- home
- Search
- Energy Research
- 13. Climate action
- 12. Responsible consumption
- GB
- European Marine Science
- Energy Research
- 13. Climate action
- 12. Responsible consumption
- GB
- European Marine Science
Research data keyboard_double_arrow_right Dataset 2017Embargo end date: 27 Jul 2017Publisher:Dryad Hastie, Gordon D.; Russell, Debbie J. F.; Lepper, Paul; Elliott, Jim; Wilson, Ben; Benjamins, Steven; Thompson, Dave;doi: 10.5061/dryad.vt2b3
1. Tidal stream energy converters (turbines) are currently being installed in tidally energetic coastal sites. However, there is currently a high level of uncertainty surrounding the potential environmental impacts on marine mammals. This is a key consenting risk to commercial introduction of tidal energy technology. Concerns derive primarily from the potential for injury to marine mammals through collisions with moving components of turbines. To understand the nature of this risk, information on how animals respond to tidal turbines is urgently required. 2. We measured the behaviour of harbour seals in response to acoustic playbacks of simulated tidal turbine sound within a narrow coastal channel subject to strong, tidally induced currents. This was carried out using data from animal-borne GPS tags and shore-based observations, which were analysed to quantify behavioural responses to the turbine sound. 3. Results showed that the playback state (silent control or turbine signal) was not a significant predictor of the overall number of seals sighted within the channel. 4. However, there was a localised impact of the turbine signal; tagged harbour seals exhibited significant spatial avoidance of the sound which resulted in a reduction in the usage by seals of between 11 and 41% at the playback location. The significant decline in usage extended to 500 m from the playback location at which usage decreased by between 1 and 9% during playback. 5. Synthesis and applications: This study provides important information for policy makers looking to assess the potential impacts of tidal turbines and advise on development of the tidal energy industry. Results showing that seals avoid tidal turbine sound suggest that a proportion of seals encountering tidal turbines will exhibit behavioural responses resulting in avoidance of physical injury; in practice, the empirical changes in usage can be used directly as avoidance rates when using collision risk models to predict the effects of tidal turbines on seals. There is now a clear need to measure how marine mammals behave in response to actual operating tidal turbines in the long term to learn whether marine mammals and tidal turbines can co-exist safely at the scales currently envisaged for the industry. JApEcol_Hastie_etal_observation_data_DryadLand based observer data (.xlsx) used in the analysis of seal responses to tidal turbine sounds. This is effectively counts of seals observed in the water during acoustic playbacks of tidal turbine sound and silent controls. Data were collected by a series of observers located on a clifftop overlooking the study area (Kyle Rhea, Isle of Skye, Scotland) README file is provided as a tab in the file.JApEcol_Hastie_etal_seal_telemetry_data_DryadHarbour seal telemetry data (.xlsx) used in the analysis of changes in usage with distance from the location of playbacks of tidal turbine sound. The data are regularised lat-lon locations from 10 individual harbour seals tagged with GPS telemetry devices. README is provided as a tab in the file.STIMweighted_J11_1hour_withRampSound file (.wav) used during playbacks of simulated tidal turbine sound to harbour seals to investigate avoidance responses. The file has a 10 second ramp at the start and end of the file, and is frequency weighted for use with a J11 underwater speaker.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vt2b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vt2b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:SEANOE Authors: Epstein, Graham; Roberts, Callum M.;doi: 10.17882/89590
Associated data and R code for the paper Epstein & Roberts 2022 - Identifying priority areas to manage mobile bottom fishing on seabed carbon in the UK. This repository contains the primary output data from a desk-based investigation of seabed sediment organic carbon (OC) and mobile demeresal fishing in the UKEEZ. Best available published datasets were combined to produce unified maps of predicted seabed OC stocks, mean annual mobile bottom fishing disturbance, mean value of fish landed by mobile bottom fishing, and mean annual cummulative disturbance to seabed carbon from mobile bottom fishing. This data was combined with modeling of estimated fishing displacement to idenitfy priority areas for managmement and/or future research. For further methodological information please refer to the full paper published at PLOS Climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/89590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/89590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Wiley Funded by:EC | COEXIST, EC | VECTORS, UKRI | Integrating Macroecology ...EC| COEXIST ,EC| VECTORS ,UKRI| Integrating Macroecology and Modelling to Elucidate Regulation of Services from Ecosystems (IMMERSE)Jose A. Fernandes; Gerrit Hendriksen; Marie Maar; Icarus Allen; Katell G. Hamon; Miranda C. Jones; Myron A. Peck; Willem Stolte; Lorna R. Teal; Anne F. Sell; Paul J. Somerfield; Ana M. Queirós; Melanie C. Austen; Paul Marchal; Manuel Barange; Friedemann Keyl; Susan Kay; Klaus B. Huebert; Klaus B. Huebert; Youen Vermard;doi: 10.1111/gcb.13423
pmid: 27396719
AbstractThe Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field and that protected areas cannot address climate change may be oversimplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta‐analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially explicit manner and then co‐mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem‐level vulnerability to CCOA, but disregard how species may redistribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long‐term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate‐ready and ecosystem‐level policy options for conservation, suitable for changing oceans.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BY NCData sources: CORE (RIOXX-UK Aggregator)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 2 Powered bymore_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BY NCData sources: CORE (RIOXX-UK Aggregator)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Springer Science and Business Media LLC Séverine Jean; Séverine Jean; Julie Canal; Julie Canal; Allison Gandar; Allison Gandar; Pascal Laffaille; Pascal Laffaille; Nathalie Marty-Gasset; Nathalie Marty-Gasset; Franck Gilbert; Franck Gilbert;pmid: 26272290
Crossed effects between climate change and chemical pollutions were identified on community structure and ecosystem functioning. Temperature rising affects the toxic properties of pollutants and the sensitiveness of organisms to chemicals stress. Inversely, chemical exposure may decrease the capacity of organisms to respond to environmental changes. The aim of our study was to assess the individual and crossed effects of temperature rising and pesticide contamination on fish. Goldfish, Carassius auratus, were exposed during 96 h at two temperatures (22 and 32 °C) to a mixture of common pesticides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin, and tebuconazol) at two environmentally relevant concentrations (total concentrations MIX1 = 8.4 μg L(-1) and MIX2 = 42 μg L(-1)). We investigated the sediment reworking behavior, which has a major ecological functional role. We also focused on three physiological traits from the cellular up to the whole individual level showing metabolic status of fish (protein concentration in liver and muscle, hepatosomatic index, and Fulton's condition factor). Individual thermal stress and low concentrations of pesticides decreased the sediment reworking activity of fish and entrained metabolic compensation with global depletion in energy stores. We found that combined chemical and thermal stresses impaired the capacity of fish to set up an efficient adaptive response. Our results strongly suggest that temperature will make fish more sensitive to water contamination by pesticides, raising concerns about wild fish conservation submitted to global changes.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2016 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01449184Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverEnvironmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5147-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 37 citations 37 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 158visibility views 158 download downloads 490 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2016 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01449184Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverEnvironmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5147-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Qatar, Norway, United Kingdom, Denmark, Qatar, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSERC, UKRI | The role of Arctic sea ic..., AKA | RESILIENCE IN SOCIAL-ECOL... +6 projectsNSERC ,UKRI| The role of Arctic sea ice in climatic and ecological processes ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,RCN| Understanding ecosystem functionality, expansion and retreat of species in the Scandinavian mountain tundra under multiple drivers of change ,UKRI| Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,[no funder available] ,EC| INTERACT ,NWO| Feedbacks of vegetation change to permafrost thawing, soil nutrient availability and carbon storage in tundra ecosystemsSigne Normand; Maite Gartzia; Philip A. Wookey; Maja K. Sundqvist; Maja K. Sundqvist; Martin Wilmking; Juha M. Alatalo; Alexander Sokolov; James D. M. Speed; Anna Skoracka; Dagmar Egelkraut; Lee Ann Fishback; Ashley L. Asmus; C. Guillermo Bueno; Timo Kumpula; Dorothee Ehrich; Agata Buchwal; Agata Buchwal; Elina Kaarlejärvi; Elina Kaarlejärvi; Toke T. Høye; Martin Hallinger; Vitali Zverev; Milena Holmgren; Mariska te Beest; Eeva M. Soininen; Jean-Pierre Tremblay; Kari Anne Bråthen; Sergey A. Uvarov; Natalya A. Sokolova; Elin Lindén; Judith Sitters; Judith Sitters; Isla H. Myers-Smith; Johan Olofsson; Katherine S. Christie; Eric Post; Cynthia Y.M.J.G. Lange; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Juul Limpens; Paul Grogan; Yulia V. Denisova; Tommi Andersson; Marc Macias-Fauria; David A. Watts; Heike Zimmermann; Adrian V. Rocha; Diane C. Huebner; Julia Boike; David S. Hik; Otso Suominen; Christine Urbanowicz; Isabel C. Barrio; Nikita Tananaev; Annika Hofgaard; Jelena Lange; Bruce C. Forbes; John P. Bryant; Lorna E. Street; Monique M. P. D. Heijmans; Mikhail V. Kozlov; Erik J. van Nieukerken; Niels Martin Schmidt;Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6--7% over the current levels with a 1 textdegreeC increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 63download downloads 63 Powered bymore_vert CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 New Zealand, Denmark, Spain, United States, New ZealandPublisher:American Association for the Advancement of Science (AAAS) Wu-Bing Xu; Wen-Yong Guo; Josep M. Serra-Diaz; Franziska Schrodt; Wolf L. Eiserhardt; Brian J. Enquist; Brian S. Maitner; Cory Merow; Cyrille Violle; Madhur Anand; Michaël Belluau; Hans Henrik Bruun; Chaeho Byun; Jane A. Catford; Bruno E. L. Cerabolini; Eduardo Chacón-Madrigal; Daniela Ciccarelli; J. Hans C. Cornelissen; Anh Tuan Dang-Le; Angel de Frutos; Arildo S. Dias; Aelton B. Giroldo; Alvaro G. Gutiérrez; Wesley Hattingh; Tianhua He; Peter Hietz; Nate Hough-Snee; Steven Jansen; Jens Kattge; Benjamin Komac; Nathan J. B. Kraft; Koen Kramer; Sandra Lavorel; Christopher H. Lusk; Adam R. Martin; Ke-Ping Ma; Maurizio Mencuccini; Sean T. Michaletz; Vanessa Minden; Akira S. Mori; Ülo Niinemets; Yusuke Onoda; Renske E. Onstein; Josep Peñuelas; Valério D. Pillar; Jan Pisek; Matthew J. Pound; Bjorn J. M. Robroek; Brandon Schamp; Martijn Slot; Miao Sun; Ênio E. Sosinski; Nadejda A. Soudzilovskaia; Nelson Thiffault; Peter M. van Bodegom; Fons van der Plas; Jingming Zheng; Jens-Christian Svenning; Alejandro Ordonez;As Earth’s climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.
The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Stable Isotope Analyses o...NSF| Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in AntarcticaClucas, Gemma V.; Dunn, Michael J.; Dyke, Gareth; Emslie, Steven D.; Levy, Hila; Naveen, Ron; Polito, Michael J.; Pybus, Oliver G.; Rogers, Alex D.; Hart, Tom;AbstractClimate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces ‘winners’, species that benefit from these events and ‘losers’, species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a ‘reversal of fortunes’ as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change ‘winners’, while Adélie and chinstrap penguins have become climate change ‘losers’.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.1038/srep05024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep05024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 92 citations 92 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 28 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.1038/srep05024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep05024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Cowan Higgins; James M. Hungerford; Keith Davidson; Daniel Payne; Daniel Payne; Wendy Higman; Andrew D. Turner; Andrea Veszelovszki;Regular occurrence of brevetoxin-producing toxic phytoplankton in commercial shellfishery areas poses a significant risk to shellfish consumer health. Brevetoxins and their causative toxic phytoplankton are more limited in their global distribution than most marine toxins impacting commercial shellfisheries. On the other hand, trends in climate change could conceivably lead to increased risk posed by these toxins in UK waters. A request was made by UK food safety authorities to examine these toxins more closely to aid possible management strategies, should they pose a threat in the future. At the time of writing, brevetoxins have been detected in the Gulf of Mexico, the Southeast US coast and in New Zealand waters, where regulatory levels for brevetoxins in shellfish have existed for some time. This paper reviews evidence concerning the prevalence of brevetoxins and brevetoxin-producing phytoplankton in the UK, together with testing methodologies. Chemical, biological and biomolecular methods are reviewed, including recommendations for further work to enable effective testing. Although the focus here is on the UK, from a strategic standpoint many of the topics discussed will also be of interest in other parts of the world since new and emerging marine biotoxins are of global concern.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/md13031224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 6visibility views 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/md13031224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, United Kingdom, United KingdomPublisher:Wiley Funded by:NSF | COLLABORATIVE RESEARCH: A...NSF| COLLABORATIVE RESEARCH: A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor PenguinsNoah F. Greenwald; Sara Labrousse; Philip N. Trathan; Stéphanie Jenouvrier; Julienne Stroeve; Julienne Stroeve; Julienne Stroeve; Marika M. Holland; Barbara Wienecke; Shaye Wolf; Peter T. Fretwell; Judy Che-Castaldo; Christophe Barbraud; Michelle A. LaRue; Michelle A. LaRue;AbstractSpecies extinction risk is accelerating due to anthropogenic climate change, making it urgent to protect vulnerable species through legal frameworks in order to facilitate conservation actions that help mitigate risk. Here, we discuss fundamental concepts for assessing climate change risks to species using the example of the emperor penguin (Aptenodytes forsteri), currently being considered for protection under the US Endangered Species Act (ESA). This species forms colonies on Antarctic sea ice, which is projected to significantly decline due to ongoing greenhouse gas (GHG) emissions. We project the dynamics of all known emperor penguin colonies under different GHG emission scenarios using a climate‐dependent meta‐population model including the effects of extreme climate events based on the observational satellite record of colonies. Assessments for listing species under the ESA require information about how species resiliency, redundancy and representation (3Rs) will be affected by threats within the foreseeable future. Our results show that if sea ice declines at the rate projected by climate models under current energy system trends and policies, the 3Rs would be dramatically reduced and almost all colonies would become quasi‐extinct by 2100. We conclude that the species should be listed as threatened under the ESA.
Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 17 Powered bymore_vert Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2017Embargo end date: 27 Jul 2017Publisher:Dryad Hastie, Gordon D.; Russell, Debbie J. F.; Lepper, Paul; Elliott, Jim; Wilson, Ben; Benjamins, Steven; Thompson, Dave;doi: 10.5061/dryad.vt2b3
1. Tidal stream energy converters (turbines) are currently being installed in tidally energetic coastal sites. However, there is currently a high level of uncertainty surrounding the potential environmental impacts on marine mammals. This is a key consenting risk to commercial introduction of tidal energy technology. Concerns derive primarily from the potential for injury to marine mammals through collisions with moving components of turbines. To understand the nature of this risk, information on how animals respond to tidal turbines is urgently required. 2. We measured the behaviour of harbour seals in response to acoustic playbacks of simulated tidal turbine sound within a narrow coastal channel subject to strong, tidally induced currents. This was carried out using data from animal-borne GPS tags and shore-based observations, which were analysed to quantify behavioural responses to the turbine sound. 3. Results showed that the playback state (silent control or turbine signal) was not a significant predictor of the overall number of seals sighted within the channel. 4. However, there was a localised impact of the turbine signal; tagged harbour seals exhibited significant spatial avoidance of the sound which resulted in a reduction in the usage by seals of between 11 and 41% at the playback location. The significant decline in usage extended to 500 m from the playback location at which usage decreased by between 1 and 9% during playback. 5. Synthesis and applications: This study provides important information for policy makers looking to assess the potential impacts of tidal turbines and advise on development of the tidal energy industry. Results showing that seals avoid tidal turbine sound suggest that a proportion of seals encountering tidal turbines will exhibit behavioural responses resulting in avoidance of physical injury; in practice, the empirical changes in usage can be used directly as avoidance rates when using collision risk models to predict the effects of tidal turbines on seals. There is now a clear need to measure how marine mammals behave in response to actual operating tidal turbines in the long term to learn whether marine mammals and tidal turbines can co-exist safely at the scales currently envisaged for the industry. JApEcol_Hastie_etal_observation_data_DryadLand based observer data (.xlsx) used in the analysis of seal responses to tidal turbine sounds. This is effectively counts of seals observed in the water during acoustic playbacks of tidal turbine sound and silent controls. Data were collected by a series of observers located on a clifftop overlooking the study area (Kyle Rhea, Isle of Skye, Scotland) README file is provided as a tab in the file.JApEcol_Hastie_etal_seal_telemetry_data_DryadHarbour seal telemetry data (.xlsx) used in the analysis of changes in usage with distance from the location of playbacks of tidal turbine sound. The data are regularised lat-lon locations from 10 individual harbour seals tagged with GPS telemetry devices. README is provided as a tab in the file.STIMweighted_J11_1hour_withRampSound file (.wav) used during playbacks of simulated tidal turbine sound to harbour seals to investigate avoidance responses. The file has a 10 second ramp at the start and end of the file, and is frequency weighted for use with a J11 underwater speaker.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vt2b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vt2b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:SEANOE Authors: Epstein, Graham; Roberts, Callum M.;doi: 10.17882/89590
Associated data and R code for the paper Epstein & Roberts 2022 - Identifying priority areas to manage mobile bottom fishing on seabed carbon in the UK. This repository contains the primary output data from a desk-based investigation of seabed sediment organic carbon (OC) and mobile demeresal fishing in the UKEEZ. Best available published datasets were combined to produce unified maps of predicted seabed OC stocks, mean annual mobile bottom fishing disturbance, mean value of fish landed by mobile bottom fishing, and mean annual cummulative disturbance to seabed carbon from mobile bottom fishing. This data was combined with modeling of estimated fishing displacement to idenitfy priority areas for managmement and/or future research. For further methodological information please refer to the full paper published at PLOS Climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/89590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/89590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Wiley Funded by:EC | COEXIST, EC | VECTORS, UKRI | Integrating Macroecology ...EC| COEXIST ,EC| VECTORS ,UKRI| Integrating Macroecology and Modelling to Elucidate Regulation of Services from Ecosystems (IMMERSE)Jose A. Fernandes; Gerrit Hendriksen; Marie Maar; Icarus Allen; Katell G. Hamon; Miranda C. Jones; Myron A. Peck; Willem Stolte; Lorna R. Teal; Anne F. Sell; Paul J. Somerfield; Ana M. Queirós; Melanie C. Austen; Paul Marchal; Manuel Barange; Friedemann Keyl; Susan Kay; Klaus B. Huebert; Klaus B. Huebert; Youen Vermard;doi: 10.1111/gcb.13423
pmid: 27396719
AbstractThe Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field and that protected areas cannot address climate change may be oversimplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta‐analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially explicit manner and then co‐mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem‐level vulnerability to CCOA, but disregard how species may redistribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long‐term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate‐ready and ecosystem‐level policy options for conservation, suitable for changing oceans.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BY NCData sources: CORE (RIOXX-UK Aggregator)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 2 Powered bymore_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BY NCData sources: CORE (RIOXX-UK Aggregator)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Springer Science and Business Media LLC Séverine Jean; Séverine Jean; Julie Canal; Julie Canal; Allison Gandar; Allison Gandar; Pascal Laffaille; Pascal Laffaille; Nathalie Marty-Gasset; Nathalie Marty-Gasset; Franck Gilbert; Franck Gilbert;pmid: 26272290
Crossed effects between climate change and chemical pollutions were identified on community structure and ecosystem functioning. Temperature rising affects the toxic properties of pollutants and the sensitiveness of organisms to chemicals stress. Inversely, chemical exposure may decrease the capacity of organisms to respond to environmental changes. The aim of our study was to assess the individual and crossed effects of temperature rising and pesticide contamination on fish. Goldfish, Carassius auratus, were exposed during 96 h at two temperatures (22 and 32 °C) to a mixture of common pesticides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin, and tebuconazol) at two environmentally relevant concentrations (total concentrations MIX1 = 8.4 μg L(-1) and MIX2 = 42 μg L(-1)). We investigated the sediment reworking behavior, which has a major ecological functional role. We also focused on three physiological traits from the cellular up to the whole individual level showing metabolic status of fish (protein concentration in liver and muscle, hepatosomatic index, and Fulton's condition factor). Individual thermal stress and low concentrations of pesticides decreased the sediment reworking activity of fish and entrained metabolic compensation with global depletion in energy stores. We found that combined chemical and thermal stresses impaired the capacity of fish to set up an efficient adaptive response. Our results strongly suggest that temperature will make fish more sensitive to water contamination by pesticides, raising concerns about wild fish conservation submitted to global changes.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2016 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01449184Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverEnvironmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5147-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 37 citations 37 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 158visibility views 158 download downloads 490 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2016 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01449184Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverEnvironmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5147-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Qatar, Norway, United Kingdom, Denmark, Qatar, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSERC, UKRI | The role of Arctic sea ic..., AKA | RESILIENCE IN SOCIAL-ECOL... +6 projectsNSERC ,UKRI| The role of Arctic sea ice in climatic and ecological processes ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,RCN| Understanding ecosystem functionality, expansion and retreat of species in the Scandinavian mountain tundra under multiple drivers of change ,UKRI| Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,[no funder available] ,EC| INTERACT ,NWO| Feedbacks of vegetation change to permafrost thawing, soil nutrient availability and carbon storage in tundra ecosystemsSigne Normand; Maite Gartzia; Philip A. Wookey; Maja K. Sundqvist; Maja K. Sundqvist; Martin Wilmking; Juha M. Alatalo; Alexander Sokolov; James D. M. Speed; Anna Skoracka; Dagmar Egelkraut; Lee Ann Fishback; Ashley L. Asmus; C. Guillermo Bueno; Timo Kumpula; Dorothee Ehrich; Agata Buchwal; Agata Buchwal; Elina Kaarlejärvi; Elina Kaarlejärvi; Toke T. Høye; Martin Hallinger; Vitali Zverev; Milena Holmgren; Mariska te Beest; Eeva M. Soininen; Jean-Pierre Tremblay; Kari Anne Bråthen; Sergey A. Uvarov; Natalya A. Sokolova; Elin Lindén; Judith Sitters; Judith Sitters; Isla H. Myers-Smith; Johan Olofsson; Katherine S. Christie; Eric Post; Cynthia Y.M.J.G. Lange; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Juul Limpens; Paul Grogan; Yulia V. Denisova; Tommi Andersson; Marc Macias-Fauria; David A. Watts; Heike Zimmermann; Adrian V. Rocha; Diane C. Huebner; Julia Boike; David S. Hik; Otso Suominen; Christine Urbanowicz; Isabel C. Barrio; Nikita Tananaev; Annika Hofgaard; Jelena Lange; Bruce C. Forbes; John P. Bryant; Lorna E. Street; Monique M. P. D. Heijmans; Mikhail V. Kozlov; Erik J. van Nieukerken; Niels Martin Schmidt;Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6--7% over the current levels with a 1 textdegreeC increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 63download downloads 63 Powered bymore_vert CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 New Zealand, Denmark, Spain, United States, New ZealandPublisher:American Association for the Advancement of Science (AAAS) Wu-Bing Xu; Wen-Yong Guo; Josep M. Serra-Diaz; Franziska Schrodt; Wolf L. Eiserhardt; Brian J. Enquist; Brian S. Maitner; Cory Merow; Cyrille Violle; Madhur Anand; Michaël Belluau; Hans Henrik Bruun; Chaeho Byun; Jane A. Catford; Bruno E. L. Cerabolini; Eduardo Chacón-Madrigal; Daniela Ciccarelli; J. Hans C. Cornelissen; Anh Tuan Dang-Le; Angel de Frutos; Arildo S. Dias; Aelton B. Giroldo; Alvaro G. Gutiérrez; Wesley Hattingh; Tianhua He; Peter Hietz; Nate Hough-Snee; Steven Jansen; Jens Kattge; Benjamin Komac; Nathan J. B. Kraft; Koen Kramer; Sandra Lavorel; Christopher H. Lusk; Adam R. Martin; Ke-Ping Ma; Maurizio Mencuccini; Sean T. Michaletz; Vanessa Minden; Akira S. Mori; Ülo Niinemets; Yusuke Onoda; Renske E. Onstein; Josep Peñuelas; Valério D. Pillar; Jan Pisek; Matthew J. Pound; Bjorn J. M. Robroek; Brandon Schamp; Martijn Slot; Miao Sun; Ênio E. Sosinski; Nadejda A. Soudzilovskaia; Nelson Thiffault; Peter M. van Bodegom; Fons van der Plas; Jingming Zheng; Jens-Christian Svenning; Alejandro Ordonez;As Earth’s climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.
The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Stable Isotope Analyses o...NSF| Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in AntarcticaClucas, Gemma V.; Dunn, Michael J.; Dyke, Gareth; Emslie, Steven D.; Levy, Hila; Naveen, Ron; Polito, Michael J.; Pybus, Oliver G.; Rogers, Alex D.; Hart, Tom;AbstractClimate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces ‘winners’, species that benefit from these events and ‘losers’, species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a ‘reversal of fortunes’ as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change ‘winners’, while Adélie and chinstrap penguins have become climate change ‘losers’.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.1038/srep05024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep05024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 92 citations 92 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 28 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.1038/srep05024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep05024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Cowan Higgins; James M. Hungerford; Keith Davidson; Daniel Payne; Daniel Payne; Wendy Higman; Andrew D. Turner; Andrea Veszelovszki;Regular occurrence of brevetoxin-producing toxic phytoplankton in commercial shellfishery areas poses a significant risk to shellfish consumer health. Brevetoxins and their causative toxic phytoplankton are more limited in their global distribution than most marine toxins impacting commercial shellfisheries. On the other hand, trends in climate change could conceivably lead to increased risk posed by these toxins in UK waters. A request was made by UK food safety authorities to examine these toxins more closely to aid possible management strategies, should they pose a threat in the future. At the time of writing, brevetoxins have been detected in the Gulf of Mexico, the Southeast US coast and in New Zealand waters, where regulatory levels for brevetoxins in shellfish have existed for some time. This paper reviews evidence concerning the prevalence of brevetoxins and brevetoxin-producing phytoplankton in the UK, together with testing methodologies. Chemical, biological and biomolecular methods are reviewed, including recommendations for further work to enable effective testing. Although the focus here is on the UK, from a strategic standpoint many of the topics discussed will also be of interest in other parts of the world since new and emerging marine biotoxins are of global concern.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/md13031224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 6visibility views 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/md13031224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, United Kingdom, United KingdomPublisher:Wiley Funded by:NSF | COLLABORATIVE RESEARCH: A...NSF| COLLABORATIVE RESEARCH: A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor PenguinsNoah F. Greenwald; Sara Labrousse; Philip N. Trathan; Stéphanie Jenouvrier; Julienne Stroeve; Julienne Stroeve; Julienne Stroeve; Marika M. Holland; Barbara Wienecke; Shaye Wolf; Peter T. Fretwell; Judy Che-Castaldo; Christophe Barbraud; Michelle A. LaRue; Michelle A. LaRue;AbstractSpecies extinction risk is accelerating due to anthropogenic climate change, making it urgent to protect vulnerable species through legal frameworks in order to facilitate conservation actions that help mitigate risk. Here, we discuss fundamental concepts for assessing climate change risks to species using the example of the emperor penguin (Aptenodytes forsteri), currently being considered for protection under the US Endangered Species Act (ESA). This species forms colonies on Antarctic sea ice, which is projected to significantly decline due to ongoing greenhouse gas (GHG) emissions. We project the dynamics of all known emperor penguin colonies under different GHG emission scenarios using a climate‐dependent meta‐population model including the effects of extreme climate events based on the observational satellite record of colonies. Assessments for listing species under the ESA require information about how species resiliency, redundancy and representation (3Rs) will be affected by threats within the foreseeable future. Our results show that if sea ice declines at the rate projected by climate models under current energy system trends and policies, the 3Rs would be dramatically reduced and almost all colonies would become quasi‐extinct by 2100. We conclude that the species should be listed as threatened under the ESA.
Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 17 Powered bymore_vert Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu