Ju-Won Baek; Hak-Man Kim;doi: 10.3390/en14010142
The increased intensity and frequency of natural disasters have attracted the attention of researchers in the power sector to enhance the resilience of power systems. Microgrids are considered as a potential solution to enhance the resilience of power systems using local resources, such as renewable energy sources, electric vehicles (EV), and energy storage systems. However, the deployment of an additional storage system for resilience can increase the investment cost. Therefore, in this study, the usage of existing EVs in microgrids is proposed as a solution to increase the resilience of microgrids with outages without the need for additional investment. In the case of contingencies, the proposed algorithm supplies energy to islanded microgrids from grid-connected microgrids by using mobile EVs. The process for the selection of EVs for supplying energy to islanded microgrids is carried out in three steps. Firstly, islanded and networked microgrids inform the central energy management system (CEMS) about the required and available energy stored in EVs, respectively. Secondly, CEMS determines the microgrids among networked microgrids to supply energy to the islanded microgrid. Finally, the selected microgrids determine the EVs for supplying energy to the islanded microgrid. Simulations have shown the effectiveness of the proposed algorithm in enhancing the resilience of microgrids even in the absence of power connection among microgrids.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14010142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14010142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Xueliang Huang; Lixing Chen; Yinsheng Luo; Hong Zhang;doi: 10.3390/en11061350
This paper was intended to explore the mutual influences between electric vehicle (EV) charging and charging facility planning, to establish a two-stage model for optimizing the EVs’ charging and charging piles’ selection. In the first stage, the distribution pattern of the demands for EV charging, and various EVs were effectively grouped, in order to reduce the amount of computation for solving the second stage model. The goal of the second stage was to minimize the annual investment and electricity purchasing costs on the charging piles, and the coordinated optimization was carried out for EV charging and charging pile selection. The CPLEX and IP_SOLVE packages were used in MATLAB (R2014a/64 bits) to solve the established optimization model. The simulation results showed that, compared with the scheme for selecting the charging pile under the typical charging pattern (TCP), the total cost of the charging pile could be reduced by 6.32% with a scheme under the optimized charging pattern (OCP), thereby promoting the coordinated development of both the EVs and charging facilities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021Publisher:MDPI AG Authors: Benjamin Schaden; Thomas Jatschka; Steffen Limmer; Günther Robert Raidl;doi: 10.3390/en14227755
The aim of this work is to schedule the charging of electric vehicles (EVs) at a single charging station such that the temporal availability of each EV as well as the maximum available power at the station are considered. The total costs for charging the vehicles should be minimized w.r.t. time-dependent electricity costs. A particular challenge investigated in this work is that the maximum power at which a vehicle can be charged is dependent on the current state of charge (SOC) of the vehicle. Such a consideration is particularly relevant in the case of fast charging. Considering this aspect for a discretized time horizon is not trivial, as the maximum charging power of an EV may also change in between time steps. To deal with this issue, we instead consider the energy by which an EV can be charged within a time step. For this purpose, we show how to derive the maximum charging energy in an exact as well as an approximate way. Moreover, we propose two methods for solving the scheduling problem. The first is a cutting plane method utilizing a convex hull of the, in general, nonconcave SOC–power curves. The second method is based on a piecewise linearization of the SOC–energy curve and is effectively solved by branch-and-cut. The proposed approaches are evaluated on benchmark instances, which are partly based on real-world data. To deal with EVs arriving at different times as well as charging costs changing over time, a model-based predictive control strategy is usually applied in such cases. Hence, we also experimentally evaluate the performance of our approaches for such a strategy. The results show that optimally solving problems with general piecewise linear maximum power functions requires high computation times. However, problems with concave, piecewise linear maximum charging power functions can efficiently be dealt with by means of linear programming. Approximating an EV’s maximum charging power with a concave function may result in practically infeasible solutions, due to vehicles potentially not reaching their specified target SOC. However, our results show that this error is negligible in practice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Wojciech Drożdż; Grażyna Rosa; Artur Pomianowski;doi: 10.3390/en15134914
The aim of this paper is to find the most important aspects of introducing zero-emission and low-carbon solutions in urban bus transport, as well as their availability. Beyond the economic aspects related to energy sources and consumption, the paper focuses on their impact on people and the environment. There is also an attempt to estimate the scale of the impact of changes in the structure of the energy sources of buses in urban transport compared with all the means of transport operating in a given area, as well as a justification for these changes. We also conducted a survey of bus passengers to check their awareness of the changes taking place and their attitude towards them.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15134914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15134914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:MDPI AG Authors: Michela Diana; Riccardo Ruffo; Paolo Guglielmi;doi: 10.3390/en11020443
The paper presents a particular Pulse Width Modulation (PWM) strategy to reduce the (Direct Current) DC-link capacitor stress for multi-n-phase drives. A multi-n-phase drive is composed of multiple independent systems of n inverter supplying a multi-n-phase electric machine. The paper focused on the investigation of the best phase shifting between carriers for a triple-3-phase drive compared to the 3-phase counterpart in order to reduce the capacitor bench design point. Simulation and experimental results show as the control technique proposed is able to reduce the value of the DC-link capacitor current in any operating condition including fault case. In this sense, the PWM carrier displacement appears like an additional degree of freedom that can be exploited in multi-n-phase drives but also in multi-motor application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Andrzej Łebkowski;doi: 10.3390/en11092403
The objective of this paper is to illustrate the benefits of the influence of the steam and oxyhydrogen gas (HHO) on the composition of emitted exhaust gases and energy usage of operating the internal combustion engine (ICE) that drives a generator-powered battery electric vehicle (BEV). The employed internal combustion generating sets can be used as trailer mounted electric energy sources allowing one to increase the range of BEV vehicles, mainly during long distance travel between cities. The basic configurations of hybrid and electric propulsion systems used in a given Electric Vehicles (xEV) includes all types of Hybrid Electric Vehicles (xHEV) and Battery Electric Vehicles (xBEV), which are discussed. Using the data collected during traction tests in real road traffic (an electric car with a trailer range extender (RE) fitted with ICE generators (5 kW petrol, 6.5 kW diesel), a mathematical model was developed in the Modelica package. The elaborated mathematical model takes into account the dynamic loads acting on the set of vehicles in motion and the electric drive system assisted by the work of RE. Conducted tests with steam and HHO additives for ICE have shown reduced (5–10%) fuel consumption and emissions (3–19%) of harmful gases into the atmosphere.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Rémy Cleenwerck; Hakim Azaioud; Majid Vafaeipour; Thierry Coosemans; Jan Desmet;doi: 10.3390/en16073205
This paper presents an in-depth comparison of the benefits and limitations of using a low-voltage DC (LVDC) microgrid versus an AC microgrid with regard to the integration of low-carbon technologies. To this end, a novel approach for charging electric vehicles (EVs) on low-voltage distribution networks by utilizing an LVDC backbone is discussed. The global aim of the conducted study is to investigate the overall energy losses as well as voltage stability problems on DC and AC microgrids. Both architectures are assessed and compared to each other by performing a power flow analysis. Along this line, an actual low-voltage distribution network with various penetration levels of EVs, combined with photovoltaic (PV) systems and battery energy storage systems is considered. Obtained results indicate significant power quality improvements in voltage imbalances and conversion losses thanks to the proposed backbone. Moreover, the study concludes with a discussion of the impact level of EVs and PVs penetration degrees on energy efficiency, besides charging power levels’ impact on local self-consumption reduction of the studied system. The outcomes of the study can provide extensive insights for hybrid microgrid and EV charging infrastructure designers in a holistic manner in all aspects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Javier Alberto Pérez-Castán; Fernando Gómez Comendador; Ana Belén Cardenas-Soria; Dominik Janisch; +1 AuthorsJavier Alberto Pérez-Castán; Fernando Gómez Comendador; Ana Belén Cardenas-Soria; Dominik Janisch; Rosa M. Arnaldo Valdés;doi: 10.3390/en13030608
Many civilian applications of commercial unmanned aircraft are being planned to operate in the years ahead. Several countries have developed their own framework to design the operation of unmanned aircraft and the different services that demand safe operation. This paper focuses on the European framework denoted as U-space which concludes with the joint integration of manned and unmanned aircraft in the airspace. U-space is a set of novel services and specific procedures designed to provide safe and efficient access into the airspace to the airspace users. U-space constitutes a management system to organise unmanned operations and provides relevant information to drone operators as well as manned aircraft, air navigation service providers and authorities. The understanding of associated hazards and risks to unmanned aircraft is a critical issue for their operation in complex and non-segregated airspaces. The safety assessment developed herein is crucial to identify safety indicators for U-space. In addition, the identification of safety indicators was used to identify gaps in U-spaces services that are not correctly covered by the U-space framework. Particularly, several safety indicators are identified that currently U-space services do not consider and can imply an increase in the operational risk of unmanned operations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 QatarPublisher:MDPI AG Authors: Aya Amer; Khaled Shaban; Ahmed Gaouda; Ahmed Massoud;doi: 10.3390/en14020257
handle: 10576/28721
This paper proposes a Home Energy Management System (HEMS) that optimizes the load demand and distributed energy resources. The optimal demand/generation profile is presented while considering utility price signal, customer satisfaction, and distribution transformer condition. The electricity home demand considers electric vehicles (EVs), Battery Energy Storage Systems (BESSs), and all types of non-shiftable, shiftable, and controllable appliances. Furthermore, PV-based renewable energy resources, EVs, and BESSs are utilized as sources of generated power during specific time intervals. In this model, customers can only perform Demand Response (DR) actions with contracts with utility operators. A multi-objective demand/generation response is proposed to optimize the scheduling of various loads/supplies based on the pricing schemes. The customers’ behavior comfort level and a degradation cost that reflects the distribution transformer Loss-of-Life (LoL) are integrated into the multi-objective optimization problem. Simulation results demonstrate the mutual benefits that the proposed HEMS provides to customers and utility operators by minimizing electricity costs while meeting customer comfort needs and minimizing transformer LoL to enhance operators’ assets. The results show that the electricity operation cost and demand peak are reduced by 31% and 18%, respectively, along with transformer LoL % which is reduced by 28% compared with the case when no DR was applied.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:MDPI AG Authors: Mohammad Seydali Seyf Abad; Jin Ma; Ahmad Ahmadyar; Hesamoddin Marzooghi;doi: 10.3390/en11112981
Uncertainties associated with the loads and the output power of distributed generations create challenges in quantifying the integration limits of distributed generations in distribution networks, i.e., hosting capacity. To address this, we propose a distributionally robust optimization-based method to determine the hosting capacity considering the voltage rise, thermal capacity of the feeders and short circuit level constraints. In the proposed method, the uncertain variables are modeled as stochastic variables following ambiguous distributions defined based on the historical data. The distributionally robust optimization model guarantees that the probability of the constraint violation does not exceed a given risk level, which can control robustness of the solution. To solve the distributionally robust optimization model of the hosting capacity, we reformulated it as a joint chance constrained problem, which is solved using the sample average approximation technique. To demonstrate the efficacy of the proposed method, a modified IEEE 33-bus distribution system is used as the test-bed. Simulation results demonstrate how the sample size of historical data affects the hosting capacity. Furthermore, using the proposed method, the impact of electric vehicles aggregated demand and charging stations are investigated on the hosting capacity of different distributed generation technologies.
aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2018License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1266925Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11112981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2018License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1266925Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11112981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Asfand Yar Ali; Akhtar Hussain; Ju-Won Baek; Hak-Man Kim;doi: 10.3390/en14010142
The increased intensity and frequency of natural disasters have attracted the attention of researchers in the power sector to enhance the resilience of power systems. Microgrids are considered as a potential solution to enhance the resilience of power systems using local resources, such as renewable energy sources, electric vehicles (EV), and energy storage systems. However, the deployment of an additional storage system for resilience can increase the investment cost. Therefore, in this study, the usage of existing EVs in microgrids is proposed as a solution to increase the resilience of microgrids with outages without the need for additional investment. In the case of contingencies, the proposed algorithm supplies energy to islanded microgrids from grid-connected microgrids by using mobile EVs. The process for the selection of EVs for supplying energy to islanded microgrids is carried out in three steps. Firstly, islanded and networked microgrids inform the central energy management system (CEMS) about the required and available energy stored in EVs, respectively. Secondly, CEMS determines the microgrids among networked microgrids to supply energy to the islanded microgrid. Finally, the selected microgrids determine the EVs for supplying energy to the islanded microgrid. Simulations have shown the effectiveness of the proposed algorithm in enhancing the resilience of microgrids even in the absence of power connection among microgrids.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14010142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14010142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Xueliang Huang; Lixing Chen; Yinsheng Luo; Hong Zhang;doi: 10.3390/en11061350
This paper was intended to explore the mutual influences between electric vehicle (EV) charging and charging facility planning, to establish a two-stage model for optimizing the EVs’ charging and charging piles’ selection. In the first stage, the distribution pattern of the demands for EV charging, and various EVs were effectively grouped, in order to reduce the amount of computation for solving the second stage model. The goal of the second stage was to minimize the annual investment and electricity purchasing costs on the charging piles, and the coordinated optimization was carried out for EV charging and charging pile selection. The CPLEX and IP_SOLVE packages were used in MATLAB (R2014a/64 bits) to solve the established optimization model. The simulation results showed that, compared with the scheme for selecting the charging pile under the typical charging pattern (TCP), the total cost of the charging pile could be reduced by 6.32% with a scheme under the optimized charging pattern (OCP), thereby promoting the coordinated development of both the EVs and charging facilities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021Publisher:MDPI AG Authors: Benjamin Schaden; Thomas Jatschka; Steffen Limmer; Günther Robert Raidl;doi: 10.3390/en14227755
The aim of this work is to schedule the charging of electric vehicles (EVs) at a single charging station such that the temporal availability of each EV as well as the maximum available power at the station are considered. The total costs for charging the vehicles should be minimized w.r.t. time-dependent electricity costs. A particular challenge investigated in this work is that the maximum power at which a vehicle can be charged is dependent on the current state of charge (SOC) of the vehicle. Such a consideration is particularly relevant in the case of fast charging. Considering this aspect for a discretized time horizon is not trivial, as the maximum charging power of an EV may also change in between time steps. To deal with this issue, we instead consider the energy by which an EV can be charged within a time step. For this purpose, we show how to derive the maximum charging energy in an exact as well as an approximate way. Moreover, we propose two methods for solving the scheduling problem. The first is a cutting plane method utilizing a convex hull of the, in general, nonconcave SOC–power curves. The second method is based on a piecewise linearization of the SOC–energy curve and is effectively solved by branch-and-cut. The proposed approaches are evaluated on benchmark instances, which are partly based on real-world data. To deal with EVs arriving at different times as well as charging costs changing over time, a model-based predictive control strategy is usually applied in such cases. Hence, we also experimentally evaluate the performance of our approaches for such a strategy. The results show that optimally solving problems with general piecewise linear maximum power functions requires high computation times. However, problems with concave, piecewise linear maximum charging power functions can efficiently be dealt with by means of linear programming. Approximating an EV’s maximum charging power with a concave function may result in practically infeasible solutions, due to vehicles potentially not reaching their specified target SOC. However, our results show that this error is negligible in practice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Wojciech Drożdż; Grażyna Rosa; Artur Pomianowski;doi: 10.3390/en15134914
The aim of this paper is to find the most important aspects of introducing zero-emission and low-carbon solutions in urban bus transport, as well as their availability. Beyond the economic aspects related to energy sources and consumption, the paper focuses on their impact on people and the environment. There is also an attempt to estimate the scale of the impact of changes in the structure of the energy sources of buses in urban transport compared with all the means of transport operating in a given area, as well as a justification for these changes. We also conducted a survey of bus passengers to check their awareness of the changes taking place and their attitude towards them.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15134914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15134914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:MDPI AG Authors: Michela Diana; Riccardo Ruffo; Paolo Guglielmi;doi: 10.3390/en11020443
The paper presents a particular Pulse Width Modulation (PWM) strategy to reduce the (Direct Current) DC-link capacitor stress for multi-n-phase drives. A multi-n-phase drive is composed of multiple independent systems of n inverter supplying a multi-n-phase electric machine. The paper focused on the investigation of the best phase shifting between carriers for a triple-3-phase drive compared to the 3-phase counterpart in order to reduce the capacitor bench design point. Simulation and experimental results show as the control technique proposed is able to reduce the value of the DC-link capacitor current in any operating condition including fault case. In this sense, the PWM carrier displacement appears like an additional degree of freedom that can be exploited in multi-n-phase drives but also in multi-motor application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Andrzej Łebkowski;doi: 10.3390/en11092403
The objective of this paper is to illustrate the benefits of the influence of the steam and oxyhydrogen gas (HHO) on the composition of emitted exhaust gases and energy usage of operating the internal combustion engine (ICE) that drives a generator-powered battery electric vehicle (BEV). The employed internal combustion generating sets can be used as trailer mounted electric energy sources allowing one to increase the range of BEV vehicles, mainly during long distance travel between cities. The basic configurations of hybrid and electric propulsion systems used in a given Electric Vehicles (xEV) includes all types of Hybrid Electric Vehicles (xHEV) and Battery Electric Vehicles (xBEV), which are discussed. Using the data collected during traction tests in real road traffic (an electric car with a trailer range extender (RE) fitted with ICE generators (5 kW petrol, 6.5 kW diesel), a mathematical model was developed in the Modelica package. The elaborated mathematical model takes into account the dynamic loads acting on the set of vehicles in motion and the electric drive system assisted by the work of RE. Conducted tests with steam and HHO additives for ICE have shown reduced (5–10%) fuel consumption and emissions (3–19%) of harmful gases into the atmosphere.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Rémy Cleenwerck; Hakim Azaioud; Majid Vafaeipour; Thierry Coosemans; Jan Desmet;doi: 10.3390/en16073205
This paper presents an in-depth comparison of the benefits and limitations of using a low-voltage DC (LVDC) microgrid versus an AC microgrid with regard to the integration of low-carbon technologies. To this end, a novel approach for charging electric vehicles (EVs) on low-voltage distribution networks by utilizing an LVDC backbone is discussed. The global aim of the conducted study is to investigate the overall energy losses as well as voltage stability problems on DC and AC microgrids. Both architectures are assessed and compared to each other by performing a power flow analysis. Along this line, an actual low-voltage distribution network with various penetration levels of EVs, combined with photovoltaic (PV) systems and battery energy storage systems is considered. Obtained results indicate significant power quality improvements in voltage imbalances and conversion losses thanks to the proposed backbone. Moreover, the study concludes with a discussion of the impact level of EVs and PVs penetration degrees on energy efficiency, besides charging power levels’ impact on local self-consumption reduction of the studied system. The outcomes of the study can provide extensive insights for hybrid microgrid and EV charging infrastructure designers in a holistic manner in all aspects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Javier Alberto Pérez-Castán; Fernando Gómez Comendador; Ana Belén Cardenas-Soria; Dominik Janisch; +1 AuthorsJavier Alberto Pérez-Castán; Fernando Gómez Comendador; Ana Belén Cardenas-Soria; Dominik Janisch; Rosa M. Arnaldo Valdés;doi: 10.3390/en13030608
Many civilian applications of commercial unmanned aircraft are being planned to operate in the years ahead. Several countries have developed their own framework to design the operation of unmanned aircraft and the different services that demand safe operation. This paper focuses on the European framework denoted as U-space which concludes with the joint integration of manned and unmanned aircraft in the airspace. U-space is a set of novel services and specific procedures designed to provide safe and efficient access into the airspace to the airspace users. U-space constitutes a management system to organise unmanned operations and provides relevant information to drone operators as well as manned aircraft, air navigation service providers and authorities. The understanding of associated hazards and risks to unmanned aircraft is a critical issue for their operation in complex and non-segregated airspaces. The safety assessment developed herein is crucial to identify safety indicators for U-space. In addition, the identification of safety indicators was used to identify gaps in U-spaces services that are not correctly covered by the U-space framework. Particularly, several safety indicators are identified that currently U-space services do not consider and can imply an increase in the operational risk of unmanned operations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu