- home
- Search
- Energy Research
- 13. Climate action
- 3. Good health
- FR
- RU
- UA
- European Marine Science
- Energy Research
- 13. Climate action
- 3. Good health
- FR
- RU
- UA
- European Marine Science
Research data keyboard_double_arrow_right Dataset 2022Publisher:SEANOE Salgueiro, Emília; Magalhães, Vítor; Rebotim, Andreia; Matos, Lélia; Schweizer, Magali; Sousa, Fátima; González Martín, Maria; Batista, Luis Batista;doi: 10.17882/96495
The CARBO-ACID research cruise (EUROFLEETS+ SEA02_10) was carried out on the RV Ramón Margalef between August 2nd and August 11st, with departing from Vigo – Spain and ending in Lisbon – Portugal. The main objective of this cruise was to collect data and samples to study the potential effects of ocean acidification on carbonate marine organisms (coccolithophores, pteropods, planktonic and benthic foraminifera, and corals) along the Iberian margin. With this objective, oceanographic data and water samples, plankton, cold-water corals and sediment samples were collected during an upwelling season, along two transects coinciding with the two persistent upwelling filaments off the Iberia Margin: the Cape Finisterra and the Cape Roca. In this dataset is guiven all the acquired data recollected onboad. During the CARBO-ACID cruise we did a total of 7 stations, 4 stations along the Cape Finisterra transect (from W to E: CA3, CA2, CA7, CA8) and 3 stations at the Cape Roca (from W to E: CA6, CA5, CA4) transect (Fig). At each station we usually started with a multibeam survey, a CTD and Rosette cast. These initial operations allowed to identify the different water masses present in this area, characterize their physical properties and to recover seawater samples at specific depth levels. The seawater samples were onboard subsampled, preserved in cold conditions or with chemicals and/ or filtered for several further analysis in the shore-based laboratories: DNA, chlorophyll, fitoplankton, coccolithophores, pH, alkalinity, stable isotopic composition, trace elements concentration and Suspend Particulate Matter. Subsequently to these operations, at each station, two vertical tows with a plankton multinet (with 5 nets) were done on the top 700 m of the water column to sample the planktonic communities of the different water depths. After this, sediment samples were recovered with a box-corer to study the past oceanographic conditions, between the pre-industrial Era and the Present, with multi-proxies used in paleoceanography and sedimentology. A total of 10 box-cores were recollected and each of them was onboard sub-sampled for eDNA, enzymes and benthic foraminifera. Fifteen shipek grab samples were recollected at the Fontanelas seamount (Estremadura Spur), station CA6, to characterize the sedimentary cover and to evaluate the presence of deep cold-water corals. Preliminary results show that the stations CA7, CA8 and CA4, located close to the coast, as expected, are the most influenced by the coastal upwelling, exhibiting colder surface water, higher values of fluorescence, and more zooplankton content reflecting higher phyto-zooplankton concentrations, as typical of the upwelling waters. At station CA4 temperature was higher and fluorescence showed lower values, indicative of less phytoplankton, and interpreted as indicating a different upwelling source water from that upwelled further north. Based on the CTD data, the Cape Roca transect is more influenced by the subtropical East North Atlantic Central Water (ENACWst), while the Cape Finisterra transect is more under the influence of the subpolar branch (ENACWsp). Seafloor sediment samples showed significant differences between the stations. Along the northern transect (Cape Finisterra) the seafloor sediments show an increase in grain size from the offshore to the coast. The offshore stations CA3 and CA2 revealed finer grained sediments, CA8 were composed of coarser sand and the station CA7, the shallowest station 77 m, presented the sediment composed mainly of shell fragments and coarse grain sand. Along the southern transect (Cape Roca), the offshore station CA6 (Fontanelas seamount) has coarser sandy sediments with rock clasts and cold-water coral fragments, and the stations CA5 and CA4 with fine sand to muddy sediments. The detailed CA6 bathymetry allowed to verify the existence of small plateaus on the slope of the Fontanelas seamount, where the fossil cold-water corals fragments were found, suggesting that this area is a very interesting system deserving further study with a ROV, and to characterize the corals fields and verify if there are live corals. These recollected data and samples will allow not only to reconstruct the pH variability under different environmental conditions, but also to estimate the biogeochemical changes along the coastal ocean waters as the anthropogenic influence increases. These results will contribute to better understand and model the effects on the biota under the future expected oceans pH changes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/96495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/96495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Audiovisual 2021Embargo end date: 24 Sep 2021Publisher:Underline Science Inc. Authors: 3rd World Seabird Conference 2021; Power, Andrew;doi: 10.48448/f55t-rj06
Abstract: The Northern Gannet Morus bossanus is an avian sentinel; the largest breeding seabird in Ireland and an obligate piscivore. Gannet eggs were collected from two island colonies off the east coast of Ireland, approximately 150km from each other, in locations with divergent history of industrialization (n = 10-20). Levels of potentially harmful contaminants including Polychlorinated biphenyls (PCBs), Polybrominated diphenyl ethers (PBDEs), Organochlorine pesticides (OCs), heavy metals and mercury were measured and differences of contaminant concentrations between different colonies compared. This is the first such study of contaminant levels in Gannet, or in any seabird egg in Ireland. Stable isotopes of carbon (d13C) and nitrogen (d15N) were measured in each egg to understand the influence of diet in contaminant levels detected. Significantly higher levels of PCBs, PBDEs and mercury were detected near Dublin (Ireland's industrialized capital city and location of its largest port) compared to Wexford. No differences were observed in levels of OCs and heavy metals between the two colonies. Stable isotope analysis demonstrated that Gannets in both locations occupy the same dietary niche excluding a difference in diet as the driver of differing contaminant levels in the two feeding areas. Though Gannets travel significant distances when foraging for food (~200km) tracking studies have shown that Gannets colonies maintain exclusive feeding areas with little overlap between neighbouring colonies. Differences between colonies within the feeding range of Gannets can therefore be detected despite Gannet's high dispersal ability. These results are in concurrence with elevated levels of contaminants in lower trophic level organisms that have been found in Dublin Bay compared to the rest of Ireland, indicating potential for Gannets as a higher trophic level indicator - though variability in their diet, including feeding on fishing discard, may lead to unacceptable levels of variability for an indicator species. Authors: Andrew Power��, Philip White��, Brendan McHugh��, Sinead Murphy��, Simon Berrow��, Moira Schlingermann��, Stephen Newton��, Linda O'Hea��, Brian Boyle��, Marissa Tannian��, Denis Crowley��, Evin McGovern��, Ian O'Connor�� ��Galway Mayo Institute of Technology, ��Marine Institute, ��BirdWatch Ireland
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48448/f55t-rj06&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48448/f55t-rj06&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Embargo end date: 01 Jan 2014 Switzerland, Germany, Netherlands, DenmarkPublisher:Copernicus GmbH Funded by:NSERC, NSF | BE/CBC: Biocomplexity Ass..., NSF | Fire in Northern Alaska: ... +4 projectsNSERC ,NSF| BE/CBC: Biocomplexity Associated with the Response of Tundra Carbon Balance to Warming and Drying Across Multiple Spatial and Temporal Scales ,NSF| Fire in Northern Alaska: Effect of a Changing Disturbance Regime on a Regional Macrosystem ,RCN| Greenhouse gases in the North: from local to regional scale ,NWO| Stability of carbon pools in far east Siberia ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,EC| GREENCYCLESIIAuthors: Birger Ulf Hansen; Marcin Jackowicz-Korczynski; Torsten Sachs; Peter M. Lafleur; +16 AuthorsBirger Ulf Hansen; Marcin Jackowicz-Korczynski; Torsten Sachs; Peter M. Lafleur; Torben R. Christensen; Torben R. Christensen; Walter C. Oechel; Lars Kutzbach; Adrian V. Rocha; Werner Eugster; Magnus Lund; M. K. van der Molen; Mika Aurela; Thomas Friborg; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Elyn Humphreys; Daniel P. Rasse; Mikkel P. Tamstorf; Herbert N. Mbufong;Abstract. This paper aims to assess the spatial variability in the response of CO2 exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC) parameters. This investigation allows us to better understand the future response of Arctic tundra under climatic change. Peak season data were collected during different years (between 1998 and 2010) using the micrometeorological eddy covariance technique from 12 circumpolar Arctic tundra sites, in the range of 64–74° N. The LRCs were generated for 14 days with peak net ecosystem exchange (NEE) using an NEE–irradiance model. Parameters from LRCs represent site-specific traits and characteristics describing the following: (a) NEE at light saturation (Fcsat), (b) dark respiration (Rd), (c) light use efficiency (α), (d) NEE when light is at 1000 μmol m−2 s−1 (Fc1000), (e) potential photosynthesis at light saturation (Psat) and (f) the light compensation point (LCP). Parameterization of LRCs was successful in predicting CO2 flux dynamics across the Arctic tundra. We did not find any trends in LRC parameters across the whole Arctic tundra but there were indications for temperature and latitudinal differences within sub-regions like Russia and Greenland. Together, leaf area index (LAI) and July temperature had a high explanatory power of the variance in assimilation parameters (Fcsat, Fc1000 and Psat, thus illustrating the potential for upscaling CO2 exchange for the whole Arctic tundra. Dark respiration was more variable and less correlated to environmental drivers than were assimilation parameters. This indicates the inherent need to include other parameters such as nutrient availability, substrate quantity and quality in flux monitoring activities.
GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type , Conference object 2018 FrancePublisher:Springer International Publishing Funded by:EC | BAMMBOEC| BAMMBOAuthors: Perez-Lopez, Paula; Feijoo, Gumersindo,; Moreira, Maria;The biotechnological development has traditionally focused on the compliance with regulatory demands rather than optimising the processes or analysing their sustainability. This work proposes the combination of available tools for the comprehensive sustainability assessment of a blue biotechnology process based on the cultivation of the microalgae Haematococcus pluvialis. The work aims to include environmental, economic and social dimensions to measure the sustainability of the production of a carotenoid with potential applications in food, nutraceutical, cosmetics and eventually pharmaceutical industries. Electricity for cultivation was identified as the major contributor to the environmental impacts, which depended significantly on the production scale. Social benefits were mainly related to workers and consumers, while the economic assessment suggested a profitable process with a relatively short period to recover the initial investment.
Hyper Article en Lig... arrow_drop_down MINES ParisTech: Open Archive (HAL)Part of book or chapter of book . 2018Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://hal-mines-paristech.ar...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverConference object . 2017Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2018Mémoires en Sciences de l'Information et de la CommunicationConference object . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-66981-6_53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down MINES ParisTech: Open Archive (HAL)Part of book or chapter of book . 2018Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://hal-mines-paristech.ar...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverConference object . 2017Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2018Mémoires en Sciences de l'Information et de la CommunicationConference object . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-66981-6_53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Wiley Funded by:EC | COEXIST, EC | VECTORS, UKRI | Integrating Macroecology ...EC| COEXIST ,EC| VECTORS ,UKRI| Integrating Macroecology and Modelling to Elucidate Regulation of Services from Ecosystems (IMMERSE)Jose A. Fernandes; Gerrit Hendriksen; Marie Maar; Icarus Allen; Katell G. Hamon; Miranda C. Jones; Myron A. Peck; Willem Stolte; Lorna R. Teal; Anne F. Sell; Paul J. Somerfield; Ana M. Queirós; Melanie C. Austen; Paul Marchal; Manuel Barange; Friedemann Keyl; Susan Kay; Klaus B. Huebert; Klaus B. Huebert; Youen Vermard;doi: 10.1111/gcb.13423
pmid: 27396719
AbstractThe Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field and that protected areas cannot address climate change may be oversimplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta‐analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially explicit manner and then co‐mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem‐level vulnerability to CCOA, but disregard how species may redistribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long‐term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate‐ready and ecosystem‐level policy options for conservation, suitable for changing oceans.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BY NCData sources: CORE (RIOXX-UK Aggregator)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 2 Powered bymore_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BY NCData sources: CORE (RIOXX-UK Aggregator)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 France, ItalyPublisher:Public Library of Science (PLoS) Barra, Marco; Petitgas, Pierre; Bonanno, Angelo; Somarakis, Stylianos; Woillez, Mathieu; Machias, Athanasios; Mazzola, Salvatore; Basilone, Gualtiero; Giannoulaki, Marianna;Geostatistical techniques were applied and a series of spatial indicators were calculated (occupation, aggregation, location, dispersion, spatial autocorrelation and overlap) to characterize the spatial distributions of European anchovy and sardine during summer. Two ecosystems were compared for this purpose, both located in the Mediterranean Sea: the Strait of Sicily (upwelling area) and the North Aegean Sea (continental shelf area, influenced by freshwater). Although the biomass of anchovy and sardine presented high interannual variability in both areas, the location of the centres of gravity and the main spatial patches of their populations were very similar between years. The size of the patches representing the dominant part of the abundance (80%) was mostly ecosystem- and species-specific. Occupation (area of presence) appears to be shaped by the extent of suitable habitats in each ecosystem whereas aggregation patterns (how the populations are distributed within the area of presence) were species-specific and related to levels of population biomass. In the upwelling area, both species showed consistently higher occupation values compared to the continental shelf area. Certain characteristics of the spatial distribution of sardine (e.g. spreading area, overlapping with anchovy) differed substantially between the two ecosystems. Principal component analysis of geostatistical and spatial indicators revealed that biomass was significantly related to a suite of, rather than single, spatial indicators. At the spatial scale of our study, strong correlations emerged between biomass and the first principal component axis with highly positive loadings for occupation, aggregation and patchiness, independently of species and ecosystem. Overlapping between anchovy and sardine increased with the increase of sardine biomass but decreased with the increase of anchovy. This contrasting pattern was attributed to the location of the respective major patches combined with the specific occupation patterns of the two species. The potential use of spatial indices as auxiliary stock monitoring indicators is discussed.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0135808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 3 Powered bymore_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0135808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Springer Science and Business Media LLC Séverine Jean; Séverine Jean; Julie Canal; Julie Canal; Allison Gandar; Allison Gandar; Pascal Laffaille; Pascal Laffaille; Nathalie Marty-Gasset; Nathalie Marty-Gasset; Franck Gilbert; Franck Gilbert;pmid: 26272290
Crossed effects between climate change and chemical pollutions were identified on community structure and ecosystem functioning. Temperature rising affects the toxic properties of pollutants and the sensitiveness of organisms to chemicals stress. Inversely, chemical exposure may decrease the capacity of organisms to respond to environmental changes. The aim of our study was to assess the individual and crossed effects of temperature rising and pesticide contamination on fish. Goldfish, Carassius auratus, were exposed during 96 h at two temperatures (22 and 32 °C) to a mixture of common pesticides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin, and tebuconazol) at two environmentally relevant concentrations (total concentrations MIX1 = 8.4 μg L(-1) and MIX2 = 42 μg L(-1)). We investigated the sediment reworking behavior, which has a major ecological functional role. We also focused on three physiological traits from the cellular up to the whole individual level showing metabolic status of fish (protein concentration in liver and muscle, hepatosomatic index, and Fulton's condition factor). Individual thermal stress and low concentrations of pesticides decreased the sediment reworking activity of fish and entrained metabolic compensation with global depletion in energy stores. We found that combined chemical and thermal stresses impaired the capacity of fish to set up an efficient adaptive response. Our results strongly suggest that temperature will make fish more sensitive to water contamination by pesticides, raising concerns about wild fish conservation submitted to global changes.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2016 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01449184Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverEnvironmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5147-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 37 citations 37 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 158visibility views 158 download downloads 490 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2016 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01449184Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverEnvironmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5147-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Qatar, Norway, United Kingdom, Denmark, Qatar, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSERC, UKRI | The role of Arctic sea ic..., AKA | RESILIENCE IN SOCIAL-ECOL... +6 projectsNSERC ,UKRI| The role of Arctic sea ice in climatic and ecological processes ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,RCN| Understanding ecosystem functionality, expansion and retreat of species in the Scandinavian mountain tundra under multiple drivers of change ,UKRI| Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,[no funder available] ,EC| INTERACT ,NWO| Feedbacks of vegetation change to permafrost thawing, soil nutrient availability and carbon storage in tundra ecosystemsSigne Normand; Maite Gartzia; Philip A. Wookey; Maja K. Sundqvist; Maja K. Sundqvist; Martin Wilmking; Juha M. Alatalo; Alexander Sokolov; James D. M. Speed; Anna Skoracka; Dagmar Egelkraut; Lee Ann Fishback; Ashley L. Asmus; C. Guillermo Bueno; Timo Kumpula; Dorothee Ehrich; Agata Buchwal; Agata Buchwal; Elina Kaarlejärvi; Elina Kaarlejärvi; Toke T. Høye; Martin Hallinger; Vitali Zverev; Milena Holmgren; Mariska te Beest; Eeva M. Soininen; Jean-Pierre Tremblay; Kari Anne Bråthen; Sergey A. Uvarov; Natalya A. Sokolova; Elin Lindén; Judith Sitters; Judith Sitters; Isla H. Myers-Smith; Johan Olofsson; Katherine S. Christie; Eric Post; Cynthia Y.M.J.G. Lange; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Juul Limpens; Paul Grogan; Yulia V. Denisova; Tommi Andersson; Marc Macias-Fauria; David A. Watts; Heike Zimmermann; Adrian V. Rocha; Diane C. Huebner; Julia Boike; David S. Hik; Otso Suominen; Christine Urbanowicz; Isabel C. Barrio; Nikita Tananaev; Annika Hofgaard; Jelena Lange; Bruce C. Forbes; John P. Bryant; Lorna E. Street; Monique M. P. D. Heijmans; Mikhail V. Kozlov; Erik J. van Nieukerken; Niels Martin Schmidt;Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6--7% over the current levels with a 1 textdegreeC increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 63download downloads 63 Powered bymore_vert CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Frontiers Media SA Moa Edman; Claudia Frauen; Sandra-Esther Brunnabend; Kari Eilola; Sofia Saraiva; Vladimir Ryabchenko; Christian Dieterich; Anders Omstedt; Bärbel Müller-Karulis; Manja Placke; Matthias Gröger; Markus Meier; Markus Meier; Alexey Isaev; Michael Naumann; Ivan Kuznetsov; Madline Kniebusch; René Friedland; Bo G. Gustafsson; Bo G. Gustafsson; Erik Gustafsson; Oleg P. Savchuk; Helén Andersson; Thomas Neumann;Following earlier regional assessment studies, such as the Assessment of Climate Change for the Baltic Sea Basin and the North Sea Region Climate Change Assessment, knowledge acquired from available literature about future scenario simulations of biogeochemical cycles in the Baltic Sea and their uncertainties is assessed. The identification and reduction of uncertainties of scenario simulations are issues for marine management. For instance, it is important to know whether nutrient load abatement will meet its objectives of restored water quality status in future climate or whether additional measures are required. However, uncertainties are large and their sources need to be understood to draw conclusions about the effectiveness of measures. The assessment of sources of uncertainties in projections of biogeochemical cycles based on authors' own expert judgment suggests that the biggest uncertainties are caused by (1) unknown current and future bioavailable nutrient loads from land and atmosphere, (2) the experimental setup (including the spin up strategy), (3) differences between the projections of global and regional climate models, in particular, with respect to the global mean sea level rise and regional water cycle, (4) differing model-specific responses of the simulated biogeochemical cycles to long-term changes in external nutrient loads and climate of the Baltic Sea region, and (5) unknown future greenhouse gas emissions. Regular assessments of the models' skill (or quality compared to observations) for the Baltic Sea region and the spread in scenario simulations (differences among projected changes) as well as improvement of dynamical downscaling methods are recommended.
Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022Publisher:SEANOE Salgueiro, Emília; Magalhães, Vítor; Rebotim, Andreia; Matos, Lélia; Schweizer, Magali; Sousa, Fátima; González Martín, Maria; Batista, Luis Batista;doi: 10.17882/96495
The CARBO-ACID research cruise (EUROFLEETS+ SEA02_10) was carried out on the RV Ramón Margalef between August 2nd and August 11st, with departing from Vigo – Spain and ending in Lisbon – Portugal. The main objective of this cruise was to collect data and samples to study the potential effects of ocean acidification on carbonate marine organisms (coccolithophores, pteropods, planktonic and benthic foraminifera, and corals) along the Iberian margin. With this objective, oceanographic data and water samples, plankton, cold-water corals and sediment samples were collected during an upwelling season, along two transects coinciding with the two persistent upwelling filaments off the Iberia Margin: the Cape Finisterra and the Cape Roca. In this dataset is guiven all the acquired data recollected onboad. During the CARBO-ACID cruise we did a total of 7 stations, 4 stations along the Cape Finisterra transect (from W to E: CA3, CA2, CA7, CA8) and 3 stations at the Cape Roca (from W to E: CA6, CA5, CA4) transect (Fig). At each station we usually started with a multibeam survey, a CTD and Rosette cast. These initial operations allowed to identify the different water masses present in this area, characterize their physical properties and to recover seawater samples at specific depth levels. The seawater samples were onboard subsampled, preserved in cold conditions or with chemicals and/ or filtered for several further analysis in the shore-based laboratories: DNA, chlorophyll, fitoplankton, coccolithophores, pH, alkalinity, stable isotopic composition, trace elements concentration and Suspend Particulate Matter. Subsequently to these operations, at each station, two vertical tows with a plankton multinet (with 5 nets) were done on the top 700 m of the water column to sample the planktonic communities of the different water depths. After this, sediment samples were recovered with a box-corer to study the past oceanographic conditions, between the pre-industrial Era and the Present, with multi-proxies used in paleoceanography and sedimentology. A total of 10 box-cores were recollected and each of them was onboard sub-sampled for eDNA, enzymes and benthic foraminifera. Fifteen shipek grab samples were recollected at the Fontanelas seamount (Estremadura Spur), station CA6, to characterize the sedimentary cover and to evaluate the presence of deep cold-water corals. Preliminary results show that the stations CA7, CA8 and CA4, located close to the coast, as expected, are the most influenced by the coastal upwelling, exhibiting colder surface water, higher values of fluorescence, and more zooplankton content reflecting higher phyto-zooplankton concentrations, as typical of the upwelling waters. At station CA4 temperature was higher and fluorescence showed lower values, indicative of less phytoplankton, and interpreted as indicating a different upwelling source water from that upwelled further north. Based on the CTD data, the Cape Roca transect is more influenced by the subtropical East North Atlantic Central Water (ENACWst), while the Cape Finisterra transect is more under the influence of the subpolar branch (ENACWsp). Seafloor sediment samples showed significant differences between the stations. Along the northern transect (Cape Finisterra) the seafloor sediments show an increase in grain size from the offshore to the coast. The offshore stations CA3 and CA2 revealed finer grained sediments, CA8 were composed of coarser sand and the station CA7, the shallowest station 77 m, presented the sediment composed mainly of shell fragments and coarse grain sand. Along the southern transect (Cape Roca), the offshore station CA6 (Fontanelas seamount) has coarser sandy sediments with rock clasts and cold-water coral fragments, and the stations CA5 and CA4 with fine sand to muddy sediments. The detailed CA6 bathymetry allowed to verify the existence of small plateaus on the slope of the Fontanelas seamount, where the fossil cold-water corals fragments were found, suggesting that this area is a very interesting system deserving further study with a ROV, and to characterize the corals fields and verify if there are live corals. These recollected data and samples will allow not only to reconstruct the pH variability under different environmental conditions, but also to estimate the biogeochemical changes along the coastal ocean waters as the anthropogenic influence increases. These results will contribute to better understand and model the effects on the biota under the future expected oceans pH changes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/96495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/96495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Audiovisual 2021Embargo end date: 24 Sep 2021Publisher:Underline Science Inc. Authors: 3rd World Seabird Conference 2021; Power, Andrew;doi: 10.48448/f55t-rj06
Abstract: The Northern Gannet Morus bossanus is an avian sentinel; the largest breeding seabird in Ireland and an obligate piscivore. Gannet eggs were collected from two island colonies off the east coast of Ireland, approximately 150km from each other, in locations with divergent history of industrialization (n = 10-20). Levels of potentially harmful contaminants including Polychlorinated biphenyls (PCBs), Polybrominated diphenyl ethers (PBDEs), Organochlorine pesticides (OCs), heavy metals and mercury were measured and differences of contaminant concentrations between different colonies compared. This is the first such study of contaminant levels in Gannet, or in any seabird egg in Ireland. Stable isotopes of carbon (d13C) and nitrogen (d15N) were measured in each egg to understand the influence of diet in contaminant levels detected. Significantly higher levels of PCBs, PBDEs and mercury were detected near Dublin (Ireland's industrialized capital city and location of its largest port) compared to Wexford. No differences were observed in levels of OCs and heavy metals between the two colonies. Stable isotope analysis demonstrated that Gannets in both locations occupy the same dietary niche excluding a difference in diet as the driver of differing contaminant levels in the two feeding areas. Though Gannets travel significant distances when foraging for food (~200km) tracking studies have shown that Gannets colonies maintain exclusive feeding areas with little overlap between neighbouring colonies. Differences between colonies within the feeding range of Gannets can therefore be detected despite Gannet's high dispersal ability. These results are in concurrence with elevated levels of contaminants in lower trophic level organisms that have been found in Dublin Bay compared to the rest of Ireland, indicating potential for Gannets as a higher trophic level indicator - though variability in their diet, including feeding on fishing discard, may lead to unacceptable levels of variability for an indicator species. Authors: Andrew Power��, Philip White��, Brendan McHugh��, Sinead Murphy��, Simon Berrow��, Moira Schlingermann��, Stephen Newton��, Linda O'Hea��, Brian Boyle��, Marissa Tannian��, Denis Crowley��, Evin McGovern��, Ian O'Connor�� ��Galway Mayo Institute of Technology, ��Marine Institute, ��BirdWatch Ireland
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48448/f55t-rj06&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48448/f55t-rj06&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Embargo end date: 01 Jan 2014 Switzerland, Germany, Netherlands, DenmarkPublisher:Copernicus GmbH Funded by:NSERC, NSF | BE/CBC: Biocomplexity Ass..., NSF | Fire in Northern Alaska: ... +4 projectsNSERC ,NSF| BE/CBC: Biocomplexity Associated with the Response of Tundra Carbon Balance to Warming and Drying Across Multiple Spatial and Temporal Scales ,NSF| Fire in Northern Alaska: Effect of a Changing Disturbance Regime on a Regional Macrosystem ,RCN| Greenhouse gases in the North: from local to regional scale ,NWO| Stability of carbon pools in far east Siberia ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,EC| GREENCYCLESIIAuthors: Birger Ulf Hansen; Marcin Jackowicz-Korczynski; Torsten Sachs; Peter M. Lafleur; +16 AuthorsBirger Ulf Hansen; Marcin Jackowicz-Korczynski; Torsten Sachs; Peter M. Lafleur; Torben R. Christensen; Torben R. Christensen; Walter C. Oechel; Lars Kutzbach; Adrian V. Rocha; Werner Eugster; Magnus Lund; M. K. van der Molen; Mika Aurela; Thomas Friborg; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Elyn Humphreys; Daniel P. Rasse; Mikkel P. Tamstorf; Herbert N. Mbufong;Abstract. This paper aims to assess the spatial variability in the response of CO2 exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC) parameters. This investigation allows us to better understand the future response of Arctic tundra under climatic change. Peak season data were collected during different years (between 1998 and 2010) using the micrometeorological eddy covariance technique from 12 circumpolar Arctic tundra sites, in the range of 64–74° N. The LRCs were generated for 14 days with peak net ecosystem exchange (NEE) using an NEE–irradiance model. Parameters from LRCs represent site-specific traits and characteristics describing the following: (a) NEE at light saturation (Fcsat), (b) dark respiration (Rd), (c) light use efficiency (α), (d) NEE when light is at 1000 μmol m−2 s−1 (Fc1000), (e) potential photosynthesis at light saturation (Psat) and (f) the light compensation point (LCP). Parameterization of LRCs was successful in predicting CO2 flux dynamics across the Arctic tundra. We did not find any trends in LRC parameters across the whole Arctic tundra but there were indications for temperature and latitudinal differences within sub-regions like Russia and Greenland. Together, leaf area index (LAI) and July temperature had a high explanatory power of the variance in assimilation parameters (Fcsat, Fc1000 and Psat, thus illustrating the potential for upscaling CO2 exchange for the whole Arctic tundra. Dark respiration was more variable and less correlated to environmental drivers than were assimilation parameters. This indicates the inherent need to include other parameters such as nutrient availability, substrate quantity and quality in flux monitoring activities.
GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type , Conference object 2018 FrancePublisher:Springer International Publishing Funded by:EC | BAMMBOEC| BAMMBOAuthors: Perez-Lopez, Paula; Feijoo, Gumersindo,; Moreira, Maria;The biotechnological development has traditionally focused on the compliance with regulatory demands rather than optimising the processes or analysing their sustainability. This work proposes the combination of available tools for the comprehensive sustainability assessment of a blue biotechnology process based on the cultivation of the microalgae Haematococcus pluvialis. The work aims to include environmental, economic and social dimensions to measure the sustainability of the production of a carotenoid with potential applications in food, nutraceutical, cosmetics and eventually pharmaceutical industries. Electricity for cultivation was identified as the major contributor to the environmental impacts, which depended significantly on the production scale. Social benefits were mainly related to workers and consumers, while the economic assessment suggested a profitable process with a relatively short period to recover the initial investment.
Hyper Article en Lig... arrow_drop_down MINES ParisTech: Open Archive (HAL)Part of book or chapter of book . 2018Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://hal-mines-paristech.ar...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverConference object . 2017Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2018Mémoires en Sciences de l'Information et de la CommunicationConference object . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-66981-6_53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down MINES ParisTech: Open Archive (HAL)Part of book or chapter of book . 2018Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://hal-mines-paristech.ar...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverConference object . 2017Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2018Mémoires en Sciences de l'Information et de la CommunicationConference object . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-66981-6_53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Wiley Funded by:EC | COEXIST, EC | VECTORS, UKRI | Integrating Macroecology ...EC| COEXIST ,EC| VECTORS ,UKRI| Integrating Macroecology and Modelling to Elucidate Regulation of Services from Ecosystems (IMMERSE)Jose A. Fernandes; Gerrit Hendriksen; Marie Maar; Icarus Allen; Katell G. Hamon; Miranda C. Jones; Myron A. Peck; Willem Stolte; Lorna R. Teal; Anne F. Sell; Paul J. Somerfield; Ana M. Queirós; Melanie C. Austen; Paul Marchal; Manuel Barange; Friedemann Keyl; Susan Kay; Klaus B. Huebert; Klaus B. Huebert; Youen Vermard;doi: 10.1111/gcb.13423
pmid: 27396719
AbstractThe Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field and that protected areas cannot address climate change may be oversimplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta‐analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially explicit manner and then co‐mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem‐level vulnerability to CCOA, but disregard how species may redistribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long‐term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate‐ready and ecosystem‐level policy options for conservation, suitable for changing oceans.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BY NCData sources: CORE (RIOXX-UK Aggregator)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 2 Powered bymore_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BY NCData sources: CORE (RIOXX-UK Aggregator)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 France, ItalyPublisher:Public Library of Science (PLoS) Barra, Marco; Petitgas, Pierre; Bonanno, Angelo; Somarakis, Stylianos; Woillez, Mathieu; Machias, Athanasios; Mazzola, Salvatore; Basilone, Gualtiero; Giannoulaki, Marianna;Geostatistical techniques were applied and a series of spatial indicators were calculated (occupation, aggregation, location, dispersion, spatial autocorrelation and overlap) to characterize the spatial distributions of European anchovy and sardine during summer. Two ecosystems were compared for this purpose, both located in the Mediterranean Sea: the Strait of Sicily (upwelling area) and the North Aegean Sea (continental shelf area, influenced by freshwater). Although the biomass of anchovy and sardine presented high interannual variability in both areas, the location of the centres of gravity and the main spatial patches of their populations were very similar between years. The size of the patches representing the dominant part of the abundance (80%) was mostly ecosystem- and species-specific. Occupation (area of presence) appears to be shaped by the extent of suitable habitats in each ecosystem whereas aggregation patterns (how the populations are distributed within the area of presence) were species-specific and related to levels of population biomass. In the upwelling area, both species showed consistently higher occupation values compared to the continental shelf area. Certain characteristics of the spatial distribution of sardine (e.g. spreading area, overlapping with anchovy) differed substantially between the two ecosystems. Principal component analysis of geostatistical and spatial indicators revealed that biomass was significantly related to a suite of, rather than single, spatial indicators. At the spatial scale of our study, strong correlations emerged between biomass and the first principal component axis with highly positive loadings for occupation, aggregation and patchiness, independently of species and ecosystem. Overlapping between anchovy and sardine increased with the increase of sardine biomass but decreased with the increase of anchovy. This contrasting pattern was attributed to the location of the respective major patches combined with the specific occupation patterns of the two species. The potential use of spatial indices as auxiliary stock monitoring indicators is discussed.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0135808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 3 Powered bymore_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0135808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Springer Science and Business Media LLC Séverine Jean; Séverine Jean; Julie Canal; Julie Canal; Allison Gandar; Allison Gandar; Pascal Laffaille; Pascal Laffaille; Nathalie Marty-Gasset; Nathalie Marty-Gasset; Franck Gilbert; Franck Gilbert;pmid: 26272290
Crossed effects between climate change and chemical pollutions were identified on community structure and ecosystem functioning. Temperature rising affects the toxic properties of pollutants and the sensitiveness of organisms to chemicals stress. Inversely, chemical exposure may decrease the capacity of organisms to respond to environmental changes. The aim of our study was to assess the individual and crossed effects of temperature rising and pesticide contamination on fish. Goldfish, Carassius auratus, were exposed during 96 h at two temperatures (22 and 32 °C) to a mixture of common pesticides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin, and tebuconazol) at two environmentally relevant concentrations (total concentrations MIX1 = 8.4 μg L(-1) and MIX2 = 42 μg L(-1)). We investigated the sediment reworking behavior, which has a major ecological functional role. We also focused on three physiological traits from the cellular up to the whole individual level showing metabolic status of fish (protein concentration in liver and muscle, hepatosomatic index, and Fulton's condition factor). Individual thermal stress and low concentrations of pesticides decreased the sediment reworking activity of fish and entrained metabolic compensation with global depletion in energy stores. We found that combined chemical and thermal stresses impaired the capacity of fish to set up an efficient adaptive response. Our results strongly suggest that temperature will make fish more sensitive to water contamination by pesticides, raising concerns about wild fish conservation submitted to global changes.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2016 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01449184Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverEnvironmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5147-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 37 citations 37 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 158visibility views 158 download downloads 490 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2016 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01449184Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverEnvironmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5147-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Qatar, Norway, United Kingdom, Denmark, Qatar, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSERC, UKRI | The role of Arctic sea ic..., AKA | RESILIENCE IN SOCIAL-ECOL... +6 projectsNSERC ,UKRI| The role of Arctic sea ice in climatic and ecological processes ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,RCN| Understanding ecosystem functionality, expansion and retreat of species in the Scandinavian mountain tundra under multiple drivers of change ,UKRI| Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,[no funder available] ,EC| INTERACT ,NWO| Feedbacks of vegetation change to permafrost thawing, soil nutrient availability and carbon storage in tundra ecosystemsSigne Normand; Maite Gartzia; Philip A. Wookey; Maja K. Sundqvist; Maja K. Sundqvist; Martin Wilmking; Juha M. Alatalo; Alexander Sokolov; James D. M. Speed; Anna Skoracka; Dagmar Egelkraut; Lee Ann Fishback; Ashley L. Asmus; C. Guillermo Bueno; Timo Kumpula; Dorothee Ehrich; Agata Buchwal; Agata Buchwal; Elina Kaarlejärvi; Elina Kaarlejärvi; Toke T. Høye; Martin Hallinger; Vitali Zverev; Milena Holmgren; Mariska te Beest; Eeva M. Soininen; Jean-Pierre Tremblay; Kari Anne Bråthen; Sergey A. Uvarov; Natalya A. Sokolova; Elin Lindén; Judith Sitters; Judith Sitters; Isla H. Myers-Smith; Johan Olofsson; Katherine S. Christie; Eric Post; Cynthia Y.M.J.G. Lange; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Juul Limpens; Paul Grogan; Yulia V. Denisova; Tommi Andersson; Marc Macias-Fauria; David A. Watts; Heike Zimmermann; Adrian V. Rocha; Diane C. Huebner; Julia Boike; David S. Hik; Otso Suominen; Christine Urbanowicz; Isabel C. Barrio; Nikita Tananaev; Annika Hofgaard; Jelena Lange; Bruce C. Forbes; John P. Bryant; Lorna E. Street; Monique M. P. D. Heijmans; Mikhail V. Kozlov; Erik J. van Nieukerken; Niels Martin Schmidt;Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6--7% over the current levels with a 1 textdegreeC increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 63download downloads 63 Powered bymore_vert CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Frontiers Media SA Moa Edman; Claudia Frauen; Sandra-Esther Brunnabend; Kari Eilola; Sofia Saraiva; Vladimir Ryabchenko; Christian Dieterich; Anders Omstedt; Bärbel Müller-Karulis; Manja Placke; Matthias Gröger; Markus Meier; Markus Meier; Alexey Isaev; Michael Naumann; Ivan Kuznetsov; Madline Kniebusch; René Friedland; Bo G. Gustafsson; Bo G. Gustafsson; Erik Gustafsson; Oleg P. Savchuk; Helén Andersson; Thomas Neumann;Following earlier regional assessment studies, such as the Assessment of Climate Change for the Baltic Sea Basin and the North Sea Region Climate Change Assessment, knowledge acquired from available literature about future scenario simulations of biogeochemical cycles in the Baltic Sea and their uncertainties is assessed. The identification and reduction of uncertainties of scenario simulations are issues for marine management. For instance, it is important to know whether nutrient load abatement will meet its objectives of restored water quality status in future climate or whether additional measures are required. However, uncertainties are large and their sources need to be understood to draw conclusions about the effectiveness of measures. The assessment of sources of uncertainties in projections of biogeochemical cycles based on authors' own expert judgment suggests that the biggest uncertainties are caused by (1) unknown current and future bioavailable nutrient loads from land and atmosphere, (2) the experimental setup (including the spin up strategy), (3) differences between the projections of global and regional climate models, in particular, with respect to the global mean sea level rise and regional water cycle, (4) differing model-specific responses of the simulated biogeochemical cycles to long-term changes in external nutrient loads and climate of the Baltic Sea region, and (5) unknown future greenhouse gas emissions. Regular assessments of the models' skill (or quality compared to observations) for the Baltic Sea region and the spread in scenario simulations (differences among projected changes) as well as improvement of dynamical downscaling methods are recommended.
Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu