- home
- Search
- Energy Research
- 13. Climate action
- 11. Sustainability
- 3. Good health
- RU
- UA
- European Marine Science
- Energy Research
- 13. Climate action
- 11. Sustainability
- 3. Good health
- RU
- UA
- European Marine Science
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Embargo end date: 01 Jan 2014 Switzerland, Germany, Netherlands, DenmarkPublisher:Copernicus GmbH Funded by:NSERC, NSF | BE/CBC: Biocomplexity Ass..., NSF | Fire in Northern Alaska: ... +4 projectsNSERC ,NSF| BE/CBC: Biocomplexity Associated with the Response of Tundra Carbon Balance to Warming and Drying Across Multiple Spatial and Temporal Scales ,NSF| Fire in Northern Alaska: Effect of a Changing Disturbance Regime on a Regional Macrosystem ,RCN| Greenhouse gases in the North: from local to regional scale ,NWO| Stability of carbon pools in far east Siberia ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,EC| GREENCYCLESIIAuthors: Birger Ulf Hansen; Marcin Jackowicz-Korczynski; Torsten Sachs; Peter M. Lafleur; +16 AuthorsBirger Ulf Hansen; Marcin Jackowicz-Korczynski; Torsten Sachs; Peter M. Lafleur; Torben R. Christensen; Torben R. Christensen; Walter C. Oechel; Lars Kutzbach; Adrian V. Rocha; Werner Eugster; Magnus Lund; M. K. van der Molen; Mika Aurela; Thomas Friborg; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Elyn Humphreys; Daniel P. Rasse; Mikkel P. Tamstorf; Herbert N. Mbufong;Abstract. This paper aims to assess the spatial variability in the response of CO2 exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC) parameters. This investigation allows us to better understand the future response of Arctic tundra under climatic change. Peak season data were collected during different years (between 1998 and 2010) using the micrometeorological eddy covariance technique from 12 circumpolar Arctic tundra sites, in the range of 64–74° N. The LRCs were generated for 14 days with peak net ecosystem exchange (NEE) using an NEE–irradiance model. Parameters from LRCs represent site-specific traits and characteristics describing the following: (a) NEE at light saturation (Fcsat), (b) dark respiration (Rd), (c) light use efficiency (α), (d) NEE when light is at 1000 μmol m−2 s−1 (Fc1000), (e) potential photosynthesis at light saturation (Psat) and (f) the light compensation point (LCP). Parameterization of LRCs was successful in predicting CO2 flux dynamics across the Arctic tundra. We did not find any trends in LRC parameters across the whole Arctic tundra but there were indications for temperature and latitudinal differences within sub-regions like Russia and Greenland. Together, leaf area index (LAI) and July temperature had a high explanatory power of the variance in assimilation parameters (Fcsat, Fc1000 and Psat, thus illustrating the potential for upscaling CO2 exchange for the whole Arctic tundra. Dark respiration was more variable and less correlated to environmental drivers than were assimilation parameters. This indicates the inherent need to include other parameters such as nutrient availability, substrate quantity and quality in flux monitoring activities.
GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Qatar, Norway, United Kingdom, Denmark, Qatar, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSERC, UKRI | The role of Arctic sea ic..., AKA | RESILIENCE IN SOCIAL-ECOL... +6 projectsNSERC ,UKRI| The role of Arctic sea ice in climatic and ecological processes ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,RCN| Understanding ecosystem functionality, expansion and retreat of species in the Scandinavian mountain tundra under multiple drivers of change ,UKRI| Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,[no funder available] ,EC| INTERACT ,NWO| Feedbacks of vegetation change to permafrost thawing, soil nutrient availability and carbon storage in tundra ecosystemsSigne Normand; Maite Gartzia; Philip A. Wookey; Maja K. Sundqvist; Maja K. Sundqvist; Martin Wilmking; Juha M. Alatalo; Alexander Sokolov; James D. M. Speed; Anna Skoracka; Dagmar Egelkraut; Lee Ann Fishback; Ashley L. Asmus; C. Guillermo Bueno; Timo Kumpula; Dorothee Ehrich; Agata Buchwal; Agata Buchwal; Elina Kaarlejärvi; Elina Kaarlejärvi; Toke T. Høye; Martin Hallinger; Vitali Zverev; Milena Holmgren; Mariska te Beest; Eeva M. Soininen; Jean-Pierre Tremblay; Kari Anne Bråthen; Sergey A. Uvarov; Natalya A. Sokolova; Elin Lindén; Judith Sitters; Judith Sitters; Isla H. Myers-Smith; Johan Olofsson; Katherine S. Christie; Eric Post; Cynthia Y.M.J.G. Lange; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Juul Limpens; Paul Grogan; Yulia V. Denisova; Tommi Andersson; Marc Macias-Fauria; David A. Watts; Heike Zimmermann; Adrian V. Rocha; Diane C. Huebner; Julia Boike; David S. Hik; Otso Suominen; Christine Urbanowicz; Isabel C. Barrio; Nikita Tananaev; Annika Hofgaard; Jelena Lange; Bruce C. Forbes; John P. Bryant; Lorna E. Street; Monique M. P. D. Heijmans; Mikhail V. Kozlov; Erik J. van Nieukerken; Niels Martin Schmidt;Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6--7% over the current levels with a 1 textdegreeC increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 63download downloads 63 Powered bymore_vert CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Frontiers Media SA Moa Edman; Claudia Frauen; Sandra-Esther Brunnabend; Kari Eilola; Sofia Saraiva; Vladimir Ryabchenko; Christian Dieterich; Anders Omstedt; Bärbel Müller-Karulis; Manja Placke; Matthias Gröger; Markus Meier; Markus Meier; Alexey Isaev; Michael Naumann; Ivan Kuznetsov; Madline Kniebusch; René Friedland; Bo G. Gustafsson; Bo G. Gustafsson; Erik Gustafsson; Oleg P. Savchuk; Helén Andersson; Thomas Neumann;Following earlier regional assessment studies, such as the Assessment of Climate Change for the Baltic Sea Basin and the North Sea Region Climate Change Assessment, knowledge acquired from available literature about future scenario simulations of biogeochemical cycles in the Baltic Sea and their uncertainties is assessed. The identification and reduction of uncertainties of scenario simulations are issues for marine management. For instance, it is important to know whether nutrient load abatement will meet its objectives of restored water quality status in future climate or whether additional measures are required. However, uncertainties are large and their sources need to be understood to draw conclusions about the effectiveness of measures. The assessment of sources of uncertainties in projections of biogeochemical cycles based on authors' own expert judgment suggests that the biggest uncertainties are caused by (1) unknown current and future bioavailable nutrient loads from land and atmosphere, (2) the experimental setup (including the spin up strategy), (3) differences between the projections of global and regional climate models, in particular, with respect to the global mean sea level rise and regional water cycle, (4) differing model-specific responses of the simulated biogeochemical cycles to long-term changes in external nutrient loads and climate of the Baltic Sea region, and (5) unknown future greenhouse gas emissions. Regular assessments of the models' skill (or quality compared to observations) for the Baltic Sea region and the spread in scenario simulations (differences among projected changes) as well as improvement of dynamical downscaling methods are recommended.
Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 New Zealand, Denmark, Spain, United States, New ZealandPublisher:American Association for the Advancement of Science (AAAS) Wu-Bing Xu; Wen-Yong Guo; Josep M. Serra-Diaz; Franziska Schrodt; Wolf L. Eiserhardt; Brian J. Enquist; Brian S. Maitner; Cory Merow; Cyrille Violle; Madhur Anand; Michaël Belluau; Hans Henrik Bruun; Chaeho Byun; Jane A. Catford; Bruno E. L. Cerabolini; Eduardo Chacón-Madrigal; Daniela Ciccarelli; J. Hans C. Cornelissen; Anh Tuan Dang-Le; Angel de Frutos; Arildo S. Dias; Aelton B. Giroldo; Alvaro G. Gutiérrez; Wesley Hattingh; Tianhua He; Peter Hietz; Nate Hough-Snee; Steven Jansen; Jens Kattge; Benjamin Komac; Nathan J. B. Kraft; Koen Kramer; Sandra Lavorel; Christopher H. Lusk; Adam R. Martin; Ke-Ping Ma; Maurizio Mencuccini; Sean T. Michaletz; Vanessa Minden; Akira S. Mori; Ülo Niinemets; Yusuke Onoda; Renske E. Onstein; Josep Peñuelas; Valério D. Pillar; Jan Pisek; Matthew J. Pound; Bjorn J. M. Robroek; Brandon Schamp; Martijn Slot; Miao Sun; Ênio E. Sosinski; Nadejda A. Soudzilovskaia; Nelson Thiffault; Peter M. van Bodegom; Fons van der Plas; Jingming Zheng; Jens-Christian Svenning; Alejandro Ordonez;As Earth’s climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.
The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United Kingdom, Spain, France, FinlandPublisher:Wiley Publicly fundedAuthors: Otero, Jaime; L'Abée-Lund, Jan Henning; Castro-Santos, Ted; Leonardsson, Kjell; +42 AuthorsOtero, Jaime; L'Abée-Lund, Jan Henning; Castro-Santos, Ted; Leonardsson, Kjell; Storvik, Geir O.; Jonsson, Bror; Dempson, Brian; Russell, Ian C.; Jensen, Arne J.; Baglinière, Jean-Luc; Dionne, Mélanie; Armstrong, John D.; Romakkaniemi, Atso; Letcher, Benjamin H.; Kocik, John F.; Erkinaro, Jaakko; Poole, Russell; Rogan, Ger; Lundqvist, Hans; MacLean, Julian C.; Jokikokko, Erkki; Arnekleiv, Jo Vegar; Kennedy, Richard J.; Niemelä, Eero; Caballero, Pablo; Music, Paul A.; Antonsson, Thorolfur; Gudjonsson, Sigurdur; Veselov, Alexey E.; Lamberg, Anders; Groom, Steve; Taylor, Benjamin H.; Taberner, Malcolm; Dillane, Mary; Arnason, Fridthjofur; Horton, Gregg; Hvidsten, Nils A.; Jonsson, Ingi R.; Jonsson, Nina; McKelvey, Simon; Næsje, Tor F.; Skaala, Øystein; Smith, Gordon W.; Sægrov, Harald; Stenseth, Nils C.; Vøllestad, Leif Asbjørn;AbstractMigrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) emigrate from freshwater nursery areas during spring and early summer to feed and grow in the North Atlantic Ocean. The transition from the freshwater (‘parr’) stage to the migratory stage where they descend streams and enter salt water (‘smolt’) is characterized by morphological, physiological and behavioural changes where the timing of this parr‐smolt transition is cued by photoperiod and water temperature. Environmental conditions in the freshwater habitat control the downstream migration and contribute to within‐ and among‐river variation in migratory timing. Moreover, the timing of the freshwater emigration has likely evolved to meet environmental conditions in the ocean as these affect growth and survival of the post‐smolts. Using generalized additive mixed‐effects modelling, we analysed spatio‐temporal variations in the dates of downstream smolt migration in 67 rivers throughout the North Atlantic during the last five decades and found that migrations were earlier in populations in the east than the west. After accounting for this spatial effect, the initiation of the downstream migration among rivers was positively associated with freshwater temperatures, up to about 10 °C and levelling off at higher values, and with sea‐surface temperatures. Earlier migration occurred when river discharge levels were low but increasing. On average, the initiation of the smolt seaward migration has occurred 2.5 days earlier per decade throughout the basin of the North Atlantic. This shift in phenology matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to the current global climate changes.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 168 citations 168 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 33visibility views 33 download downloads 68 Powered bymore_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Guido Grosse; Vladimir E. Romanovsky; Vladimir E. Romanovsky; Hélène Genet; Eugénie S. Euskirchen; Kenneth M. Hinkel; Mark J. Lara; A. David McGuire; W. Robert Bolton; Alexei N. Skurikhin; Craig E. Tweedie;doi: 10.1111/gcb.12757
pmid: 25258295
AbstractThe landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice‐wedge polygonal tundra that spans drained thaw‐lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw‐lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30 × 30 m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our ~1800 km² study area composed of ten classes; drained slope, high center polygon, flat‐center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land‐atmosphere CO2 and CH4 flux data were collected for the summers of 2006–2010 at eighty‐two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at ‐902.3 106gC‐CO2 day−1 (uncertainty using 95% CI is between −438.3 and −1366 106gC‐CO2 day−1) and CH4 flux at 28.9 106gC‐CH4 day−1(uncertainty using 95% CI is between 12.9 and 44.9 106gC‐CH4 day−1), (ii) one century of future landscape change associated with the thaw‐lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2 uptake (−166.9 106gC‐CO2 day−1) and CH4 flux (2.8 106gC‐CH4 day−1) with geomorphic change from low to high center polygons, cumulatively resulting in an estimated negative feedback to warming during peak growing season.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 100 citations 100 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NorwayPublisher:IOP Publishing Funded by:RSF | Share of the deep-Earth m...RSF| Share of the deep-Earth methane and the biogeochemical cycle in permafrost zoneJay P. Zarnetske; Sebastian Westermann; Brett F. Thornton; Miriam C. Jones; Kathryn M. Schreiner; Jorien E. Vonk; Sayedeh Sara Sayedi; Robie W. Macdonald; Cuicui Mu; Paul Overduin; Benjamin W. Abbott; Gleb Kraev; Gleb Kraev; A. David McGuire; Edward A. G. Schuur; Jennifer M. Frederick; Matt O'Regan; Annie Bourbonnais; Nikita Demidov; Christian Stranne; Tingjun Zhang; Martin Jakobsson; A. A. Vasiliev; Brian Brown; DongJoo Joung; Rebecca J. Frei; Anatoly Gavrilov; Gustaf Hugelius; Shengping He; Sarah Baeumler; Christina Schädel; Elena Pizhankova; Mehran Ghandehari;handle: 11250/2762390 , 10852/83674
Abstract The continental shelves of the Arctic Ocean and surrounding seas contain large stocks of organic matter (OM) and methane (CH4), representing a potential ecosystem feedback to climate change not included in international climate agreements. We performed a structured expert assessment with 25 permafrost researchers to combine quantitative estimates of the stocks and sensitivity of organic carbon in the subsea permafrost domain (i.e. unglaciated portions of the continental shelves exposed during the last glacial period). Experts estimated that the subsea permafrost domain contains ∼560 gigatons carbon (GtC; 170–740, 90% confidence interval) in OM and 45 GtC (10–110) in CH4. Current fluxes of CH4 and carbon dioxide (CO2) to the water column were estimated at 18 (2–34) and 38 (13–110) megatons C yr−1, respectively. Under Representative Concentration Pathway (RCP) RCP8.5, the subsea permafrost domain could release 43 Gt CO2-equivalent (CO2e) by 2100 (14–110) and 190 Gt CO2e by 2300 (45–590), with ∼30% fewer emissions under RCP2.6. The range of uncertainty demonstrates a serious knowledge gap but provides initial estimates of the magnitude and timing of the subsea permafrost climate feedback.
University of Bergen... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2762390Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://urn.nb.no/URN:NBN:no-86405Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abcc29&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Bergen... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2762390Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://urn.nb.no/URN:NBN:no-86405Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abcc29&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Canada, Netherlands, CanadaPublisher:Schweizerbart Birgit Heim; N. V. Matveyeva; Stephan M. Hennekens; Marcel Buchhorn; Howard E. Epstein; Stephen S. Talbot; Lisa M. Wirth; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Amy L. Breen; D. Thannheiser; Donald A. Walker; Helga Bültmann; Esther Lévesque; Lennart Nilsen; Anna Maria Fosaa; L.A. Druckenmiller; Greg H. R. Henry; Fred J.A. Daniëls; P. J. Webber; Jozef Šibík; Starri Heidmarsson; William H. MacKenzie; Natalia Koroleva; Mikhail Telyatnikov; Martha K. Raynolds; Marilyn D. Walker; Ksenia Ermokhina; Volodya Razzhivin; Robert K. Peet;Aims: An Arctic Vegetation Classification (AVC) is needed to address issues related to rapid Arctic-wide changes to climate, land-use, and biodiversity. Location: The 7.1 million km2 Arctic tundra biome. Approach and conclusions: The purpose, scope and conceptual framework for an Arctic Vegetation Archive (AVA) and Classification (AVC) were developed during numerous workshops starting in 1992. The AVA and AVC are modeled after the European vegetation archive (EVA) and classification (EVC). The AVA will use Turboveg for data management. The AVC will use a Braun-Blanquet (Br.-Bl.) classification approach. There are approximately 31,000 Arctic plots that could be included in the AVA. An Alaska AVA (AVA-AK, 24 datasets, 3026 plots) is a prototype for archives in other parts of the Arctic. The plan is to eventually merge data from other regions of the Arctic into a single Turboveg v3 database. We present the pros and cons of using the Br.-Bl. classification approach compared to the EcoVeg (US) and Biogeoclimatic Ecological Classification (Canada) approaches. The main advantages are that the Br.-Bl. approach already has been widely used in all regions of the Arctic, and many described, well-accepted vegetation classes have a pan-Arctic distribution. A crosswalk comparison of Dryas octopetala communities described according to the EcoVeg and the Braun-Blanquet approaches indicates that the non-parallel hierarchies of the two approaches make crosswalks difficult above the plantcommunity level. A preliminary Arctic prodromus contains a list of typical Arctic habitat types with associated described syntaxa from Europe, Greenland, western North America, and Alaska. Numerical clustering methods are used to provide an overview of the variability of habitat types across the range of datasets and to determine their relationship to previously described Braun-Blanquet syntaxa. We emphasize the need for continued maintenance of the Pan-Arctic Species List, and additional plot data to fully sample the variability across bioclimatic subzones, phytogeographic regions, and habitats in the Arctic. This will require standardized methods of plot-data collection, inclusion of physiogonomic information in the numeric analysis approaches to create formal definitions for vegetation units, and new methods of data sharing between the AVA and national vegetation- plot databases.
Université du Québec... arrow_drop_down Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2018License: CC BY NCData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/phyto/2017/0192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Université du Québec... arrow_drop_down Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2018License: CC BY NCData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/phyto/2017/0192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, Portugal, FrancePublisher:Elsevier BV Funded by:[no funder available]Authors: Servili, Arianna; Canario, Adelino V. M.; Mouchel, Olivier; Antonio Munoz-Cueto, Jose;pmid: 32061640
Anthropogenic emissions of carbon dioxide in the atmosphere have generated rapid variations in atmospheric composition which drives major climate changes. Climate change related effects include changes in physico-chemical proprieties of sea and freshwater, such as variations in water temperature, salinity, pH/pCO2 and oxygen content, which can impact fish critical physiological functions including reproduction. In this context, the main aim of the present review is to discuss how climate change related effects (variation in water temperature and salinity, increases in duration and frequency of hypoxia events, water acidification) would impact reproduction by affecting the neuroendocrine axis (brain-pituitary-gonad axis). Variations in temperature and photoperiod regimes are known to strongly affect sex differentiation and the timing and phenology of spawning period in several fish species. Temperature mainly acts at the level of gonad by interfering with steroidogenesis, (notably on gonadal aromatase activity) and gametogenesis. Temperature is also directly involved in the quality of released gametes and embryos development. Changes in salinity or water acidification are especially associated with reduction of sperm quality and reproductive output. Hypoxia events are able to interact with gonad steroidogenesis by acting on the steroids precursor cholesterol availability or directly on aromatase action, with an impact on the quality of gametes and reproductive success. Climate change related effects on water parameters likely influence also the reproductive behavior of fish. Although the precise mechanisms underlying the regulation of these effects are not always understood, in this review we discuss different hypothesis and propose future research perspectives.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NCFull-Text: https://hal.science/hal-02933373Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020License: CC BY NCFull-Text: https://hal.science/hal-02933373Data sources: Bielefeld Academic Search Engine (BASE)General and Comparative EndocrinologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ygcen.2020.113439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 122visibility views 122 download downloads 78 Powered bymore_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NCFull-Text: https://hal.science/hal-02933373Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020License: CC BY NCFull-Text: https://hal.science/hal-02933373Data sources: Bielefeld Academic Search Engine (BASE)General and Comparative EndocrinologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ygcen.2020.113439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Public Library of Science (PLoS) Authors: Stefan Partelow; Klara Johanna Winkler; Gregory M. Thaler;Environmental non-governmental organizations (ENGOs) exist worldwide, and since the 1980s they have increasingly influenced global environmental politics and environmental discourse. We analyze an original dataset of 679 ENGOs participating in global environmental conventions in the mid-2010s, and we apply quantitative content analysis to ENGO mission statements to produce an inductive typology of global environmental discourse. Discourse categories are combined with ENGO attribute data to visualize the political topology of this globally-networked ENGO sector. Our results confirm some common assertions and provide new insights. ENGOs are more diverse than conventionally recognized. Quantitative evidence confirms strong North-South disparities in human and financial resources. Four primary discourses are identified: Environmental Management, Climate Politics, Environmental Justice, and Ecological Modernization. We compare our typology to existing literature, where Climate Politics and Environmental Justice are under-appreciated, and we discuss ways to expand on the data and methods of this study. Synoptic empirical ENGO research is essential to accurately understanding the ENGO sector and global environmental politics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0232945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0232945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Embargo end date: 01 Jan 2014 Switzerland, Germany, Netherlands, DenmarkPublisher:Copernicus GmbH Funded by:NSERC, NSF | BE/CBC: Biocomplexity Ass..., NSF | Fire in Northern Alaska: ... +4 projectsNSERC ,NSF| BE/CBC: Biocomplexity Associated with the Response of Tundra Carbon Balance to Warming and Drying Across Multiple Spatial and Temporal Scales ,NSF| Fire in Northern Alaska: Effect of a Changing Disturbance Regime on a Regional Macrosystem ,RCN| Greenhouse gases in the North: from local to regional scale ,NWO| Stability of carbon pools in far east Siberia ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,EC| GREENCYCLESIIAuthors: Birger Ulf Hansen; Marcin Jackowicz-Korczynski; Torsten Sachs; Peter M. Lafleur; +16 AuthorsBirger Ulf Hansen; Marcin Jackowicz-Korczynski; Torsten Sachs; Peter M. Lafleur; Torben R. Christensen; Torben R. Christensen; Walter C. Oechel; Lars Kutzbach; Adrian V. Rocha; Werner Eugster; Magnus Lund; M. K. van der Molen; Mika Aurela; Thomas Friborg; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Elyn Humphreys; Daniel P. Rasse; Mikkel P. Tamstorf; Herbert N. Mbufong;Abstract. This paper aims to assess the spatial variability in the response of CO2 exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC) parameters. This investigation allows us to better understand the future response of Arctic tundra under climatic change. Peak season data were collected during different years (between 1998 and 2010) using the micrometeorological eddy covariance technique from 12 circumpolar Arctic tundra sites, in the range of 64–74° N. The LRCs were generated for 14 days with peak net ecosystem exchange (NEE) using an NEE–irradiance model. Parameters from LRCs represent site-specific traits and characteristics describing the following: (a) NEE at light saturation (Fcsat), (b) dark respiration (Rd), (c) light use efficiency (α), (d) NEE when light is at 1000 μmol m−2 s−1 (Fc1000), (e) potential photosynthesis at light saturation (Psat) and (f) the light compensation point (LCP). Parameterization of LRCs was successful in predicting CO2 flux dynamics across the Arctic tundra. We did not find any trends in LRC parameters across the whole Arctic tundra but there were indications for temperature and latitudinal differences within sub-regions like Russia and Greenland. Together, leaf area index (LAI) and July temperature had a high explanatory power of the variance in assimilation parameters (Fcsat, Fc1000 and Psat, thus illustrating the potential for upscaling CO2 exchange for the whole Arctic tundra. Dark respiration was more variable and less correlated to environmental drivers than were assimilation parameters. This indicates the inherent need to include other parameters such as nutrient availability, substrate quantity and quality in flux monitoring activities.
GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Qatar, Norway, United Kingdom, Denmark, Qatar, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSERC, UKRI | The role of Arctic sea ic..., AKA | RESILIENCE IN SOCIAL-ECOL... +6 projectsNSERC ,UKRI| The role of Arctic sea ice in climatic and ecological processes ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,RCN| Understanding ecosystem functionality, expansion and retreat of species in the Scandinavian mountain tundra under multiple drivers of change ,UKRI| Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,[no funder available] ,EC| INTERACT ,NWO| Feedbacks of vegetation change to permafrost thawing, soil nutrient availability and carbon storage in tundra ecosystemsSigne Normand; Maite Gartzia; Philip A. Wookey; Maja K. Sundqvist; Maja K. Sundqvist; Martin Wilmking; Juha M. Alatalo; Alexander Sokolov; James D. M. Speed; Anna Skoracka; Dagmar Egelkraut; Lee Ann Fishback; Ashley L. Asmus; C. Guillermo Bueno; Timo Kumpula; Dorothee Ehrich; Agata Buchwal; Agata Buchwal; Elina Kaarlejärvi; Elina Kaarlejärvi; Toke T. Høye; Martin Hallinger; Vitali Zverev; Milena Holmgren; Mariska te Beest; Eeva M. Soininen; Jean-Pierre Tremblay; Kari Anne Bråthen; Sergey A. Uvarov; Natalya A. Sokolova; Elin Lindén; Judith Sitters; Judith Sitters; Isla H. Myers-Smith; Johan Olofsson; Katherine S. Christie; Eric Post; Cynthia Y.M.J.G. Lange; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Juul Limpens; Paul Grogan; Yulia V. Denisova; Tommi Andersson; Marc Macias-Fauria; David A. Watts; Heike Zimmermann; Adrian V. Rocha; Diane C. Huebner; Julia Boike; David S. Hik; Otso Suominen; Christine Urbanowicz; Isabel C. Barrio; Nikita Tananaev; Annika Hofgaard; Jelena Lange; Bruce C. Forbes; John P. Bryant; Lorna E. Street; Monique M. P. D. Heijmans; Mikhail V. Kozlov; Erik J. van Nieukerken; Niels Martin Schmidt;Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6--7% over the current levels with a 1 textdegreeC increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 63download downloads 63 Powered bymore_vert CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Frontiers Media SA Moa Edman; Claudia Frauen; Sandra-Esther Brunnabend; Kari Eilola; Sofia Saraiva; Vladimir Ryabchenko; Christian Dieterich; Anders Omstedt; Bärbel Müller-Karulis; Manja Placke; Matthias Gröger; Markus Meier; Markus Meier; Alexey Isaev; Michael Naumann; Ivan Kuznetsov; Madline Kniebusch; René Friedland; Bo G. Gustafsson; Bo G. Gustafsson; Erik Gustafsson; Oleg P. Savchuk; Helén Andersson; Thomas Neumann;Following earlier regional assessment studies, such as the Assessment of Climate Change for the Baltic Sea Basin and the North Sea Region Climate Change Assessment, knowledge acquired from available literature about future scenario simulations of biogeochemical cycles in the Baltic Sea and their uncertainties is assessed. The identification and reduction of uncertainties of scenario simulations are issues for marine management. For instance, it is important to know whether nutrient load abatement will meet its objectives of restored water quality status in future climate or whether additional measures are required. However, uncertainties are large and their sources need to be understood to draw conclusions about the effectiveness of measures. The assessment of sources of uncertainties in projections of biogeochemical cycles based on authors' own expert judgment suggests that the biggest uncertainties are caused by (1) unknown current and future bioavailable nutrient loads from land and atmosphere, (2) the experimental setup (including the spin up strategy), (3) differences between the projections of global and regional climate models, in particular, with respect to the global mean sea level rise and regional water cycle, (4) differing model-specific responses of the simulated biogeochemical cycles to long-term changes in external nutrient loads and climate of the Baltic Sea region, and (5) unknown future greenhouse gas emissions. Regular assessments of the models' skill (or quality compared to observations) for the Baltic Sea region and the spread in scenario simulations (differences among projected changes) as well as improvement of dynamical downscaling methods are recommended.
Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 New Zealand, Denmark, Spain, United States, New ZealandPublisher:American Association for the Advancement of Science (AAAS) Wu-Bing Xu; Wen-Yong Guo; Josep M. Serra-Diaz; Franziska Schrodt; Wolf L. Eiserhardt; Brian J. Enquist; Brian S. Maitner; Cory Merow; Cyrille Violle; Madhur Anand; Michaël Belluau; Hans Henrik Bruun; Chaeho Byun; Jane A. Catford; Bruno E. L. Cerabolini; Eduardo Chacón-Madrigal; Daniela Ciccarelli; J. Hans C. Cornelissen; Anh Tuan Dang-Le; Angel de Frutos; Arildo S. Dias; Aelton B. Giroldo; Alvaro G. Gutiérrez; Wesley Hattingh; Tianhua He; Peter Hietz; Nate Hough-Snee; Steven Jansen; Jens Kattge; Benjamin Komac; Nathan J. B. Kraft; Koen Kramer; Sandra Lavorel; Christopher H. Lusk; Adam R. Martin; Ke-Ping Ma; Maurizio Mencuccini; Sean T. Michaletz; Vanessa Minden; Akira S. Mori; Ülo Niinemets; Yusuke Onoda; Renske E. Onstein; Josep Peñuelas; Valério D. Pillar; Jan Pisek; Matthew J. Pound; Bjorn J. M. Robroek; Brandon Schamp; Martijn Slot; Miao Sun; Ênio E. Sosinski; Nadejda A. Soudzilovskaia; Nelson Thiffault; Peter M. van Bodegom; Fons van der Plas; Jingming Zheng; Jens-Christian Svenning; Alejandro Ordonez;As Earth’s climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.
The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United Kingdom, Spain, France, FinlandPublisher:Wiley Publicly fundedAuthors: Otero, Jaime; L'Abée-Lund, Jan Henning; Castro-Santos, Ted; Leonardsson, Kjell; +42 AuthorsOtero, Jaime; L'Abée-Lund, Jan Henning; Castro-Santos, Ted; Leonardsson, Kjell; Storvik, Geir O.; Jonsson, Bror; Dempson, Brian; Russell, Ian C.; Jensen, Arne J.; Baglinière, Jean-Luc; Dionne, Mélanie; Armstrong, John D.; Romakkaniemi, Atso; Letcher, Benjamin H.; Kocik, John F.; Erkinaro, Jaakko; Poole, Russell; Rogan, Ger; Lundqvist, Hans; MacLean, Julian C.; Jokikokko, Erkki; Arnekleiv, Jo Vegar; Kennedy, Richard J.; Niemelä, Eero; Caballero, Pablo; Music, Paul A.; Antonsson, Thorolfur; Gudjonsson, Sigurdur; Veselov, Alexey E.; Lamberg, Anders; Groom, Steve; Taylor, Benjamin H.; Taberner, Malcolm; Dillane, Mary; Arnason, Fridthjofur; Horton, Gregg; Hvidsten, Nils A.; Jonsson, Ingi R.; Jonsson, Nina; McKelvey, Simon; Næsje, Tor F.; Skaala, Øystein; Smith, Gordon W.; Sægrov, Harald; Stenseth, Nils C.; Vøllestad, Leif Asbjørn;AbstractMigrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) emigrate from freshwater nursery areas during spring and early summer to feed and grow in the North Atlantic Ocean. The transition from the freshwater (‘parr’) stage to the migratory stage where they descend streams and enter salt water (‘smolt’) is characterized by morphological, physiological and behavioural changes where the timing of this parr‐smolt transition is cued by photoperiod and water temperature. Environmental conditions in the freshwater habitat control the downstream migration and contribute to within‐ and among‐river variation in migratory timing. Moreover, the timing of the freshwater emigration has likely evolved to meet environmental conditions in the ocean as these affect growth and survival of the post‐smolts. Using generalized additive mixed‐effects modelling, we analysed spatio‐temporal variations in the dates of downstream smolt migration in 67 rivers throughout the North Atlantic during the last five decades and found that migrations were earlier in populations in the east than the west. After accounting for this spatial effect, the initiation of the downstream migration among rivers was positively associated with freshwater temperatures, up to about 10 °C and levelling off at higher values, and with sea‐surface temperatures. Earlier migration occurred when river discharge levels were low but increasing. On average, the initiation of the smolt seaward migration has occurred 2.5 days earlier per decade throughout the basin of the North Atlantic. This shift in phenology matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to the current global climate changes.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 168 citations 168 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 33visibility views 33 download downloads 68 Powered bymore_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Guido Grosse; Vladimir E. Romanovsky; Vladimir E. Romanovsky; Hélène Genet; Eugénie S. Euskirchen; Kenneth M. Hinkel; Mark J. Lara; A. David McGuire; W. Robert Bolton; Alexei N. Skurikhin; Craig E. Tweedie;doi: 10.1111/gcb.12757
pmid: 25258295
AbstractThe landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice‐wedge polygonal tundra that spans drained thaw‐lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw‐lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30 × 30 m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our ~1800 km² study area composed of ten classes; drained slope, high center polygon, flat‐center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land‐atmosphere CO2 and CH4 flux data were collected for the summers of 2006–2010 at eighty‐two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at ‐902.3 106gC‐CO2 day−1 (uncertainty using 95% CI is between −438.3 and −1366 106gC‐CO2 day−1) and CH4 flux at 28.9 106gC‐CH4 day−1(uncertainty using 95% CI is between 12.9 and 44.9 106gC‐CH4 day−1), (ii) one century of future landscape change associated with the thaw‐lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2 uptake (−166.9 106gC‐CO2 day−1) and CH4 flux (2.8 106gC‐CH4 day−1) with geomorphic change from low to high center polygons, cumulatively resulting in an estimated negative feedback to warming during peak growing season.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 100 citations 100 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NorwayPublisher:IOP Publishing Funded by:RSF | Share of the deep-Earth m...RSF| Share of the deep-Earth methane and the biogeochemical cycle in permafrost zoneJay P. Zarnetske; Sebastian Westermann; Brett F. Thornton; Miriam C. Jones; Kathryn M. Schreiner; Jorien E. Vonk; Sayedeh Sara Sayedi; Robie W. Macdonald; Cuicui Mu; Paul Overduin; Benjamin W. Abbott; Gleb Kraev; Gleb Kraev; A. David McGuire; Edward A. G. Schuur; Jennifer M. Frederick; Matt O'Regan; Annie Bourbonnais; Nikita Demidov; Christian Stranne; Tingjun Zhang; Martin Jakobsson; A. A. Vasiliev; Brian Brown; DongJoo Joung; Rebecca J. Frei; Anatoly Gavrilov; Gustaf Hugelius; Shengping He; Sarah Baeumler; Christina Schädel; Elena Pizhankova; Mehran Ghandehari;handle: 11250/2762390 , 10852/83674
Abstract The continental shelves of the Arctic Ocean and surrounding seas contain large stocks of organic matter (OM) and methane (CH4), representing a potential ecosystem feedback to climate change not included in international climate agreements. We performed a structured expert assessment with 25 permafrost researchers to combine quantitative estimates of the stocks and sensitivity of organic carbon in the subsea permafrost domain (i.e. unglaciated portions of the continental shelves exposed during the last glacial period). Experts estimated that the subsea permafrost domain contains ∼560 gigatons carbon (GtC; 170–740, 90% confidence interval) in OM and 45 GtC (10–110) in CH4. Current fluxes of CH4 and carbon dioxide (CO2) to the water column were estimated at 18 (2–34) and 38 (13–110) megatons C yr−1, respectively. Under Representative Concentration Pathway (RCP) RCP8.5, the subsea permafrost domain could release 43 Gt CO2-equivalent (CO2e) by 2100 (14–110) and 190 Gt CO2e by 2300 (45–590), with ∼30% fewer emissions under RCP2.6. The range of uncertainty demonstrates a serious knowledge gap but provides initial estimates of the magnitude and timing of the subsea permafrost climate feedback.
University of Bergen... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2762390Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://urn.nb.no/URN:NBN:no-86405Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abcc29&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Bergen... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2762390Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://urn.nb.no/URN:NBN:no-86405Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abcc29&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Canada, Netherlands, CanadaPublisher:Schweizerbart Birgit Heim; N. V. Matveyeva; Stephan M. Hennekens; Marcel Buchhorn; Howard E. Epstein; Stephen S. Talbot; Lisa M. Wirth; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Amy L. Breen; D. Thannheiser; Donald A. Walker; Helga Bültmann; Esther Lévesque; Lennart Nilsen; Anna Maria Fosaa; L.A. Druckenmiller; Greg H. R. Henry; Fred J.A. Daniëls; P. J. Webber; Jozef Šibík; Starri Heidmarsson; William H. MacKenzie; Natalia Koroleva; Mikhail Telyatnikov; Martha K. Raynolds; Marilyn D. Walker; Ksenia Ermokhina; Volodya Razzhivin; Robert K. Peet;Aims: An Arctic Vegetation Classification (AVC) is needed to address issues related to rapid Arctic-wide changes to climate, land-use, and biodiversity. Location: The 7.1 million km2 Arctic tundra biome. Approach and conclusions: The purpose, scope and conceptual framework for an Arctic Vegetation Archive (AVA) and Classification (AVC) were developed during numerous workshops starting in 1992. The AVA and AVC are modeled after the European vegetation archive (EVA) and classification (EVC). The AVA will use Turboveg for data management. The AVC will use a Braun-Blanquet (Br.-Bl.) classification approach. There are approximately 31,000 Arctic plots that could be included in the AVA. An Alaska AVA (AVA-AK, 24 datasets, 3026 plots) is a prototype for archives in other parts of the Arctic. The plan is to eventually merge data from other regions of the Arctic into a single Turboveg v3 database. We present the pros and cons of using the Br.-Bl. classification approach compared to the EcoVeg (US) and Biogeoclimatic Ecological Classification (Canada) approaches. The main advantages are that the Br.-Bl. approach already has been widely used in all regions of the Arctic, and many described, well-accepted vegetation classes have a pan-Arctic distribution. A crosswalk comparison of Dryas octopetala communities described according to the EcoVeg and the Braun-Blanquet approaches indicates that the non-parallel hierarchies of the two approaches make crosswalks difficult above the plantcommunity level. A preliminary Arctic prodromus contains a list of typical Arctic habitat types with associated described syntaxa from Europe, Greenland, western North America, and Alaska. Numerical clustering methods are used to provide an overview of the variability of habitat types across the range of datasets and to determine their relationship to previously described Braun-Blanquet syntaxa. We emphasize the need for continued maintenance of the Pan-Arctic Species List, and additional plot data to fully sample the variability across bioclimatic subzones, phytogeographic regions, and habitats in the Arctic. This will require standardized methods of plot-data collection, inclusion of physiogonomic information in the numeric analysis approaches to create formal definitions for vegetation units, and new methods of data sharing between the AVA and national vegetation- plot databases.
Université du Québec... arrow_drop_down Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2018License: CC BY NCData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/phyto/2017/0192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Université du Québec... arrow_drop_down Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2018License: CC BY NCData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/phyto/2017/0192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, Portugal, FrancePublisher:Elsevier BV Funded by:[no funder available]Authors: Servili, Arianna; Canario, Adelino V. M.; Mouchel, Olivier; Antonio Munoz-Cueto, Jose;pmid: 32061640
Anthropogenic emissions of carbon dioxide in the atmosphere have generated rapid variations in atmospheric composition which drives major climate changes. Climate change related effects include changes in physico-chemical proprieties of sea and freshwater, such as variations in water temperature, salinity, pH/pCO2 and oxygen content, which can impact fish critical physiological functions including reproduction. In this context, the main aim of the present review is to discuss how climate change related effects (variation in water temperature and salinity, increases in duration and frequency of hypoxia events, water acidification) would impact reproduction by affecting the neuroendocrine axis (brain-pituitary-gonad axis). Variations in temperature and photoperiod regimes are known to strongly affect sex differentiation and the timing and phenology of spawning period in several fish species. Temperature mainly acts at the level of gonad by interfering with steroidogenesis, (notably on gonadal aromatase activity) and gametogenesis. Temperature is also directly involved in the quality of released gametes and embryos development. Changes in salinity or water acidification are especially associated with reduction of sperm quality and reproductive output. Hypoxia events are able to interact with gonad steroidogenesis by acting on the steroids precursor cholesterol availability or directly on aromatase action, with an impact on the quality of gametes and reproductive success. Climate change related effects on water parameters likely influence also the reproductive behavior of fish. Although the precise mechanisms underlying the regulation of these effects are not always understood, in this review we discuss different hypothesis and propose future research perspectives.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NCFull-Text: https://hal.science/hal-02933373Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020License: CC BY NCFull-Text: https://hal.science/hal-02933373Data sources: Bielefeld Academic Search Engine (BASE)General and Comparative EndocrinologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ygcen.2020.113439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 122visibility views 122 download downloads 78 Powered bymore_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NCFull-Text: https://hal.science/hal-02933373Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020License: CC BY NCFull-Text: https://hal.science/hal-02933373Data sources: Bielefeld Academic Search Engine (BASE)General and Comparative EndocrinologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ygcen.2020.113439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Public Library of Science (PLoS) Authors: Stefan Partelow; Klara Johanna Winkler; Gregory M. Thaler;Environmental non-governmental organizations (ENGOs) exist worldwide, and since the 1980s they have increasingly influenced global environmental politics and environmental discourse. We analyze an original dataset of 679 ENGOs participating in global environmental conventions in the mid-2010s, and we apply quantitative content analysis to ENGO mission statements to produce an inductive typology of global environmental discourse. Discourse categories are combined with ENGO attribute data to visualize the political topology of this globally-networked ENGO sector. Our results confirm some common assertions and provide new insights. ENGOs are more diverse than conventionally recognized. Quantitative evidence confirms strong North-South disparities in human and financial resources. Four primary discourses are identified: Environmental Management, Climate Politics, Environmental Justice, and Ecological Modernization. We compare our typology to existing literature, where Climate Politics and Environmental Justice are under-appreciated, and we discuss ways to expand on the data and methods of this study. Synoptic empirical ENGO research is essential to accurately understanding the ENGO sector and global environmental politics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0232945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0232945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu