- home
- Search
- Energy Research
- 11. Sustainability
- 7. Clean energy
- 6. Clean water
- DE
- FR
- European Marine Science
- Energy Research
- 11. Sustainability
- 7. Clean energy
- 6. Clean water
- DE
- FR
- European Marine Science
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Funded by:EC | BONUS+EC| BONUS+H. E. Markus Meier; Thomas Neumann; Bärbel Müller-Karulis; Kari Eilola; Ivan Kuznetsov; Bo G. Gustafsson; Oleg P. Savchuk;In the future, the Baltic Sea ecosystem will be impacted both by climate change and by riverine and atmospheric nutrient inputs. Multi-model ensemble simulations comprising one IPCC scenario (A1B), two global climate models, two regional climate models, and three Baltic Sea ecosystem models were performed to elucidate the combined effect of climate change and changes in nutrient inputs. This study focuses on the occurrence of extreme events in the projected future climate. Results suggest that the number of days favoring cyanobacteria blooms could increase, anoxic events may become more frequent and last longer, and salinity may tend to decrease. Nutrient load reductions following the Baltic Sea Action Plan can reduce the deterioration of oxygen conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-012-0321-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 91 citations 91 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-012-0321-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type , Conference object 2018 FrancePublisher:Springer International Publishing Funded by:EC | BAMMBOEC| BAMMBOAuthors: Perez-Lopez, Paula; Feijoo, Gumersindo,; Moreira, Maria;The biotechnological development has traditionally focused on the compliance with regulatory demands rather than optimising the processes or analysing their sustainability. This work proposes the combination of available tools for the comprehensive sustainability assessment of a blue biotechnology process based on the cultivation of the microalgae Haematococcus pluvialis. The work aims to include environmental, economic and social dimensions to measure the sustainability of the production of a carotenoid with potential applications in food, nutraceutical, cosmetics and eventually pharmaceutical industries. Electricity for cultivation was identified as the major contributor to the environmental impacts, which depended significantly on the production scale. Social benefits were mainly related to workers and consumers, while the economic assessment suggested a profitable process with a relatively short period to recover the initial investment.
Hyper Article en Lig... arrow_drop_down MINES ParisTech: Open Archive (HAL)Part of book or chapter of book . 2018Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://hal-mines-paristech.ar...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverConference object . 2017Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2018Mémoires en Sciences de l'Information et de la CommunicationConference object . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-66981-6_53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down MINES ParisTech: Open Archive (HAL)Part of book or chapter of book . 2018Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://hal-mines-paristech.ar...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverConference object . 2017Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2018Mémoires en Sciences de l'Information et de la CommunicationConference object . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-66981-6_53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Springer Science and Business Media LLC Séverine Jean; Séverine Jean; Julie Canal; Julie Canal; Allison Gandar; Allison Gandar; Pascal Laffaille; Pascal Laffaille; Nathalie Marty-Gasset; Nathalie Marty-Gasset; Franck Gilbert; Franck Gilbert;pmid: 26272290
Crossed effects between climate change and chemical pollutions were identified on community structure and ecosystem functioning. Temperature rising affects the toxic properties of pollutants and the sensitiveness of organisms to chemicals stress. Inversely, chemical exposure may decrease the capacity of organisms to respond to environmental changes. The aim of our study was to assess the individual and crossed effects of temperature rising and pesticide contamination on fish. Goldfish, Carassius auratus, were exposed during 96 h at two temperatures (22 and 32 °C) to a mixture of common pesticides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin, and tebuconazol) at two environmentally relevant concentrations (total concentrations MIX1 = 8.4 μg L(-1) and MIX2 = 42 μg L(-1)). We investigated the sediment reworking behavior, which has a major ecological functional role. We also focused on three physiological traits from the cellular up to the whole individual level showing metabolic status of fish (protein concentration in liver and muscle, hepatosomatic index, and Fulton's condition factor). Individual thermal stress and low concentrations of pesticides decreased the sediment reworking activity of fish and entrained metabolic compensation with global depletion in energy stores. We found that combined chemical and thermal stresses impaired the capacity of fish to set up an efficient adaptive response. Our results strongly suggest that temperature will make fish more sensitive to water contamination by pesticides, raising concerns about wild fish conservation submitted to global changes.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2016 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01449184Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverEnvironmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5147-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 37 citations 37 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 158visibility views 158 download downloads 490 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2016 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01449184Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverEnvironmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5147-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Frontiers Media SA Moa Edman; Claudia Frauen; Sandra-Esther Brunnabend; Kari Eilola; Sofia Saraiva; Vladimir Ryabchenko; Christian Dieterich; Anders Omstedt; Bärbel Müller-Karulis; Manja Placke; Matthias Gröger; Markus Meier; Markus Meier; Alexey Isaev; Michael Naumann; Ivan Kuznetsov; Madline Kniebusch; René Friedland; Bo G. Gustafsson; Bo G. Gustafsson; Erik Gustafsson; Oleg P. Savchuk; Helén Andersson; Thomas Neumann;Following earlier regional assessment studies, such as the Assessment of Climate Change for the Baltic Sea Basin and the North Sea Region Climate Change Assessment, knowledge acquired from available literature about future scenario simulations of biogeochemical cycles in the Baltic Sea and their uncertainties is assessed. The identification and reduction of uncertainties of scenario simulations are issues for marine management. For instance, it is important to know whether nutrient load abatement will meet its objectives of restored water quality status in future climate or whether additional measures are required. However, uncertainties are large and their sources need to be understood to draw conclusions about the effectiveness of measures. The assessment of sources of uncertainties in projections of biogeochemical cycles based on authors' own expert judgment suggests that the biggest uncertainties are caused by (1) unknown current and future bioavailable nutrient loads from land and atmosphere, (2) the experimental setup (including the spin up strategy), (3) differences between the projections of global and regional climate models, in particular, with respect to the global mean sea level rise and regional water cycle, (4) differing model-specific responses of the simulated biogeochemical cycles to long-term changes in external nutrient loads and climate of the Baltic Sea region, and (5) unknown future greenhouse gas emissions. Regular assessments of the models' skill (or quality compared to observations) for the Baltic Sea region and the spread in scenario simulations (differences among projected changes) as well as improvement of dynamical downscaling methods are recommended.
Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Frontiers Media SA Bussmann, Ingeborg; Koedel, Uta; Schütze, Claudia; Kamjunke, Norbert; Koschorreck, Matthias;Rivers are significant sources of greenhouse gases (GHGs; e.g., CH4 and CO2); however, our understanding of the large-scale longitudinal patterns of GHG emissions from rivers remains incomplete, representing a major challenge in upscaling. Local hotspots and moderate heterogeneities may be overlooked by conventional sampling schemes. In August 2020 and for the first time, we performed continuous (once per minute) CH4 measurements of surface water during a 584-km-long river cruise along the German Elbe to explore heterogeneities in CH4 concentration at different spatial scales and identify CH4 hotspots along the river. The median concentration of dissolved CH4 in the Elbe was 112 nmol L−1, ranging from 40 to 1,456 nmol L−1 The highest CH4 concentrations were recorded at known potential hotspots, such as weirs and harbors. These hotspots were also notable in terms of atmospheric CH4 concentrations, indicating that measurements in the atmosphere above the water are useful for hotspot detection. The median atmospheric CH4 concentration was 2,033 ppb, ranging from 1,821 to 2,796 ppb. We observed only moderate changes and fluctuations in values along the river. Tributaries did not obviously affect CH4 concentrations in the main river. The median CH4 emission was 251 μmol m−2 d−1, resulting in a total of 28,640 mol d−1 from the entire German Elbe. Similar numbers were obtained using a conventional sampling approach, indicating that continuous measurements are not essential for a large-scale budget. However, we observed considerable lateral heterogeneity, with significantly higher concentrations near the shore only in reaches with groins. Sedimentation and organic matter mineralization in groin fields evidently increase CH4 concentrations in the river, leading to considerable lateral heterogeneity. Thus, river morphology and structures determine the variability of dissolved CH4 in large rivers, resulting in smooth concentrations at the beginning of the Elbe versus a strong variability in its lower parts. In conclusion, groin construction is an additional anthropogenic modification following dam building that can significantly increase GHG emissions from rivers.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.833936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.833936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United States, United Kingdom, Australia, Australia, United StatesPublisher:Resilience Alliance, Inc. Funded by:NSF | EPSCOR RII Track 1: Manag...NSF| EPSCOR RII Track 1: Managing Idaho's Landscapes for Ecosystem ServicesGuerrero, Angela; Bennett, Nathan; Wilson, Kerrie; Carter, Neil; Gill, David; Mills, Morena; Ives, Christopher; Selinske, Matthew; Larrosa, Cecilia; Bekessy, Sarah; Januchowski-Hartley, Fraser; Travers, Henry; Wyborn, Carina; Nuno, Ana;handle: 10044/1/77896
An integrated understanding of both social and ecological aspects of environmental issues is essential to address pressing sustainability challenges. An integrated social-ecological systems perspective is purported to provide a better understanding of the complex relationships between humans and nature. Despite a threefold increase in the amount of social-ecological research published between 2010 and 2015, it is unclear whether these approaches have been truly integrative. We conducted a systematic literature review to investigate the conceptual, methodological, disciplinary, and functional aspects of social-ecological integration. In general, we found that overall integration is still lacking in social-ecological research. Some social variables deemed important for addressing sustainability challenges are underrepresented in social-ecological studies, e.g., culture, politics, and power. Disciplines such as ecology, urban studies, and geography are better integrated than others, e.g., sociology, biology, and public administration. In addition to ecology and urban studies, biodiversity conservation plays a key brokerage role in integrating other disciplines into social-ecological research. Studies founded on systems theory have the highest rates of integration. Highly integrative studies combine different types of tools, involve stakeholders at appropriate stages, and tend to deliver practical recommendations. Better social-ecological integration must underpin sustainability science. To achieve this potential, future social-ecological research will require greater attention to the following: the interdisciplinary composition of project teams, strategic stakeholder involvement, application of multiple tools, incorporation of both social and ecological variables, consideration of bidirectional relationships between variables, and identification of implications and articulation of clear policy recommendations.
ScholarWorks Boise S... arrow_drop_down ScholarWorks Boise State UniversityArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/77896Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-10232-230338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 17visibility views 17 download downloads 208 Powered bymore_vert ScholarWorks Boise S... arrow_drop_down ScholarWorks Boise State UniversityArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/77896Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-10232-230338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:UCL Press Dawud Ansari; Regine Schönenberg; Melissa Abud; Laura Becerra; Wassim Brahim; Javier Castiblanco; Anne Cristina de la Vega-Leinert; Nigel Dudley; Michael Dunlop; Carolina Figueroa; Óscar Guevara; Philipp Hauser; Hannes Hobbie; Mostafa Ali Reza Hossain; Jean Hugé; Luc Janssens de Bisthoven; Hilde Keunen; Claudia Múnera‐Roldán; Jan Petzold; Anne-Julie Rochette; Matthew Schmidt; Charlotte Schumann; Sayanti Sengupta; Susanne Stoll‐Kleemann; Lorrae C van Kerkhoff; Maarten P. M. Vanhove; Carina Wyborn;Climate change and biodiversity loss trigger policies targeting and impacting local communities worldwide. However, research and policy implementation often fail to sufficiently consider community responses and to involve them. We present the results of a collective self-assessment exercise for eight case studies of communications with regard to climate change or biodiversity loss between project teams and local communities. We develop eight indicators of good stakeholder communication, reflecting the scope of Verran’s (2002) concept of postcolonial moments as a communicative utopia. We demonstrate that applying our indicators can enhance communication and enable community responses. However, we discover a divergence between timing, complexity and (introspective) effort. Three cases qualify for postcolonial moments, but scrutinising power relations and genuine knowledge co-production remain rare. While we verify the potency of various instruments for deconstructing science, their sophistication cannot substitute trust building and epistemic/transdisciplinary awareness. Lastly, we consider that reforming inadequate funding policies helps improving the work in and with local communities.
UCL Open Environment arrow_drop_down https://doi.org/10.14324/111.4...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.14324/111.4...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14324/111.444/ucloe.000064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert UCL Open Environment arrow_drop_down https://doi.org/10.14324/111.4...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.14324/111.4...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14324/111.444/ucloe.000064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Proceedings of the National Academy of Sciences Funded by:ANR | BASC, EC | FutureMARESANR| BASC ,EC| FutureMARESOsamu Saito; Yunne-Jai Shin; Elena Bukvareva; Guy F. Midgley; Carlo Rondinini; Ignacio Palomo; Ignacio Palomo; Melanie Kolb; Almut Arneth; Thierry Oberdorff; Paul Leadley;Recent assessment reports by the Intergovernmental Panel on Climate Change (IPCC) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) have highlighted the risks to humanity arising from the unsustainable use of natural resources. Thus far, land, freshwater, and ocean exploitation have been the chief causes of biodiversity loss. Climate change is projected to be a rapidly increasing additional driver for biodiversity loss. Since climate change and biodiversity loss impact human societies everywhere, bold solutions are required that integrate environmental and societal objectives. As yet, most existing international biodiversity targets have overlooked climate change impacts. At the same time, climate change mitigation measures themselves may harm biodiversity directly. The Convention on Biological Diversity’s post-2020 framework offers the important opportunity to address the interactions between climate change and biodiversity and revise biodiversity targets accordingly by better aligning these with the United Nations Framework Convention on Climate Change Paris Agreement and the Sustainable Development Goals. We identify the considerable number of existing and proposed post-2020 biodiversity targets that risk being severely compromised due to climate change, even if other barriers to their achievement were removed. Our analysis suggests that the next set of biodiversity targets explicitly addresses climate change-related risks since many aspirational goals will not be feasible under even lower-end projections of future warming. Adopting more flexible and dynamic approaches to conservation, rather than static goals, would allow us to respond flexibly to changes in habitats, genetic resources, species composition, and ecosystem functioning and leverage biodiversity’s capacity to contribute to climate change mitigation and adaptation.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2009584117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 193 citations 193 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2009584117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 FrancePublisher:Elsevier BV Funded by:NSERCNSERCSakka Hlaili, A.; Grami, B.; Niquil, N.; Gosselin, Michel; Hamel, D.; Troussellier, M.; Hadj Mabrouk, H.;)showed high values at station MJ, where substantial concentrations of nutrients (NO3− and Si(OH)4) were found. Microphytoplankton, which dominated the total algal biomass and production (>82%), were characterized by the proliferation of several chain-forming diatoms. Microzooplankton was mainly composed of dinoflagellates (Torodinium, Protoperidinium and Dinophysis) and aloricate (Lohmaniellea and Strombidium) and tintinnid (Tintinnopsis, Tintinnus, Favella and Eutintinnus) ciliates. Higher biomass of these protozoa (359 mg C m −3 ) was observed at station MB, where large tintinnids were encountered. Mesozooplankton mainly represented by Calanoida (Acartia, Temora, Calanus, Eucalanus, Paracalanus and Centropages) and Cyclopoida (Oithona) copepods, exhibited higher and lower biomasses at stations MA/MJ and MB, respectively. Bacterivory represented only 35% of bacterial production at stations MB and R, but higher fractions (65–70%) were observed at stations MA and MJ. Small heterotrophic flagellates and aloricate ciliates seemed to be the main controllers of bacteria. Pico- and nanophytoplankton represented a significant alternative carbon pool for micrograzers, which grazing represented 67–90% of pico- and nano-algal production in all stations. Microzooplankton has, however, a relatively low impact on microphytoplankton, as ≤45% of microalgal production was consumed in all stations. This implies that an important fraction of diatom production would be channelled by herbivorous meso-grazers to higher consumers at stations MA and MJ where copepods were numerous. Most of the microalgal production would, however, sink particularly at station MB where copepods were scare. These different trophic interactions suggest different food web structures between stations. A multivorous food web seemed to prevail in stations MJ and MA, whereas microbial web was dominant in the other stations.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2008Data sources: ArchiMer - Institutional Archive of IfremerEstuarine Coastal and Shelf ScienceArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecss.2007.11.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 2 Powered bymore_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2008Data sources: ArchiMer - Institutional Archive of IfremerEstuarine Coastal and Shelf ScienceArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecss.2007.11.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Funded by:EC | BONUS+EC| BONUS+H. E. Markus Meier; Thomas Neumann; Bärbel Müller-Karulis; Kari Eilola; Ivan Kuznetsov; Bo G. Gustafsson; Oleg P. Savchuk;In the future, the Baltic Sea ecosystem will be impacted both by climate change and by riverine and atmospheric nutrient inputs. Multi-model ensemble simulations comprising one IPCC scenario (A1B), two global climate models, two regional climate models, and three Baltic Sea ecosystem models were performed to elucidate the combined effect of climate change and changes in nutrient inputs. This study focuses on the occurrence of extreme events in the projected future climate. Results suggest that the number of days favoring cyanobacteria blooms could increase, anoxic events may become more frequent and last longer, and salinity may tend to decrease. Nutrient load reductions following the Baltic Sea Action Plan can reduce the deterioration of oxygen conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-012-0321-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 91 citations 91 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-012-0321-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type , Conference object 2018 FrancePublisher:Springer International Publishing Funded by:EC | BAMMBOEC| BAMMBOAuthors: Perez-Lopez, Paula; Feijoo, Gumersindo,; Moreira, Maria;The biotechnological development has traditionally focused on the compliance with regulatory demands rather than optimising the processes or analysing their sustainability. This work proposes the combination of available tools for the comprehensive sustainability assessment of a blue biotechnology process based on the cultivation of the microalgae Haematococcus pluvialis. The work aims to include environmental, economic and social dimensions to measure the sustainability of the production of a carotenoid with potential applications in food, nutraceutical, cosmetics and eventually pharmaceutical industries. Electricity for cultivation was identified as the major contributor to the environmental impacts, which depended significantly on the production scale. Social benefits were mainly related to workers and consumers, while the economic assessment suggested a profitable process with a relatively short period to recover the initial investment.
Hyper Article en Lig... arrow_drop_down MINES ParisTech: Open Archive (HAL)Part of book or chapter of book . 2018Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://hal-mines-paristech.ar...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverConference object . 2017Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2018Mémoires en Sciences de l'Information et de la CommunicationConference object . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-66981-6_53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down MINES ParisTech: Open Archive (HAL)Part of book or chapter of book . 2018Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://hal-mines-paristech.ar...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverConference object . 2017Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2018Mémoires en Sciences de l'Information et de la CommunicationConference object . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-66981-6_53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Springer Science and Business Media LLC Séverine Jean; Séverine Jean; Julie Canal; Julie Canal; Allison Gandar; Allison Gandar; Pascal Laffaille; Pascal Laffaille; Nathalie Marty-Gasset; Nathalie Marty-Gasset; Franck Gilbert; Franck Gilbert;pmid: 26272290
Crossed effects between climate change and chemical pollutions were identified on community structure and ecosystem functioning. Temperature rising affects the toxic properties of pollutants and the sensitiveness of organisms to chemicals stress. Inversely, chemical exposure may decrease the capacity of organisms to respond to environmental changes. The aim of our study was to assess the individual and crossed effects of temperature rising and pesticide contamination on fish. Goldfish, Carassius auratus, were exposed during 96 h at two temperatures (22 and 32 °C) to a mixture of common pesticides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin, and tebuconazol) at two environmentally relevant concentrations (total concentrations MIX1 = 8.4 μg L(-1) and MIX2 = 42 μg L(-1)). We investigated the sediment reworking behavior, which has a major ecological functional role. We also focused on three physiological traits from the cellular up to the whole individual level showing metabolic status of fish (protein concentration in liver and muscle, hepatosomatic index, and Fulton's condition factor). Individual thermal stress and low concentrations of pesticides decreased the sediment reworking activity of fish and entrained metabolic compensation with global depletion in energy stores. We found that combined chemical and thermal stresses impaired the capacity of fish to set up an efficient adaptive response. Our results strongly suggest that temperature will make fish more sensitive to water contamination by pesticides, raising concerns about wild fish conservation submitted to global changes.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2016 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01449184Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverEnvironmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5147-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 37 citations 37 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 158visibility views 158 download downloads 490 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2016 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01449184Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverEnvironmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5147-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Frontiers Media SA Moa Edman; Claudia Frauen; Sandra-Esther Brunnabend; Kari Eilola; Sofia Saraiva; Vladimir Ryabchenko; Christian Dieterich; Anders Omstedt; Bärbel Müller-Karulis; Manja Placke; Matthias Gröger; Markus Meier; Markus Meier; Alexey Isaev; Michael Naumann; Ivan Kuznetsov; Madline Kniebusch; René Friedland; Bo G. Gustafsson; Bo G. Gustafsson; Erik Gustafsson; Oleg P. Savchuk; Helén Andersson; Thomas Neumann;Following earlier regional assessment studies, such as the Assessment of Climate Change for the Baltic Sea Basin and the North Sea Region Climate Change Assessment, knowledge acquired from available literature about future scenario simulations of biogeochemical cycles in the Baltic Sea and their uncertainties is assessed. The identification and reduction of uncertainties of scenario simulations are issues for marine management. For instance, it is important to know whether nutrient load abatement will meet its objectives of restored water quality status in future climate or whether additional measures are required. However, uncertainties are large and their sources need to be understood to draw conclusions about the effectiveness of measures. The assessment of sources of uncertainties in projections of biogeochemical cycles based on authors' own expert judgment suggests that the biggest uncertainties are caused by (1) unknown current and future bioavailable nutrient loads from land and atmosphere, (2) the experimental setup (including the spin up strategy), (3) differences between the projections of global and regional climate models, in particular, with respect to the global mean sea level rise and regional water cycle, (4) differing model-specific responses of the simulated biogeochemical cycles to long-term changes in external nutrient loads and climate of the Baltic Sea region, and (5) unknown future greenhouse gas emissions. Regular assessments of the models' skill (or quality compared to observations) for the Baltic Sea region and the spread in scenario simulations (differences among projected changes) as well as improvement of dynamical downscaling methods are recommended.
Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Frontiers Media SA Bussmann, Ingeborg; Koedel, Uta; Schütze, Claudia; Kamjunke, Norbert; Koschorreck, Matthias;Rivers are significant sources of greenhouse gases (GHGs; e.g., CH4 and CO2); however, our understanding of the large-scale longitudinal patterns of GHG emissions from rivers remains incomplete, representing a major challenge in upscaling. Local hotspots and moderate heterogeneities may be overlooked by conventional sampling schemes. In August 2020 and for the first time, we performed continuous (once per minute) CH4 measurements of surface water during a 584-km-long river cruise along the German Elbe to explore heterogeneities in CH4 concentration at different spatial scales and identify CH4 hotspots along the river. The median concentration of dissolved CH4 in the Elbe was 112 nmol L−1, ranging from 40 to 1,456 nmol L−1 The highest CH4 concentrations were recorded at known potential hotspots, such as weirs and harbors. These hotspots were also notable in terms of atmospheric CH4 concentrations, indicating that measurements in the atmosphere above the water are useful for hotspot detection. The median atmospheric CH4 concentration was 2,033 ppb, ranging from 1,821 to 2,796 ppb. We observed only moderate changes and fluctuations in values along the river. Tributaries did not obviously affect CH4 concentrations in the main river. The median CH4 emission was 251 μmol m−2 d−1, resulting in a total of 28,640 mol d−1 from the entire German Elbe. Similar numbers were obtained using a conventional sampling approach, indicating that continuous measurements are not essential for a large-scale budget. However, we observed considerable lateral heterogeneity, with significantly higher concentrations near the shore only in reaches with groins. Sedimentation and organic matter mineralization in groin fields evidently increase CH4 concentrations in the river, leading to considerable lateral heterogeneity. Thus, river morphology and structures determine the variability of dissolved CH4 in large rivers, resulting in smooth concentrations at the beginning of the Elbe versus a strong variability in its lower parts. In conclusion, groin construction is an additional anthropogenic modification following dam building that can significantly increase GHG emissions from rivers.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.833936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.833936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United States, United Kingdom, Australia, Australia, United StatesPublisher:Resilience Alliance, Inc. Funded by:NSF | EPSCOR RII Track 1: Manag...NSF| EPSCOR RII Track 1: Managing Idaho's Landscapes for Ecosystem ServicesGuerrero, Angela; Bennett, Nathan; Wilson, Kerrie; Carter, Neil; Gill, David; Mills, Morena; Ives, Christopher; Selinske, Matthew; Larrosa, Cecilia; Bekessy, Sarah; Januchowski-Hartley, Fraser; Travers, Henry; Wyborn, Carina; Nuno, Ana;handle: 10044/1/77896
An integrated understanding of both social and ecological aspects of environmental issues is essential to address pressing sustainability challenges. An integrated social-ecological systems perspective is purported to provide a better understanding of the complex relationships between humans and nature. Despite a threefold increase in the amount of social-ecological research published between 2010 and 2015, it is unclear whether these approaches have been truly integrative. We conducted a systematic literature review to investigate the conceptual, methodological, disciplinary, and functional aspects of social-ecological integration. In general, we found that overall integration is still lacking in social-ecological research. Some social variables deemed important for addressing sustainability challenges are underrepresented in social-ecological studies, e.g., culture, politics, and power. Disciplines such as ecology, urban studies, and geography are better integrated than others, e.g., sociology, biology, and public administration. In addition to ecology and urban studies, biodiversity conservation plays a key brokerage role in integrating other disciplines into social-ecological research. Studies founded on systems theory have the highest rates of integration. Highly integrative studies combine different types of tools, involve stakeholders at appropriate stages, and tend to deliver practical recommendations. Better social-ecological integration must underpin sustainability science. To achieve this potential, future social-ecological research will require greater attention to the following: the interdisciplinary composition of project teams, strategic stakeholder involvement, application of multiple tools, incorporation of both social and ecological variables, consideration of bidirectional relationships between variables, and identification of implications and articulation of clear policy recommendations.
ScholarWorks Boise S... arrow_drop_down ScholarWorks Boise State UniversityArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/77896Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-10232-230338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 17visibility views 17 download downloads 208 Powered bymore_vert ScholarWorks Boise S... arrow_drop_down ScholarWorks Boise State UniversityArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/77896Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-10232-230338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:UCL Press Dawud Ansari; Regine Schönenberg; Melissa Abud; Laura Becerra; Wassim Brahim; Javier Castiblanco; Anne Cristina de la Vega-Leinert; Nigel Dudley; Michael Dunlop; Carolina Figueroa; Óscar Guevara; Philipp Hauser; Hannes Hobbie; Mostafa Ali Reza Hossain; Jean Hugé; Luc Janssens de Bisthoven; Hilde Keunen; Claudia Múnera‐Roldán; Jan Petzold; Anne-Julie Rochette; Matthew Schmidt; Charlotte Schumann; Sayanti Sengupta; Susanne Stoll‐Kleemann; Lorrae C van Kerkhoff; Maarten P. M. Vanhove; Carina Wyborn;Climate change and biodiversity loss trigger policies targeting and impacting local communities worldwide. However, research and policy implementation often fail to sufficiently consider community responses and to involve them. We present the results of a collective self-assessment exercise for eight case studies of communications with regard to climate change or biodiversity loss between project teams and local communities. We develop eight indicators of good stakeholder communication, reflecting the scope of Verran’s (2002) concept of postcolonial moments as a communicative utopia. We demonstrate that applying our indicators can enhance communication and enable community responses. However, we discover a divergence between timing, complexity and (introspective) effort. Three cases qualify for postcolonial moments, but scrutinising power relations and genuine knowledge co-production remain rare. While we verify the potency of various instruments for deconstructing science, their sophistication cannot substitute trust building and epistemic/transdisciplinary awareness. Lastly, we consider that reforming inadequate funding policies helps improving the work in and with local communities.
UCL Open Environment arrow_drop_down https://doi.org/10.14324/111.4...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.14324/111.4...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14324/111.444/ucloe.000064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert UCL Open Environment arrow_drop_down https://doi.org/10.14324/111.4...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.14324/111.4...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14324/111.444/ucloe.000064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Proceedings of the National Academy of Sciences Funded by:ANR | BASC, EC | FutureMARESANR| BASC ,EC| FutureMARESOsamu Saito; Yunne-Jai Shin; Elena Bukvareva; Guy F. Midgley; Carlo Rondinini; Ignacio Palomo; Ignacio Palomo; Melanie Kolb; Almut Arneth; Thierry Oberdorff; Paul Leadley;Recent assessment reports by the Intergovernmental Panel on Climate Change (IPCC) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) have highlighted the risks to humanity arising from the unsustainable use of natural resources. Thus far, land, freshwater, and ocean exploitation have been the chief causes of biodiversity loss. Climate change is projected to be a rapidly increasing additional driver for biodiversity loss. Since climate change and biodiversity loss impact human societies everywhere, bold solutions are required that integrate environmental and societal objectives. As yet, most existing international biodiversity targets have overlooked climate change impacts. At the same time, climate change mitigation measures themselves may harm biodiversity directly. The Convention on Biological Diversity’s post-2020 framework offers the important opportunity to address the interactions between climate change and biodiversity and revise biodiversity targets accordingly by better aligning these with the United Nations Framework Convention on Climate Change Paris Agreement and the Sustainable Development Goals. We identify the considerable number of existing and proposed post-2020 biodiversity targets that risk being severely compromised due to climate change, even if other barriers to their achievement were removed. Our analysis suggests that the next set of biodiversity targets explicitly addresses climate change-related risks since many aspirational goals will not be feasible under even lower-end projections of future warming. Adopting more flexible and dynamic approaches to conservation, rather than static goals, would allow us to respond flexibly to changes in habitats, genetic resources, species composition, and ecosystem functioning and leverage biodiversity’s capacity to contribute to climate change mitigation and adaptation.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2009584117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 193 citations 193 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2009584117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 FrancePublisher:Elsevier BV Funded by:NSERCNSERCSakka Hlaili, A.; Grami, B.; Niquil, N.; Gosselin, Michel; Hamel, D.; Troussellier, M.; Hadj Mabrouk, H.;)showed high values at station MJ, where substantial concentrations of nutrients (NO3− and Si(OH)4) were found. Microphytoplankton, which dominated the total algal biomass and production (>82%), were characterized by the proliferation of several chain-forming diatoms. Microzooplankton was mainly composed of dinoflagellates (Torodinium, Protoperidinium and Dinophysis) and aloricate (Lohmaniellea and Strombidium) and tintinnid (Tintinnopsis, Tintinnus, Favella and Eutintinnus) ciliates. Higher biomass of these protozoa (359 mg C m −3 ) was observed at station MB, where large tintinnids were encountered. Mesozooplankton mainly represented by Calanoida (Acartia, Temora, Calanus, Eucalanus, Paracalanus and Centropages) and Cyclopoida (Oithona) copepods, exhibited higher and lower biomasses at stations MA/MJ and MB, respectively. Bacterivory represented only 35% of bacterial production at stations MB and R, but higher fractions (65–70%) were observed at stations MA and MJ. Small heterotrophic flagellates and aloricate ciliates seemed to be the main controllers of bacteria. Pico- and nanophytoplankton represented a significant alternative carbon pool for micrograzers, which grazing represented 67–90% of pico- and nano-algal production in all stations. Microzooplankton has, however, a relatively low impact on microphytoplankton, as ≤45% of microalgal production was consumed in all stations. This implies that an important fraction of diatom production would be channelled by herbivorous meso-grazers to higher consumers at stations MA and MJ where copepods were numerous. Most of the microalgal production would, however, sink particularly at station MB where copepods were scare. These different trophic interactions suggest different food web structures between stations. A multivorous food web seemed to prevail in stations MJ and MA, whereas microbial web was dominant in the other stations.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2008Data sources: ArchiMer - Institutional Archive of IfremerEstuarine Coastal and Shelf ScienceArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecss.2007.11.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 2 Powered bymore_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2008Data sources: ArchiMer - Institutional Archive of IfremerEstuarine Coastal and Shelf ScienceArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecss.2007.11.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu