- home
- Search
- Energy Research
- GB
- PK
- Transport Research
- European Marine Science
- Energy Research
- GB
- PK
- Transport Research
- European Marine Science
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Germany, France, FrancePublisher:Public Library of Science (PLoS) Herbert Siegel; Gaute Lavik; Carolin R. Löscher; Harald Schunck; Harald Schunck; Markus Schilhabel; Dhwani K. Desai; Dhwani K. Desai; Sergio Contreras; Sergio Contreras; Marcel M. M. Kuypers; Philip Rosenstiel; Ruth A. Schmitz; Tobias Großkopf; Tobias Großkopf; Moritz Holtappels; Tim Kalvelage; Michelle Graco; Julie LaRoche; Julie LaRoche; Aurélien Paulmier;In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km(2), which contained ∼2.2×10(4) tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km(3) the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters.
OceanRep arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00998673Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0068661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 183 citations 183 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00998673Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0068661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2020 United KingdomPublisher:Elsevier BV Precht, William F.; Aronson, Richard B.; Gardner, Toby A.; Gill, Jennifer A.; Hawkins, Julie P.; Hernández-Delgado, Edwin A.; Jaap, Walter C.; McClanahan, Tim R.; McField, Melanie D.; Murdoch, Thaddeus J.T.; Nugues, Maggy M.; Roberts, Callum M.; Schelten, Christiane K.; Watkinson, Andrew R.; Côté, Isabelle M.;pmid: 33293016
Caribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift-grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in)-still remain somewhat controversial in the coral-reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977-2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ~35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, France, South Africa, Germany, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | iAtlantic, UKRI | GCRF One Ocean HubEC| iAtlantic ,UKRI| GCRF One Ocean HubRoberts, J. Murray; Devey, Colin W.; Biastoch, Arne; Carreiro-Silva, Marina; Dohna, Tina; Dorschel, Boris; Gunn, Vikki; Huvenne, Veerle A. I.; Johnson, David; Jollivet, Didier; Kenchington, Ellen; Larkin, Kate; Matabos, Marjolaine; Morato, Telmo; Naumann, Malik S.; Orejas, Covadonga; Perez, J. Angel A.; Ragnarsson, Stefán Á.; Smit, Albertus J.; Sweetman, Andrew; Unger, Sebastian; Boteler, Benjamin; Henry, Lea-Anne;handle: 10261/309933 , 10566/8366
AbstractOcean ecosystems are at the forefront of the climate and biodiversity crises, yet we lack a unified approach to assess their state and inform sustainable policies. This blueprint is designed around research capabilities and cross-sectoral partnerships. We highlight priorities including integrating basin-scale observation, modelling and genomic approaches to understand Atlantic oceanography and ecosystem connectivity; improving ecosystem mapping; identifying potential tipping points in deep and open ocean ecosystems; understanding compound impacts of multiple stressors including warming, acidification and deoxygenation; enhancing spatial and temporal management and protection. We argue that these goals are best achieved through partnerships with policy-makers and community stakeholders, and promoting research groups from the South Atlantic through investment and engagement. Given the high costs of such research (€800k to €1.7M per expedition and €30–40M for a basin-scale programme), international cooperation and funding are integral to supporting science-led policies to conserve ocean ecosystems that transcend jurisdictional borders.
OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2023Full-Text: https://hal.science/hal-03948729Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of the Western Cap: UWC Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-022-00645-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 50visibility views 50 download downloads 34 Powered bymore_vert OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2023Full-Text: https://hal.science/hal-03948729Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of the Western Cap: UWC Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-022-00645-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United States, Sweden, GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | Eco-DAS 2.0: Ecological D...NSF| Eco-DAS 2.0: Ecological Dissertations in the Aquatic SciencesTamar Guy-Haim; Harriet Alexander; Tom W. Bell; Raven L. Bier; Lauren E. Bortolotti; Christian Briseño-Avena; Xiaoli Dong; Alison M. Flanagan; Julia Grosse; Lars Grossmann; Sarah Hasnain; Rachel Hovel; Cora A. Johnston; Dan R. Miller; Mario Muscarella; Akana E. Noto; Alexander J. Reisinger; Heidi J. Smith; Karen Stamieszkin;handle: 1903/27562
Mesocosm experiments have become increasingly popular in climate change research as they bridge the gap between small-scale, less realistic, microcosm experiments, and large-scale, more complex, natural systems. Characteristics of aquatic mesocosm designs (e.g., mesocosm volume, study duration, and replication) vary widely, potentially affecting the magnitude and direction of effect sizes measured in experiments. In this global systematic review we aim to identify the type, direction and strength of climate warming effects on aquatic species, communities and ecosystems in mesocosm experiments. Furthermore, we will investigate the context-dependency of the observed effects on several a priori determined effect moderators (ecological and methodological). Our conclusions will provide recommendations for aquatic scientists designing mesocosm experiments, as well as guidelines for interpretation of experimental results by scientists, policy-makers and the general public. We will conduct a systematic search using multiple online databases to gather evidence from the scientific literature on the effects of warming experimentally tested in aquatic mesocosms. Data from relevant studies will be extracted and used in a random effects meta-analysis to estimate the overall effect sizes of warming experiments on species performance, biodiversity and ecosystem functions. Experimental characteristics (e.g., mesocosm size and shape, replication-level, experimental duration and design, biogeographic region, community type, crossed manipulation) will be further analysed using subgroup analyses.
OceanRep arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 Germany, United KingdomPublisher:Frontiers Media SA Funded by:UKRI | Impacts of habitat fragme...UKRI| Impacts of habitat fragmentation in a warming worldEoin J. O’Gorman; Irina Chemshirova; Irina Chemshirova; Órla B. McLaughlin; Rebecca I. A. Stewart; Rebecca I. A. Stewart;Cross-ecosystem subsidies are important as their recipients often rely on them to supplementin situresource availability. Global warming has the potential to alter the quality and quantity of these subsidies, but our knowledge of these effects is currently limited. Here, we quantified the biomass and diversity of the invertebrates exchanged between freshwater streams and terrestrial grasslands in a natural warming experiment in Iceland. We sampled invertebrates emerging from the streams, those landing on the water surface, ground-dwelling invertebrates falling into the streams, and those drifting through the streams. Emerging invertebrate biomass or diversity did not change with increasing temperature, suggesting no effect of warming on aquatic subsidies to the terrestrial environment over the 1-month duration of the study. The biomass and diversity of aerial invertebrates of terrestrial origin landing on the streams increased with temperature, underpinned by increasing abundance and species richness, indicating that the greater productivity of the warmer streams may attract more foraging insects. The biomass of ground-dwelling invertebrates falling into the streams also increased with temperature, underpinned by increasing body mass and species evenness, suggesting that soil warming leads to terrestrial communities dominated by larger, more mobile organisms, and thus more in-fall to the streams. The biomass and diversity of terrestrial invertebrates in the drift decreased with temperature, however, underpinned by decreasing abundance and species richness, reflecting upstream consumption due to the higher energetic demands of aquatic consumers in warmer environments. These results highlight the potential for asynchronous responses to warming for reciprocal subsidies between aquatic and terrestrial environments and the importance of further research on warming impacts at the interface of these interdependent ecosystems.
CORE arrow_drop_down University of Essex Research RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.795603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
download 12download downloads 12 Powered bymore_vert CORE arrow_drop_down University of Essex Research RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.795603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 26 Jun 2019 United Kingdom, United Kingdom, United Kingdom, United Kingdom, Norway, United Kingdom, GermanyPublisher:American Geophysical Union (AGU) Funded by:RCN | Exploring the Potential a..., RCN | Potential of bio-energy w..., DFG | Climate Engineering: Risk...RCN| Exploring the Potential and Side Effects of Climate Engineering ,RCN| Potential of bio-energy with carbon capture and storage to limit warming to 1.5°C ,DFG| Climate Engineering: Risks, Challenges, Opportunities?Peter J. Irvine; Peter J. Irvine; Ben Kravitz; Erica Hendy; Simon N. Gosling; Helene Muri; W. Daniel Kissling; Cyril Caminade; Steven J. Smith; Mark Lawrence; Andreas Oschlies; Belay T. Kassie; Dieter Gerten; Dieter Gerten;Despite a growing literature on the climate response to solar geoengineering—proposals to cool the planet by increasing the planetary albedo—there has been little published on the impacts of solar geoengineering on natural and human systems such as agriculture, health, water resources, and ecosystems. An understanding of the impacts of different scenarios of solar geoengineering deployment will be crucial for informing decisions on whether and how to deploy it. Here we review the current state of knowledge about impacts of a solar‐geoengineered climate and identify the major research gaps. We suggest that a thorough assessment of the climate impacts of a range of scenarios of solar geoengineering deployment is needed and can be built upon existing frameworks. However, solar geoengineering poses a novel challenge for climate impacts research as the manner of deployment could be tailored to pursue different objectives making possible a wide range of climate outcomes. We present a number of ideas for approaches to extend the survey of climate impacts beyond standard scenarios of solar geoengineering deployment to address this challenge. Reducing the impacts of climate change is the fundamental motivator for emissions reductions and for considering whether and how to deploy solar geoengineering. This means that the active engagement of the climate impacts research community will be important for improving the overall understanding of the opportunities, challenges, and risks presented by solar geoengineering.
CORE arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2016License: CC BY NC NDFull-Text: http://urn.nb.no/URN:NBN:no-62489Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ef000389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 10visibility views 10 download downloads 61 Powered bymore_vert CORE arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2016License: CC BY NC NDFull-Text: http://urn.nb.no/URN:NBN:no-62489Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ef000389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, Germany, Japan, Australia, Australia, France, Belgium, United Kingdom, JapanPublisher:Copernicus GmbH Funded by:RCN | Ocean-ice shelf Interacti..., , NSF | RAPID: Ocean Forcing for ... +10 projectsRCN| Ocean-ice shelf Interaction and channelized Melting in Dronning Maud Land ,[no funder available] ,NSF| RAPID: Ocean Forcing for Ice Sheet Models for the IPCC Sixth Assessment Report ,NWO| Quality assured industrial scale production of eave tube inserts for malaria control in Africa ,AKA| Simulating Antarctic marine ice sheet stability and multi-century contributions to sea level rise ,AKA| The impact of Antarctic Ice Sheet - Southern Ocean interactions on marine ice sheet stability and ocean circulation/ Consortium: COLD ,ARC| Special Research Initiative (Antarctic) - Grant ID: SR140300001 ,ANR| TROIS-AS ,NSF| NSF-NERC: PROcesses, drivers, Predictions: Modeling the response of Thwaites Glacier over the next Century using Ice/Ocean Coupled Models (PROPHET) ,NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR) ,NWO| Perturbations of System Earth: Reading the Past to Project the Future - A proposal to create the Netherlands Earth System Science Centre (ESSC) ,RCN| The role of the atmospheric energy transport in recent Arctic climate change ,EC| TiPACCsH. Seroussi; S. Nowicki; A. J. Payne; H. Goelzer; H. Goelzer; W. H. Lipscomb; A. Abe-Ouchi; C. Agosta; T. Albrecht; X. Asay-Davis; A. Barthel; R. Calov; R. Cullather; C. Dumas; B. K. Galton-Fenzi; R. Gladstone; N. R. Golledge; J. M. Gregory; J. M. Gregory; R. Greve; R. Greve; T. Hattermann; T. Hattermann; M. J. Hoffman; A. Humbert; A. Humbert; P. Huybrechts; N. C. Jourdain; T. Kleiner; E. Larour; G. R. Leguy; D. P. Lowry; C. M. Little; M. Morlighem; F. Pattyn; T. Pelle; S. F. Price; A. Quiquet; R. Reese; N.-J. Schlegel; A. Shepherd; E. Simon; R. S. Smith; F. Straneo; S. Sun; L. D. Trusel; J. Van Breedam; R. S. W. van de Wal; R. S. W. van de Wal; R. Winkelmann; R. Winkelmann; C. Zhao; T. Zhang; T. Zwinger;Abstract. Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between −7.8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between −6.1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.
CORE arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-02972030Data sources: Bielefeld Academic Search Engine (BASE)Hokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BYFull-Text: http://hdl.handle.net/2115/79742Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02972030Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/tc-14-3033-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 239 citations 239 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 5visibility views 5 download downloads 22 Powered bymore_vert CORE arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-02972030Data sources: Bielefeld Academic Search Engine (BASE)Hokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BYFull-Text: http://hdl.handle.net/2115/79742Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02972030Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/tc-14-3033-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Saudi Arabia, Saudi Arabia, Germany, United KingdomPublisher:Public Library of Science (PLoS) Thor Jensen; Till Röthig; Till Röthig; Alison A. Monroe; Michael L. Berumen; Royale S. Hardenstine; Anna Krystyna Roik; Anna Krystyna Roik; Madeleine Anne Emms; Christian R. Voolstra; Maren Ziegler;Coral bleaching continues to be one of the most devastating and immediate impacts of climate change on coral reef ecosystems worldwide. In 2015, a major bleaching event was declared as the "3rd global coral bleaching event" by the United States National Oceanic and Atmospheric Administration, impacting a large number of reefs in every major ocean. The Red Sea was no exception, and we present herein in situ observations of the status of coral reefs in the central Saudi Arabian Red Sea from September 2015, following extended periods of high temperatures reaching upwards of 32.5°C in our study area. We examined eleven reefs using line-intercept transects at three different depths, including all reefs that were surveyed during a previous bleaching event in 2010. Bleaching was most prevalent on inshore reefs (55.6% ± 14.6% of live coral cover exhibited bleaching) and on shallower transects (41% ± 10.2% of live corals surveyed at 5m depth) within reefs. Similar taxonomic groups (e.g., Agariciidae) were affected in 2015 and in 2010. Most interestingly, Acropora and Porites had similar bleaching rates (~30% each) and similar relative coral cover (~7% each) across all reefs in 2015. Coral genera with the highest levels of bleaching (>60%) were also among the rarest (<1% of coral cover) in 2015. While this bodes well for the relative retention of coral cover, it may ultimately lead to decreased species richness, often considered an important component of a healthy coral reef. The resultant long-term changes in these coral reef communities remain to be seen.
OceanRep arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0195814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 86visibility views 86 download downloads 240 Powered bymore_vert OceanRep arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0195814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSStefan Sommer; María Martínez-Cabanas; Klaus Wallmann; Kevin Saw; Anita Flohr; Anita Flohr; Jack Triest; Andrew W. Dale; Dirk Koopmans; Jonathan M. Bull; Joseph Fone; Ben Roche; Robin Brown; Jonas Gros; Peter Linke; James A. Strong; Mark Schmidt; Mario Esposito; Saskia Dötsch;Abstract According to many prognostic scenarios by the Intergovernmental Panel on Climate Change (IPCC), a scaling-up of carbon dioxide (CO2) capture and storage (CCS) by several orders-of-magnitude is necessary to meet the target of ≤2 °C global warming by 2100 relative to preindustrial levels. Since a large fraction of the predicted CO2 storage capacity lies offshore, there is a pressing need to develop field-tested methods to detect and quantify potential leaks in the marine environment. Here, we combine field measurements with numerical models to determine the flow rate of a controlled release of CO2 in a shallow marine setting at about 119 m water depth in the North Sea. In this experiment, CO2 was injected into the sediment at 3 m depth at 143 kg d-1. The new leakage monitoring tool predicts that 91 kg d-1 of CO2 escaped across the seafloor, and that 51 kg d-1 of CO2 were retained in the sediment, in agreement with independent field estimates. The new approach relies mostly on field data collected from ship-deployed technology (towed sensors, Acoustic Doppler current profiler—ADCP), which makes it a promising tool to monitor existing and upcoming offshore CO2 storage sites and to detect and quantify potential CO2 leakage.
OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 28visibility views 28 download downloads 57 Powered bymore_vert OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Germany, France, FrancePublisher:Public Library of Science (PLoS) Herbert Siegel; Gaute Lavik; Carolin R. Löscher; Harald Schunck; Harald Schunck; Markus Schilhabel; Dhwani K. Desai; Dhwani K. Desai; Sergio Contreras; Sergio Contreras; Marcel M. M. Kuypers; Philip Rosenstiel; Ruth A. Schmitz; Tobias Großkopf; Tobias Großkopf; Moritz Holtappels; Tim Kalvelage; Michelle Graco; Julie LaRoche; Julie LaRoche; Aurélien Paulmier;In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km(2), which contained ∼2.2×10(4) tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km(3) the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters.
OceanRep arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00998673Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0068661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 183 citations 183 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00998673Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0068661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2020 United KingdomPublisher:Elsevier BV Precht, William F.; Aronson, Richard B.; Gardner, Toby A.; Gill, Jennifer A.; Hawkins, Julie P.; Hernández-Delgado, Edwin A.; Jaap, Walter C.; McClanahan, Tim R.; McField, Melanie D.; Murdoch, Thaddeus J.T.; Nugues, Maggy M.; Roberts, Callum M.; Schelten, Christiane K.; Watkinson, Andrew R.; Côté, Isabelle M.;pmid: 33293016
Caribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift-grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in)-still remain somewhat controversial in the coral-reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977-2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ~35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, France, South Africa, Germany, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | iAtlantic, UKRI | GCRF One Ocean HubEC| iAtlantic ,UKRI| GCRF One Ocean HubRoberts, J. Murray; Devey, Colin W.; Biastoch, Arne; Carreiro-Silva, Marina; Dohna, Tina; Dorschel, Boris; Gunn, Vikki; Huvenne, Veerle A. I.; Johnson, David; Jollivet, Didier; Kenchington, Ellen; Larkin, Kate; Matabos, Marjolaine; Morato, Telmo; Naumann, Malik S.; Orejas, Covadonga; Perez, J. Angel A.; Ragnarsson, Stefán Á.; Smit, Albertus J.; Sweetman, Andrew; Unger, Sebastian; Boteler, Benjamin; Henry, Lea-Anne;handle: 10261/309933 , 10566/8366
AbstractOcean ecosystems are at the forefront of the climate and biodiversity crises, yet we lack a unified approach to assess their state and inform sustainable policies. This blueprint is designed around research capabilities and cross-sectoral partnerships. We highlight priorities including integrating basin-scale observation, modelling and genomic approaches to understand Atlantic oceanography and ecosystem connectivity; improving ecosystem mapping; identifying potential tipping points in deep and open ocean ecosystems; understanding compound impacts of multiple stressors including warming, acidification and deoxygenation; enhancing spatial and temporal management and protection. We argue that these goals are best achieved through partnerships with policy-makers and community stakeholders, and promoting research groups from the South Atlantic through investment and engagement. Given the high costs of such research (€800k to €1.7M per expedition and €30–40M for a basin-scale programme), international cooperation and funding are integral to supporting science-led policies to conserve ocean ecosystems that transcend jurisdictional borders.
OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2023Full-Text: https://hal.science/hal-03948729Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of the Western Cap: UWC Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-022-00645-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 50visibility views 50 download downloads 34 Powered bymore_vert OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2023Full-Text: https://hal.science/hal-03948729Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of the Western Cap: UWC Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-022-00645-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United States, Sweden, GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | Eco-DAS 2.0: Ecological D...NSF| Eco-DAS 2.0: Ecological Dissertations in the Aquatic SciencesTamar Guy-Haim; Harriet Alexander; Tom W. Bell; Raven L. Bier; Lauren E. Bortolotti; Christian Briseño-Avena; Xiaoli Dong; Alison M. Flanagan; Julia Grosse; Lars Grossmann; Sarah Hasnain; Rachel Hovel; Cora A. Johnston; Dan R. Miller; Mario Muscarella; Akana E. Noto; Alexander J. Reisinger; Heidi J. Smith; Karen Stamieszkin;handle: 1903/27562
Mesocosm experiments have become increasingly popular in climate change research as they bridge the gap between small-scale, less realistic, microcosm experiments, and large-scale, more complex, natural systems. Characteristics of aquatic mesocosm designs (e.g., mesocosm volume, study duration, and replication) vary widely, potentially affecting the magnitude and direction of effect sizes measured in experiments. In this global systematic review we aim to identify the type, direction and strength of climate warming effects on aquatic species, communities and ecosystems in mesocosm experiments. Furthermore, we will investigate the context-dependency of the observed effects on several a priori determined effect moderators (ecological and methodological). Our conclusions will provide recommendations for aquatic scientists designing mesocosm experiments, as well as guidelines for interpretation of experimental results by scientists, policy-makers and the general public. We will conduct a systematic search using multiple online databases to gather evidence from the scientific literature on the effects of warming experimentally tested in aquatic mesocosms. Data from relevant studies will be extracted and used in a random effects meta-analysis to estimate the overall effect sizes of warming experiments on species performance, biodiversity and ecosystem functions. Experimental characteristics (e.g., mesocosm size and shape, replication-level, experimental duration and design, biogeographic region, community type, crossed manipulation) will be further analysed using subgroup analyses.
OceanRep arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 Germany, United KingdomPublisher:Frontiers Media SA Funded by:UKRI | Impacts of habitat fragme...UKRI| Impacts of habitat fragmentation in a warming worldEoin J. O’Gorman; Irina Chemshirova; Irina Chemshirova; Órla B. McLaughlin; Rebecca I. A. Stewart; Rebecca I. A. Stewart;Cross-ecosystem subsidies are important as their recipients often rely on them to supplementin situresource availability. Global warming has the potential to alter the quality and quantity of these subsidies, but our knowledge of these effects is currently limited. Here, we quantified the biomass and diversity of the invertebrates exchanged between freshwater streams and terrestrial grasslands in a natural warming experiment in Iceland. We sampled invertebrates emerging from the streams, those landing on the water surface, ground-dwelling invertebrates falling into the streams, and those drifting through the streams. Emerging invertebrate biomass or diversity did not change with increasing temperature, suggesting no effect of warming on aquatic subsidies to the terrestrial environment over the 1-month duration of the study. The biomass and diversity of aerial invertebrates of terrestrial origin landing on the streams increased with temperature, underpinned by increasing abundance and species richness, indicating that the greater productivity of the warmer streams may attract more foraging insects. The biomass of ground-dwelling invertebrates falling into the streams also increased with temperature, underpinned by increasing body mass and species evenness, suggesting that soil warming leads to terrestrial communities dominated by larger, more mobile organisms, and thus more in-fall to the streams. The biomass and diversity of terrestrial invertebrates in the drift decreased with temperature, however, underpinned by decreasing abundance and species richness, reflecting upstream consumption due to the higher energetic demands of aquatic consumers in warmer environments. These results highlight the potential for asynchronous responses to warming for reciprocal subsidies between aquatic and terrestrial environments and the importance of further research on warming impacts at the interface of these interdependent ecosystems.
CORE arrow_drop_down University of Essex Research RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.795603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
download 12download downloads 12 Powered bymore_vert CORE arrow_drop_down University of Essex Research RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.795603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 26 Jun 2019 United Kingdom, United Kingdom, United Kingdom, United Kingdom, Norway, United Kingdom, GermanyPublisher:American Geophysical Union (AGU) Funded by:RCN | Exploring the Potential a..., RCN | Potential of bio-energy w..., DFG | Climate Engineering: Risk...RCN| Exploring the Potential and Side Effects of Climate Engineering ,RCN| Potential of bio-energy with carbon capture and storage to limit warming to 1.5°C ,DFG| Climate Engineering: Risks, Challenges, Opportunities?Peter J. Irvine; Peter J. Irvine; Ben Kravitz; Erica Hendy; Simon N. Gosling; Helene Muri; W. Daniel Kissling; Cyril Caminade; Steven J. Smith; Mark Lawrence; Andreas Oschlies; Belay T. Kassie; Dieter Gerten; Dieter Gerten;Despite a growing literature on the climate response to solar geoengineering—proposals to cool the planet by increasing the planetary albedo—there has been little published on the impacts of solar geoengineering on natural and human systems such as agriculture, health, water resources, and ecosystems. An understanding of the impacts of different scenarios of solar geoengineering deployment will be crucial for informing decisions on whether and how to deploy it. Here we review the current state of knowledge about impacts of a solar‐geoengineered climate and identify the major research gaps. We suggest that a thorough assessment of the climate impacts of a range of scenarios of solar geoengineering deployment is needed and can be built upon existing frameworks. However, solar geoengineering poses a novel challenge for climate impacts research as the manner of deployment could be tailored to pursue different objectives making possible a wide range of climate outcomes. We present a number of ideas for approaches to extend the survey of climate impacts beyond standard scenarios of solar geoengineering deployment to address this challenge. Reducing the impacts of climate change is the fundamental motivator for emissions reductions and for considering whether and how to deploy solar geoengineering. This means that the active engagement of the climate impacts research community will be important for improving the overall understanding of the opportunities, challenges, and risks presented by solar geoengineering.
CORE arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2016License: CC BY NC NDFull-Text: http://urn.nb.no/URN:NBN:no-62489Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ef000389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 10visibility views 10 download downloads 61 Powered bymore_vert CORE arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2016License: CC BY NC NDFull-Text: http://urn.nb.no/URN:NBN:no-62489Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ef000389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, Germany, Japan, Australia, Australia, France, Belgium, United Kingdom, JapanPublisher:Copernicus GmbH Funded by:RCN | Ocean-ice shelf Interacti..., , NSF | RAPID: Ocean Forcing for ... +10 projectsRCN| Ocean-ice shelf Interaction and channelized Melting in Dronning Maud Land ,[no funder available] ,NSF| RAPID: Ocean Forcing for Ice Sheet Models for the IPCC Sixth Assessment Report ,NWO| Quality assured industrial scale production of eave tube inserts for malaria control in Africa ,AKA| Simulating Antarctic marine ice sheet stability and multi-century contributions to sea level rise ,AKA| The impact of Antarctic Ice Sheet - Southern Ocean interactions on marine ice sheet stability and ocean circulation/ Consortium: COLD ,ARC| Special Research Initiative (Antarctic) - Grant ID: SR140300001 ,ANR| TROIS-AS ,NSF| NSF-NERC: PROcesses, drivers, Predictions: Modeling the response of Thwaites Glacier over the next Century using Ice/Ocean Coupled Models (PROPHET) ,NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR) ,NWO| Perturbations of System Earth: Reading the Past to Project the Future - A proposal to create the Netherlands Earth System Science Centre (ESSC) ,RCN| The role of the atmospheric energy transport in recent Arctic climate change ,EC| TiPACCsH. Seroussi; S. Nowicki; A. J. Payne; H. Goelzer; H. Goelzer; W. H. Lipscomb; A. Abe-Ouchi; C. Agosta; T. Albrecht; X. Asay-Davis; A. Barthel; R. Calov; R. Cullather; C. Dumas; B. K. Galton-Fenzi; R. Gladstone; N. R. Golledge; J. M. Gregory; J. M. Gregory; R. Greve; R. Greve; T. Hattermann; T. Hattermann; M. J. Hoffman; A. Humbert; A. Humbert; P. Huybrechts; N. C. Jourdain; T. Kleiner; E. Larour; G. R. Leguy; D. P. Lowry; C. M. Little; M. Morlighem; F. Pattyn; T. Pelle; S. F. Price; A. Quiquet; R. Reese; N.-J. Schlegel; A. Shepherd; E. Simon; R. S. Smith; F. Straneo; S. Sun; L. D. Trusel; J. Van Breedam; R. S. W. van de Wal; R. S. W. van de Wal; R. Winkelmann; R. Winkelmann; C. Zhao; T. Zhang; T. Zwinger;Abstract. Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between −7.8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between −6.1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.
CORE arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-02972030Data sources: Bielefeld Academic Search Engine (BASE)Hokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BYFull-Text: http://hdl.handle.net/2115/79742Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02972030Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/tc-14-3033-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 239 citations 239 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 5visibility views 5 download downloads 22 Powered bymore_vert CORE arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-02972030Data sources: Bielefeld Academic Search Engine (BASE)Hokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BYFull-Text: http://hdl.handle.net/2115/79742Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02972030Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/tc-14-3033-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Saudi Arabia, Saudi Arabia, Germany, United KingdomPublisher:Public Library of Science (PLoS) Thor Jensen; Till Röthig; Till Röthig; Alison A. Monroe; Michael L. Berumen; Royale S. Hardenstine; Anna Krystyna Roik; Anna Krystyna Roik; Madeleine Anne Emms; Christian R. Voolstra; Maren Ziegler;Coral bleaching continues to be one of the most devastating and immediate impacts of climate change on coral reef ecosystems worldwide. In 2015, a major bleaching event was declared as the "3rd global coral bleaching event" by the United States National Oceanic and Atmospheric Administration, impacting a large number of reefs in every major ocean. The Red Sea was no exception, and we present herein in situ observations of the status of coral reefs in the central Saudi Arabian Red Sea from September 2015, following extended periods of high temperatures reaching upwards of 32.5°C in our study area. We examined eleven reefs using line-intercept transects at three different depths, including all reefs that were surveyed during a previous bleaching event in 2010. Bleaching was most prevalent on inshore reefs (55.6% ± 14.6% of live coral cover exhibited bleaching) and on shallower transects (41% ± 10.2% of live corals surveyed at 5m depth) within reefs. Similar taxonomic groups (e.g., Agariciidae) were affected in 2015 and in 2010. Most interestingly, Acropora and Porites had similar bleaching rates (~30% each) and similar relative coral cover (~7% each) across all reefs in 2015. Coral genera with the highest levels of bleaching (>60%) were also among the rarest (<1% of coral cover) in 2015. While this bodes well for the relative retention of coral cover, it may ultimately lead to decreased species richness, often considered an important component of a healthy coral reef. The resultant long-term changes in these coral reef communities remain to be seen.
OceanRep arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0195814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 86visibility views 86 download downloads 240 Powered bymore_vert OceanRep arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0195814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSStefan Sommer; María Martínez-Cabanas; Klaus Wallmann; Kevin Saw; Anita Flohr; Anita Flohr; Jack Triest; Andrew W. Dale; Dirk Koopmans; Jonathan M. Bull; Joseph Fone; Ben Roche; Robin Brown; Jonas Gros; Peter Linke; James A. Strong; Mark Schmidt; Mario Esposito; Saskia Dötsch;Abstract According to many prognostic scenarios by the Intergovernmental Panel on Climate Change (IPCC), a scaling-up of carbon dioxide (CO2) capture and storage (CCS) by several orders-of-magnitude is necessary to meet the target of ≤2 °C global warming by 2100 relative to preindustrial levels. Since a large fraction of the predicted CO2 storage capacity lies offshore, there is a pressing need to develop field-tested methods to detect and quantify potential leaks in the marine environment. Here, we combine field measurements with numerical models to determine the flow rate of a controlled release of CO2 in a shallow marine setting at about 119 m water depth in the North Sea. In this experiment, CO2 was injected into the sediment at 3 m depth at 143 kg d-1. The new leakage monitoring tool predicts that 91 kg d-1 of CO2 escaped across the seafloor, and that 51 kg d-1 of CO2 were retained in the sediment, in agreement with independent field estimates. The new approach relies mostly on field data collected from ship-deployed technology (towed sensors, Acoustic Doppler current profiler—ADCP), which makes it a promising tool to monitor existing and upcoming offshore CO2 storage sites and to detect and quantify potential CO2 leakage.
OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 28visibility views 28 download downloads 57 Powered bymore_vert OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu