- home
- Search
- Energy Research
- GB
- AU
- PK
- European Marine Science
- Energy Research
- GB
- AU
- PK
- European Marine Science
description Publicationkeyboard_double_arrow_right Article , Other literature type 2018 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | OCEANET, EC | OPERAEC| OCEANET ,EC| OPERAG. Rinaldi; J. C. C. Portillo; F. Khalid; J. C. C. Henriques; P. R. Thies; L. M. C. Gato; L. Johanning;Quantitative reliability, availability, and maintainability (RAM) assessments are of fundamental importance at the early design stages, as well as planning and operation of marine renewable energy systems. This paper presents an RAM framework adaptable to different offshore renewable technologies, conceived to provide support in the choice of the device components and subsequent planning of the O&M strategies. A case study, characterizing a pilot farm of oscillating water column (OWC) wave energy converters (WECs), is illustrated together with the method used to obtain reliable estimate of its key performance indicators (KPIs). Based on a fixed feed-in-tariff for the project, economic figures are estimated, showing a direct relationship with the availability of the farm and the cost of maintenance interventions. Consequently, the probability distributions of the most relevant output variables are presented, and the mutual correlations between them investigated using principal components analysis (PCA) with the aim of discovering the relationships influencing the performance of the offshore farm. In this way, the contributions of the individual factors on the profitability of the project are quantified, and generic guidelines to support the decision-making process are derived. It is shown how this type of analysis provides important insights not only to ocean energy farm operators after the deployment of the devices, but also to device developers at the early design stage of wave energy concepts.
Journal of Ocean Eng... arrow_drop_down Journal of Ocean Engineering and Marine EnergyArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40722-018-0116-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Ocean Eng... arrow_drop_down Journal of Ocean Engineering and Marine EnergyArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40722-018-0116-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 03 May 2022Publisher:University of Edinburgh. School of Engineering Authors: Sellar, Brian; Old, Chris; Ingram, David;doi: 10.7488/ds/3448 , 10.7488/ds/3449
handle: 10283/4423 , 10283/4422
As part of the ETI Reliable Data Acquisition for Tidal Platform (ReDAPT) project a multi-year field measurement campaign was carried out, comprising multiple seabed deployments of acoustic Doppler Current Profilers (ADCPs) proximal to an operating 1MW commercial prototype tidal turbine. This dataset comprises two ADCP deployments that targeted the (at the time) recently released IEC TS 62600-200:2013 Power Performance Assessment guidance. The deployment followed the guidance for a Type A implementation, i.e., ADCP instruments positioned inline and upstream of the tidal turbine rotor plane - in this case capturing the ambient flow conditions when the tide approaches the rotor plane from the north west. The data has been re-processed and QC’d under the EC H2020 RealTide project. This dataset supersedes, replaces, the one which can be found at https://doi.org/10.7488/ds/1687. The Dep5 file in this dataset is a new version, and the old one from the earlier dataset should not be used. The files Dep0, Dep1, Dep2 and Dep3 are identical to those in the original dataset.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7488/ds/3448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7488/ds/3448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Wiley Funded by:EC | COEXIST, EC | VECTORS, UKRI | Integrating Macroecology ...EC| COEXIST ,EC| VECTORS ,UKRI| Integrating Macroecology and Modelling to Elucidate Regulation of Services from Ecosystems (IMMERSE)Jose A. Fernandes; Gerrit Hendriksen; Marie Maar; Icarus Allen; Katell G. Hamon; Miranda C. Jones; Myron A. Peck; Willem Stolte; Lorna R. Teal; Anne F. Sell; Paul J. Somerfield; Ana M. Queirós; Melanie C. Austen; Paul Marchal; Manuel Barange; Friedemann Keyl; Susan Kay; Klaus B. Huebert; Klaus B. Huebert; Youen Vermard;doi: 10.1111/gcb.13423
pmid: 27396719
AbstractThe Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field and that protected areas cannot address climate change may be oversimplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta‐analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially explicit manner and then co‐mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem‐level vulnerability to CCOA, but disregard how species may redistribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long‐term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate‐ready and ecosystem‐level policy options for conservation, suitable for changing oceans.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BY NCData sources: CORE (RIOXX-UK Aggregator)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 2 Powered bymore_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BY NCData sources: CORE (RIOXX-UK Aggregator)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Springer Science and Business Media LLC Séverine Jean; Séverine Jean; Julie Canal; Julie Canal; Allison Gandar; Allison Gandar; Pascal Laffaille; Pascal Laffaille; Nathalie Marty-Gasset; Nathalie Marty-Gasset; Franck Gilbert; Franck Gilbert;pmid: 26272290
Crossed effects between climate change and chemical pollutions were identified on community structure and ecosystem functioning. Temperature rising affects the toxic properties of pollutants and the sensitiveness of organisms to chemicals stress. Inversely, chemical exposure may decrease the capacity of organisms to respond to environmental changes. The aim of our study was to assess the individual and crossed effects of temperature rising and pesticide contamination on fish. Goldfish, Carassius auratus, were exposed during 96 h at two temperatures (22 and 32 °C) to a mixture of common pesticides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin, and tebuconazol) at two environmentally relevant concentrations (total concentrations MIX1 = 8.4 μg L(-1) and MIX2 = 42 μg L(-1)). We investigated the sediment reworking behavior, which has a major ecological functional role. We also focused on three physiological traits from the cellular up to the whole individual level showing metabolic status of fish (protein concentration in liver and muscle, hepatosomatic index, and Fulton's condition factor). Individual thermal stress and low concentrations of pesticides decreased the sediment reworking activity of fish and entrained metabolic compensation with global depletion in energy stores. We found that combined chemical and thermal stresses impaired the capacity of fish to set up an efficient adaptive response. Our results strongly suggest that temperature will make fish more sensitive to water contamination by pesticides, raising concerns about wild fish conservation submitted to global changes.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2016 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01449184Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverEnvironmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5147-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 37 citations 37 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 158visibility views 158 download downloads 490 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2016 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01449184Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverEnvironmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5147-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Qatar, Norway, United Kingdom, Denmark, Qatar, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSERC, UKRI | The role of Arctic sea ic..., AKA | RESILIENCE IN SOCIAL-ECOL... +6 projectsNSERC ,UKRI| The role of Arctic sea ice in climatic and ecological processes ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,RCN| Understanding ecosystem functionality, expansion and retreat of species in the Scandinavian mountain tundra under multiple drivers of change ,UKRI| Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,[no funder available] ,EC| INTERACT ,NWO| Feedbacks of vegetation change to permafrost thawing, soil nutrient availability and carbon storage in tundra ecosystemsSigne Normand; Maite Gartzia; Philip A. Wookey; Maja K. Sundqvist; Maja K. Sundqvist; Martin Wilmking; Juha M. Alatalo; Alexander Sokolov; James D. M. Speed; Anna Skoracka; Dagmar Egelkraut; Lee Ann Fishback; Ashley L. Asmus; C. Guillermo Bueno; Timo Kumpula; Dorothee Ehrich; Agata Buchwal; Agata Buchwal; Elina Kaarlejärvi; Elina Kaarlejärvi; Toke T. Høye; Martin Hallinger; Vitali Zverev; Milena Holmgren; Mariska te Beest; Eeva M. Soininen; Jean-Pierre Tremblay; Kari Anne Bråthen; Sergey A. Uvarov; Natalya A. Sokolova; Elin Lindén; Judith Sitters; Judith Sitters; Isla H. Myers-Smith; Johan Olofsson; Katherine S. Christie; Eric Post; Cynthia Y.M.J.G. Lange; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Juul Limpens; Paul Grogan; Yulia V. Denisova; Tommi Andersson; Marc Macias-Fauria; David A. Watts; Heike Zimmermann; Adrian V. Rocha; Diane C. Huebner; Julia Boike; David S. Hik; Otso Suominen; Christine Urbanowicz; Isabel C. Barrio; Nikita Tananaev; Annika Hofgaard; Jelena Lange; Bruce C. Forbes; John P. Bryant; Lorna E. Street; Monique M. P. D. Heijmans; Mikhail V. Kozlov; Erik J. van Nieukerken; Niels Martin Schmidt;Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6--7% over the current levels with a 1 textdegreeC increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 63download downloads 63 Powered bymore_vert CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 New Zealand, Denmark, Spain, United States, New ZealandPublisher:American Association for the Advancement of Science (AAAS) Wu-Bing Xu; Wen-Yong Guo; Josep M. Serra-Diaz; Franziska Schrodt; Wolf L. Eiserhardt; Brian J. Enquist; Brian S. Maitner; Cory Merow; Cyrille Violle; Madhur Anand; Michaël Belluau; Hans Henrik Bruun; Chaeho Byun; Jane A. Catford; Bruno E. L. Cerabolini; Eduardo Chacón-Madrigal; Daniela Ciccarelli; J. Hans C. Cornelissen; Anh Tuan Dang-Le; Angel de Frutos; Arildo S. Dias; Aelton B. Giroldo; Alvaro G. Gutiérrez; Wesley Hattingh; Tianhua He; Peter Hietz; Nate Hough-Snee; Steven Jansen; Jens Kattge; Benjamin Komac; Nathan J. B. Kraft; Koen Kramer; Sandra Lavorel; Christopher H. Lusk; Adam R. Martin; Ke-Ping Ma; Maurizio Mencuccini; Sean T. Michaletz; Vanessa Minden; Akira S. Mori; Ülo Niinemets; Yusuke Onoda; Renske E. Onstein; Josep Peñuelas; Valério D. Pillar; Jan Pisek; Matthew J. Pound; Bjorn J. M. Robroek; Brandon Schamp; Martijn Slot; Miao Sun; Ênio E. Sosinski; Nadejda A. Soudzilovskaia; Nelson Thiffault; Peter M. van Bodegom; Fons van der Plas; Jingming Zheng; Jens-Christian Svenning; Alejandro Ordonez;As Earth’s climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.
The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Stable Isotope Analyses o...NSF| Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in AntarcticaClucas, Gemma V.; Dunn, Michael J.; Dyke, Gareth; Emslie, Steven D.; Levy, Hila; Naveen, Ron; Polito, Michael J.; Pybus, Oliver G.; Rogers, Alex D.; Hart, Tom;AbstractClimate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces ‘winners’, species that benefit from these events and ‘losers’, species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a ‘reversal of fortunes’ as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change ‘winners’, while Adélie and chinstrap penguins have become climate change ‘losers’.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.1038/srep05024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep05024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 92 citations 92 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 28 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.1038/srep05024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep05024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Cowan Higgins; James M. Hungerford; Keith Davidson; Daniel Payne; Daniel Payne; Wendy Higman; Andrew D. Turner; Andrea Veszelovszki;Regular occurrence of brevetoxin-producing toxic phytoplankton in commercial shellfishery areas poses a significant risk to shellfish consumer health. Brevetoxins and their causative toxic phytoplankton are more limited in their global distribution than most marine toxins impacting commercial shellfisheries. On the other hand, trends in climate change could conceivably lead to increased risk posed by these toxins in UK waters. A request was made by UK food safety authorities to examine these toxins more closely to aid possible management strategies, should they pose a threat in the future. At the time of writing, brevetoxins have been detected in the Gulf of Mexico, the Southeast US coast and in New Zealand waters, where regulatory levels for brevetoxins in shellfish have existed for some time. This paper reviews evidence concerning the prevalence of brevetoxins and brevetoxin-producing phytoplankton in the UK, together with testing methodologies. Chemical, biological and biomolecular methods are reviewed, including recommendations for further work to enable effective testing. Although the focus here is on the UK, from a strategic standpoint many of the topics discussed will also be of interest in other parts of the world since new and emerging marine biotoxins are of global concern.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/md13031224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 6visibility views 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/md13031224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, United Kingdom, United KingdomPublisher:Wiley Funded by:NSF | COLLABORATIVE RESEARCH: A...NSF| COLLABORATIVE RESEARCH: A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor PenguinsNoah F. Greenwald; Sara Labrousse; Philip N. Trathan; Stéphanie Jenouvrier; Julienne Stroeve; Julienne Stroeve; Julienne Stroeve; Marika M. Holland; Barbara Wienecke; Shaye Wolf; Peter T. Fretwell; Judy Che-Castaldo; Christophe Barbraud; Michelle A. LaRue; Michelle A. LaRue;AbstractSpecies extinction risk is accelerating due to anthropogenic climate change, making it urgent to protect vulnerable species through legal frameworks in order to facilitate conservation actions that help mitigate risk. Here, we discuss fundamental concepts for assessing climate change risks to species using the example of the emperor penguin (Aptenodytes forsteri), currently being considered for protection under the US Endangered Species Act (ESA). This species forms colonies on Antarctic sea ice, which is projected to significantly decline due to ongoing greenhouse gas (GHG) emissions. We project the dynamics of all known emperor penguin colonies under different GHG emission scenarios using a climate‐dependent meta‐population model including the effects of extreme climate events based on the observational satellite record of colonies. Assessments for listing species under the ESA require information about how species resiliency, redundancy and representation (3Rs) will be affected by threats within the foreseeable future. Our results show that if sea ice declines at the rate projected by climate models under current energy system trends and policies, the 3Rs would be dramatically reduced and almost all colonies would become quasi‐extinct by 2100. We conclude that the species should be listed as threatened under the ESA.
Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 17 Powered bymore_vert Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United Kingdom, FrancePublisher:Springer Science and Business Media LLC Martin Edwards; Pierre Hélaouët; Eric Goberville; Alistair Lindley; Geraint A. Tarling; Michael T. Burrows; Angus Atkinson;AbstractIn the North Atlantic, euphausiids (krill) form a major link between primary production and predators including commercially exploited fish. This basin is warming very rapidly, with species expected to shift northwards following their thermal tolerances. Here we show, however, that there has been a 50% decline in surface krill abundance over the last 60 years that occurred in situ, with no associated range shift. While we relate these changes to the warming climate, our study is the first to document an in situ squeeze on living space within this system. The warmer isotherms are shifting measurably northwards but cooler isotherms have remained relatively static, stalled by the subpolar fronts in the NW Atlantic. Consequently the two temperatures defining the core of krill distribution (7–13 °C) were 8° of latitude apart 60 years ago but are presently only 4° apart. Over the 60 year period the core latitudinal distribution of euphausiids has remained relatively stable so a ‘habitat squeeze’, with loss of 4° of latitude in living space, could explain the decline in krill. This highlights that, as the temperature warms, not all species can track isotherms and shift northward at the same rate with both losers and winners emerging under the ‘Atlantification’ of the sub-Arctic.
Normandie Université... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-021-02159-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 5 Powered bymore_vert Normandie Université... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-021-02159-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2018 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | OCEANET, EC | OPERAEC| OCEANET ,EC| OPERAG. Rinaldi; J. C. C. Portillo; F. Khalid; J. C. C. Henriques; P. R. Thies; L. M. C. Gato; L. Johanning;Quantitative reliability, availability, and maintainability (RAM) assessments are of fundamental importance at the early design stages, as well as planning and operation of marine renewable energy systems. This paper presents an RAM framework adaptable to different offshore renewable technologies, conceived to provide support in the choice of the device components and subsequent planning of the O&M strategies. A case study, characterizing a pilot farm of oscillating water column (OWC) wave energy converters (WECs), is illustrated together with the method used to obtain reliable estimate of its key performance indicators (KPIs). Based on a fixed feed-in-tariff for the project, economic figures are estimated, showing a direct relationship with the availability of the farm and the cost of maintenance interventions. Consequently, the probability distributions of the most relevant output variables are presented, and the mutual correlations between them investigated using principal components analysis (PCA) with the aim of discovering the relationships influencing the performance of the offshore farm. In this way, the contributions of the individual factors on the profitability of the project are quantified, and generic guidelines to support the decision-making process are derived. It is shown how this type of analysis provides important insights not only to ocean energy farm operators after the deployment of the devices, but also to device developers at the early design stage of wave energy concepts.
Journal of Ocean Eng... arrow_drop_down Journal of Ocean Engineering and Marine EnergyArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40722-018-0116-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Ocean Eng... arrow_drop_down Journal of Ocean Engineering and Marine EnergyArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40722-018-0116-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 03 May 2022Publisher:University of Edinburgh. School of Engineering Authors: Sellar, Brian; Old, Chris; Ingram, David;doi: 10.7488/ds/3448 , 10.7488/ds/3449
handle: 10283/4423 , 10283/4422
As part of the ETI Reliable Data Acquisition for Tidal Platform (ReDAPT) project a multi-year field measurement campaign was carried out, comprising multiple seabed deployments of acoustic Doppler Current Profilers (ADCPs) proximal to an operating 1MW commercial prototype tidal turbine. This dataset comprises two ADCP deployments that targeted the (at the time) recently released IEC TS 62600-200:2013 Power Performance Assessment guidance. The deployment followed the guidance for a Type A implementation, i.e., ADCP instruments positioned inline and upstream of the tidal turbine rotor plane - in this case capturing the ambient flow conditions when the tide approaches the rotor plane from the north west. The data has been re-processed and QC’d under the EC H2020 RealTide project. This dataset supersedes, replaces, the one which can be found at https://doi.org/10.7488/ds/1687. The Dep5 file in this dataset is a new version, and the old one from the earlier dataset should not be used. The files Dep0, Dep1, Dep2 and Dep3 are identical to those in the original dataset.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7488/ds/3448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7488/ds/3448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Wiley Funded by:EC | COEXIST, EC | VECTORS, UKRI | Integrating Macroecology ...EC| COEXIST ,EC| VECTORS ,UKRI| Integrating Macroecology and Modelling to Elucidate Regulation of Services from Ecosystems (IMMERSE)Jose A. Fernandes; Gerrit Hendriksen; Marie Maar; Icarus Allen; Katell G. Hamon; Miranda C. Jones; Myron A. Peck; Willem Stolte; Lorna R. Teal; Anne F. Sell; Paul J. Somerfield; Ana M. Queirós; Melanie C. Austen; Paul Marchal; Manuel Barange; Friedemann Keyl; Susan Kay; Klaus B. Huebert; Klaus B. Huebert; Youen Vermard;doi: 10.1111/gcb.13423
pmid: 27396719
AbstractThe Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field and that protected areas cannot address climate change may be oversimplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta‐analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially explicit manner and then co‐mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem‐level vulnerability to CCOA, but disregard how species may redistribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long‐term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate‐ready and ecosystem‐level policy options for conservation, suitable for changing oceans.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BY NCData sources: CORE (RIOXX-UK Aggregator)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 2 Powered bymore_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BY NCData sources: CORE (RIOXX-UK Aggregator)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Springer Science and Business Media LLC Séverine Jean; Séverine Jean; Julie Canal; Julie Canal; Allison Gandar; Allison Gandar; Pascal Laffaille; Pascal Laffaille; Nathalie Marty-Gasset; Nathalie Marty-Gasset; Franck Gilbert; Franck Gilbert;pmid: 26272290
Crossed effects between climate change and chemical pollutions were identified on community structure and ecosystem functioning. Temperature rising affects the toxic properties of pollutants and the sensitiveness of organisms to chemicals stress. Inversely, chemical exposure may decrease the capacity of organisms to respond to environmental changes. The aim of our study was to assess the individual and crossed effects of temperature rising and pesticide contamination on fish. Goldfish, Carassius auratus, were exposed during 96 h at two temperatures (22 and 32 °C) to a mixture of common pesticides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin, and tebuconazol) at two environmentally relevant concentrations (total concentrations MIX1 = 8.4 μg L(-1) and MIX2 = 42 μg L(-1)). We investigated the sediment reworking behavior, which has a major ecological functional role. We also focused on three physiological traits from the cellular up to the whole individual level showing metabolic status of fish (protein concentration in liver and muscle, hepatosomatic index, and Fulton's condition factor). Individual thermal stress and low concentrations of pesticides decreased the sediment reworking activity of fish and entrained metabolic compensation with global depletion in energy stores. We found that combined chemical and thermal stresses impaired the capacity of fish to set up an efficient adaptive response. Our results strongly suggest that temperature will make fish more sensitive to water contamination by pesticides, raising concerns about wild fish conservation submitted to global changes.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2016 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01449184Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverEnvironmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5147-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 37 citations 37 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 158visibility views 158 download downloads 490 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2016 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01449184Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverEnvironmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5147-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Qatar, Norway, United Kingdom, Denmark, Qatar, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSERC, UKRI | The role of Arctic sea ic..., AKA | RESILIENCE IN SOCIAL-ECOL... +6 projectsNSERC ,UKRI| The role of Arctic sea ice in climatic and ecological processes ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,RCN| Understanding ecosystem functionality, expansion and retreat of species in the Scandinavian mountain tundra under multiple drivers of change ,UKRI| Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,[no funder available] ,EC| INTERACT ,NWO| Feedbacks of vegetation change to permafrost thawing, soil nutrient availability and carbon storage in tundra ecosystemsSigne Normand; Maite Gartzia; Philip A. Wookey; Maja K. Sundqvist; Maja K. Sundqvist; Martin Wilmking; Juha M. Alatalo; Alexander Sokolov; James D. M. Speed; Anna Skoracka; Dagmar Egelkraut; Lee Ann Fishback; Ashley L. Asmus; C. Guillermo Bueno; Timo Kumpula; Dorothee Ehrich; Agata Buchwal; Agata Buchwal; Elina Kaarlejärvi; Elina Kaarlejärvi; Toke T. Høye; Martin Hallinger; Vitali Zverev; Milena Holmgren; Mariska te Beest; Eeva M. Soininen; Jean-Pierre Tremblay; Kari Anne Bråthen; Sergey A. Uvarov; Natalya A. Sokolova; Elin Lindén; Judith Sitters; Judith Sitters; Isla H. Myers-Smith; Johan Olofsson; Katherine S. Christie; Eric Post; Cynthia Y.M.J.G. Lange; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Juul Limpens; Paul Grogan; Yulia V. Denisova; Tommi Andersson; Marc Macias-Fauria; David A. Watts; Heike Zimmermann; Adrian V. Rocha; Diane C. Huebner; Julia Boike; David S. Hik; Otso Suominen; Christine Urbanowicz; Isabel C. Barrio; Nikita Tananaev; Annika Hofgaard; Jelena Lange; Bruce C. Forbes; John P. Bryant; Lorna E. Street; Monique M. P. D. Heijmans; Mikhail V. Kozlov; Erik J. van Nieukerken; Niels Martin Schmidt;Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6--7% over the current levels with a 1 textdegreeC increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 63download downloads 63 Powered bymore_vert CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 New Zealand, Denmark, Spain, United States, New ZealandPublisher:American Association for the Advancement of Science (AAAS) Wu-Bing Xu; Wen-Yong Guo; Josep M. Serra-Diaz; Franziska Schrodt; Wolf L. Eiserhardt; Brian J. Enquist; Brian S. Maitner; Cory Merow; Cyrille Violle; Madhur Anand; Michaël Belluau; Hans Henrik Bruun; Chaeho Byun; Jane A. Catford; Bruno E. L. Cerabolini; Eduardo Chacón-Madrigal; Daniela Ciccarelli; J. Hans C. Cornelissen; Anh Tuan Dang-Le; Angel de Frutos; Arildo S. Dias; Aelton B. Giroldo; Alvaro G. Gutiérrez; Wesley Hattingh; Tianhua He; Peter Hietz; Nate Hough-Snee; Steven Jansen; Jens Kattge; Benjamin Komac; Nathan J. B. Kraft; Koen Kramer; Sandra Lavorel; Christopher H. Lusk; Adam R. Martin; Ke-Ping Ma; Maurizio Mencuccini; Sean T. Michaletz; Vanessa Minden; Akira S. Mori; Ülo Niinemets; Yusuke Onoda; Renske E. Onstein; Josep Peñuelas; Valério D. Pillar; Jan Pisek; Matthew J. Pound; Bjorn J. M. Robroek; Brandon Schamp; Martijn Slot; Miao Sun; Ênio E. Sosinski; Nadejda A. Soudzilovskaia; Nelson Thiffault; Peter M. van Bodegom; Fons van der Plas; Jingming Zheng; Jens-Christian Svenning; Alejandro Ordonez;As Earth’s climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.
The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Stable Isotope Analyses o...NSF| Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in AntarcticaClucas, Gemma V.; Dunn, Michael J.; Dyke, Gareth; Emslie, Steven D.; Levy, Hila; Naveen, Ron; Polito, Michael J.; Pybus, Oliver G.; Rogers, Alex D.; Hart, Tom;AbstractClimate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces ‘winners’, species that benefit from these events and ‘losers’, species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a ‘reversal of fortunes’ as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change ‘winners’, while Adélie and chinstrap penguins have become climate change ‘losers’.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.1038/srep05024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep05024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 92 citations 92 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 28 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.1038/srep05024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep05024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Cowan Higgins; James M. Hungerford; Keith Davidson; Daniel Payne; Daniel Payne; Wendy Higman; Andrew D. Turner; Andrea Veszelovszki;Regular occurrence of brevetoxin-producing toxic phytoplankton in commercial shellfishery areas poses a significant risk to shellfish consumer health. Brevetoxins and their causative toxic phytoplankton are more limited in their global distribution than most marine toxins impacting commercial shellfisheries. On the other hand, trends in climate change could conceivably lead to increased risk posed by these toxins in UK waters. A request was made by UK food safety authorities to examine these toxins more closely to aid possible management strategies, should they pose a threat in the future. At the time of writing, brevetoxins have been detected in the Gulf of Mexico, the Southeast US coast and in New Zealand waters, where regulatory levels for brevetoxins in shellfish have existed for some time. This paper reviews evidence concerning the prevalence of brevetoxins and brevetoxin-producing phytoplankton in the UK, together with testing methodologies. Chemical, biological and biomolecular methods are reviewed, including recommendations for further work to enable effective testing. Although the focus here is on the UK, from a strategic standpoint many of the topics discussed will also be of interest in other parts of the world since new and emerging marine biotoxins are of global concern.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/md13031224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 6visibility views 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/md13031224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, United Kingdom, United KingdomPublisher:Wiley Funded by:NSF | COLLABORATIVE RESEARCH: A...NSF| COLLABORATIVE RESEARCH: A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor PenguinsNoah F. Greenwald; Sara Labrousse; Philip N. Trathan; Stéphanie Jenouvrier; Julienne Stroeve; Julienne Stroeve; Julienne Stroeve; Marika M. Holland; Barbara Wienecke; Shaye Wolf; Peter T. Fretwell; Judy Che-Castaldo; Christophe Barbraud; Michelle A. LaRue; Michelle A. LaRue;AbstractSpecies extinction risk is accelerating due to anthropogenic climate change, making it urgent to protect vulnerable species through legal frameworks in order to facilitate conservation actions that help mitigate risk. Here, we discuss fundamental concepts for assessing climate change risks to species using the example of the emperor penguin (Aptenodytes forsteri), currently being considered for protection under the US Endangered Species Act (ESA). This species forms colonies on Antarctic sea ice, which is projected to significantly decline due to ongoing greenhouse gas (GHG) emissions. We project the dynamics of all known emperor penguin colonies under different GHG emission scenarios using a climate‐dependent meta‐population model including the effects of extreme climate events based on the observational satellite record of colonies. Assessments for listing species under the ESA require information about how species resiliency, redundancy and representation (3Rs) will be affected by threats within the foreseeable future. Our results show that if sea ice declines at the rate projected by climate models under current energy system trends and policies, the 3Rs would be dramatically reduced and almost all colonies would become quasi‐extinct by 2100. We conclude that the species should be listed as threatened under the ESA.
Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 17 Powered bymore_vert Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United Kingdom, FrancePublisher:Springer Science and Business Media LLC Martin Edwards; Pierre Hélaouët; Eric Goberville; Alistair Lindley; Geraint A. Tarling; Michael T. Burrows; Angus Atkinson;AbstractIn the North Atlantic, euphausiids (krill) form a major link between primary production and predators including commercially exploited fish. This basin is warming very rapidly, with species expected to shift northwards following their thermal tolerances. Here we show, however, that there has been a 50% decline in surface krill abundance over the last 60 years that occurred in situ, with no associated range shift. While we relate these changes to the warming climate, our study is the first to document an in situ squeeze on living space within this system. The warmer isotherms are shifting measurably northwards but cooler isotherms have remained relatively static, stalled by the subpolar fronts in the NW Atlantic. Consequently the two temperatures defining the core of krill distribution (7–13 °C) were 8° of latitude apart 60 years ago but are presently only 4° apart. Over the 60 year period the core latitudinal distribution of euphausiids has remained relatively stable so a ‘habitat squeeze’, with loss of 4° of latitude in living space, could explain the decline in krill. This highlights that, as the temperature warms, not all species can track isotherms and shift northward at the same rate with both losers and winners emerging under the ‘Atlantification’ of the sub-Arctic.
Normandie Université... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-021-02159-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 5 Powered bymore_vert Normandie Université... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-021-02159-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu