- home
- Search
- Energy Research
- Restricted
- 12. Responsible consumption
- European Marine Science
- Energy Research
- Restricted
- 12. Responsible consumption
- European Marine Science
description Publicationkeyboard_double_arrow_right Article , Journal 2020 PortugalPublisher:Elsevier BV Authors: Pagels, F; Lopes, G; Vasconcelos, V; Guedes, A.C.;pmid: 32222686
Carotenoids and phycobiliproteins have a high economic value, due to their wide range of biological and industrial applications. The implementation of strategies to increase their production, such as the application of two-phase light cultivation systems, can stimulate pigments production, increasing economic turnover. In this sense, Cyanobium sp. was grown in seven different two-phase white/red cultivation arrangements, varying the time of each light from 0 to 21 days. Biomass, photosynthetic activity, pigments profile and antioxidant capacity were measured along time. Red light increased photosynthetic activity and pigments content (ca. 1.8-fold), and the use of a two-phase cultivation system generally raised bioactivity and production of phytochemicals. Among the studied, the optimal cultivation condition was found with 10 days of white followed by 4 days of red light. The optimized growth led to a productivity of 137.4 ± 0.8 mg L-1 d-1 of biomass, 17.0 ± 0.2 mg L-1 d-1 of total phycobiliproteins and 4.5 ± 0.2 mg L-1 d-1 of carotenoids.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.123105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.123105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SwitzerlandPublisher:Elsevier BV Funded by:EC | ENVIROGRIDSEC| ENVIROGRIDSBaer, Roger; Rouholahnedjad, E.; Rahman, Kazi; Abbaspour, K.C.; Lehmann, Anthony;Abstract Agriculture in the Black Sea catchment is responsible for a considerable share of the area's total water withdrawal and the majority of its total water consumption. It therefore plays a key role in sustainable water resources management. However, in the future water resources will be exposed to climate change. This assessment aims at identifying the most vulnerable regions and to explain the reasons of this vulnerability. It is based on a combination of the well-known Driver–Pressure–State–Impact–Response framework (DPSIR) and the vulnerability concept as defined by the Intergovernmental Panel on Climate Change (IPCC). Three distinctive climate change scenarios are used to assess their impacts on water resources for agriculture: (1) an increase in temperature; (2) a decrease in precipitation; and (3) a combination of the first and second scenarios. The data for this assessment is derived from a SWAT model (Soil and Water Assessment Tool). The results show that the regions of the Black Sea catchment are impacted by climate change differently. Some countries benefit from climate change (e.g., Turkey, Ukraine, Romania, Moldova, Hungary, Bulgaria) while others will encounter considerably worse agro-climatic conditions in the future (e.g., Montenegro, Austria, Bosnia–Herzegovina). Additionally, natural plant growth conditions mostly improve due to more suitable temperature conditions. In contrast, the deteriorating agricultural conditions mainly result from a diminishing irrigation potential that is caused by reduced precipitation. The conclusion emphasises the important role of the legal framework as well as more sustainable agronomic practices and proposes improvements for future assessment methods in this research field.
Archive ouverte UNIG... arrow_drop_down Environmental Science & PolicyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2014.04.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Archive ouverte UNIG... arrow_drop_down Environmental Science & PolicyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2014.04.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 PortugalPublisher:Springer Science and Business Media LLC Funded by:EC | BLUEandGREENEC| BLUEandGREENCatarina Basto Silva; Luísa M. P. Valente; Elisabete Matos; Miguel Brandão; Belmira Neto;This study performs an exploratory comparative evaluation of various animal and vegetable protein and lipid sources, used as feed in the aquaculture industry. The ingredients studied include fishmeal (FM) and fish oil (FO) from fisheries by-products, meal and fat by-products from poultry slaughter, FM and FO from Peruvian anchovy capture, and soybean meal and oil. The boundaries studied include the production or capture, the ingredient processing unit and the transport to the unit that processes the ingredients into aquafeeds in Portugal. The LCA impact assessment method is the CML-IA baseline V3.04/EU25 and the results were obtained for the characterisation step. Some of the inventory data were collected from a Portuguese company (Savinor) that processes both by-products from local fisheries and by-products from poultry production. Savinor provided data specifically associated with the ingredients’ production. Obtained data were complemented with literature data from: fish capture and poultry production. Inventory data for the production of ingredients from Peruvian anchovy and soybeans were retrieved from literature. It was assumed that the transport of the ingredients produced from Peruvian anchovy, between Lima and Rotterdam, is made in a transoceanic vessel, and it is considered a transport by truck between Rotterdam and Ovar, for soybean ingredients and FM/FO produced from Peruvian anchovy. This paper shows that poultry meal and poultry fat from poultry slaughter by-products have the larger contribution to all environmental impact categories evaluated, being the production of poultry the life cycle stage that contributes most to the overall categories. On the other hand, FM and FO from Peruvian anchovy were the ingredients with a lower contribution to all impact categories, except for abiotic depletion category, for FM from Peruvian anchovy, and abiotic depletion, abiotic depletion (fossil fuels) and ozone layer depletion for FO from Peruvian anchovy. For these categories, soybean meal and oil had lower impacts, respectively. The ingredients were compared by classes (protein and lipid sources). A general conclusion is that soybean meal and oil and FM/FO from Peruvian anchovy appear to be very interesting options for aquafeeds from an LCA perspective. However, some limitations identified for this study, as, for instance, that it does not account for the environmental benefits associated with the use of the mentioned by-products, that would otherwise be considered wastes (i.e. by-products from the fish canning sector and poultry slaughter) shall be evaluated in future studies.
Repositório Aberto d... arrow_drop_down Repositório Aberto da Universidade do PortoArticle . 2018Data sources: Repositório Aberto da Universidade do PortoThe International Journal of Life Cycle AssessmentArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-017-1414-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Repositório Aberto d... arrow_drop_down Repositório Aberto da Universidade do PortoArticle . 2018Data sources: Repositório Aberto da Universidade do PortoThe International Journal of Life Cycle AssessmentArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-017-1414-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Saudi Arabia, Saudi Arabia, United Kingdom, GermanyPublisher:American Association for the Advancement of Science (AAAS) Pörtner, H-O; Scholes, R J; Arneth, A; Barnes, D K A; Burrows, M T; Diamond, S E; Duarte, C M; Kiessling, W; Leadley, P; Managi, S; McElwee, P; Midgley, G; Ngo, H T; Obura, D; Pascual, U; Sankaran, M; Shin, Y J; Val, A L;Earth’s biodiversity and human societies face pollution, overconsumption of natural resources, urbanization, demographic shifts, social and economic inequalities, and habitat loss, many of which are exacerbated by climate change. Here, we review links among climate, biodiversity, and society and develop a roadmap toward sustainability. These include limiting warming to 1.5°C and effectively conserving and restoring functional ecosystems on 30 to 50% of land, freshwater, and ocean “scapes.” We envision a mosaic of interconnected protected and shared spaces, including intensively used spaces, to strengthen self-sustaining biodiversity, the capacity of people and nature to adapt to and mitigate climate change, and nature’s contributions to people. Fostering interlinked human, ecosystem, and planetary health for a livable future urgently requires bold implementation of transformative policy interventions through interconnected institutions, governance, and social systems from local to global levels.
https://dx.doi.org/1... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abl4881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abl4881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | MUSESEC| MUSESDaniel Depellegrin; Chiara Venier; Zacharoula Kyriazi; Vassiliki Vassilopoulou; Chiara Castellani; Emiliano Ramieri; Martina Bocci; Javier Fernandez; Andrea Barbanti;pmid: 30414590
European seas are experiencing rapid development. The anthropogenic demand for marine resources and space exerts the need for novel concepts for sustainable resource exploitation and smart space allocation. Multi-Use (MU) is an emerging concept to overcome spatial claims and support Blue Growth, however its actual potentials and current status of implementation in different sea basins is to a large extent unexplored. An analytical framework using a mixed method approach is proposed for the identification and analysis of MU potentialities in eight EU countries of the Euro-Mediterranean sea basin. The paper addresses opportunities and challenges of ten existing and potential MU combinations driven by three maritime sectors: tourism, renewable energy and Oil & Gas industry. Opportunities and challenges for MU development were presented in terms of drivers, added values, barriers and impacts. Results show that highest potential for MU development are related to tourism-driven MU combinations (e.g. pescatourism), but also emerging MU potentials exist related to Floating Offshore Wind energy and aquaculture (Gulf of Lion) and the re-use of Oil & Gas decommissioned platforms (Northern-Central Adriatic Sea). Findings were discussed for their geospatial distribution and their policy, socio-economic, technical and environmental boundary conditions. Recommendations on actions to foster MU development in the Euro-Mediterranean sea space are provided.
CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 ItalyPublisher:Springer Science and Business Media LLC Hans-Otto Pörtner; Hans-Otto Pörtner; Rui Rosa; Tundi Agardy; Helena Calado; Larry B. Crowder; Sara García-Morales; Michael K. Orbach; Francisco H. Andrade; Catarina Frazão Santos; Catarina Frazão Santos; Elena Gissi; Charles N. Ehler; Benjamin S. Halpern;The acceleration of global warming and increased vulnerability of marine social-ecological systems affect the benefits provided by the ocean. Spatial planning of marine areas is vital to balance multiple human demands and ensure a healthy ocean, while supporting global ocean goals. To thrive in a changing ocean though, marine spatial planning (MSP) must effectively integrate climate change. By reviewing existing literature on MSP and climate change, we explore the links between them and with ocean sustainability, highlight management challenges, and identify potential pathways to guide action towards the effective integration of climate impacts in MSP.
CNR ExploRA arrow_drop_down Nature SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-020-0513-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Nature SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-020-0513-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SwitzerlandPublisher:Elsevier BV Funded by:EC | ENVIROGRIDSEC| ENVIROGRIDSA. Lehmann; G. Giuliani; E. Mancosu; K.C. Abbaspour; S. Sözen; D. Gorgan; A. Beel; N. Ray;The environmental status of the Black Sea is obviously closely related to its catchment. Being a closed sea, this large water body drains an area of more than 2 million km2, encompassing 23 countries inhabited by more than 180 million people. The main environ- mental issues faced by the Black Sea catchment are the same as elsewhere in Europe. These problems are exacerbated by global changes with drastic changes predicted in temperature and precipitation by the end of the century, as well as land use and demographic changes. These environmental problems are taking place in a complex geopolitical situation. In this particular context, data sharing is essential to inform managers and policy-makers about the state of the environment, which will ultimately influence the state of the Black Sea itself. The enviroGRIDS project was set up in order to promote international data sharing initia- tives such as the Global Earth Observation System of Systems and the European INSPIRE directive. The enviroGRIDS project was successful in reaching the following objectives: (a) performing a gap analysis on existing Earth observations systems in the region; (b) devel- oping regional capacities at institutional, infrastructure and human resource levels; (c) creating regional scenarios to set the scene for plausible climatic, demographic and land use futures; (d) building the first hydrological model for the entire Black Sea catchment; (e) developing the Black Sea Catchment Observation System based on interoperability stan- dards and Grid computing technologies; (f) showcasing data sharing in several case studies, addressing important environmental issues while building a network of people with improved capacity on data sharing principles. These relative successes should not, however, hide the difficulties in making the necessary Earth observation data available to scientists, decision makers and the public, as the mind-sets at all levels are changing slowly. Controlling the access to data is still perceived by many as a necessity to guarantee the power of the state on society and as a way to preserve its security. The need to develop national spatial data infrastructures (SDI) is very important to convince all ministries and data owner that publically funded data should be made publically available. The progress in the implementation of SDI seems more limited by political agendas than by technology. It is clear, however, that implementation of the INSPIRE directive in Europe is a prerequisite for the success of many other environmental policies (e.g. Water Framework Directive; Marine Strategy Framework Directive; Biodiversity strategy 2020).
Archive ouverte UNIG... arrow_drop_down Environmental Science & PolicyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2014.02.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archive ouverte UNIG... arrow_drop_down Environmental Science & PolicyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2014.02.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2017 ItalyPublisher:Elsevier BV Funded by:EC | SABANAEC| SABANAF.G. Acién; E. Molina; A. Reis; G. Torzillo; G.C. Zittelli; C. Sepúlveda; J. Masojídek;Microalgae have a large biotechnological potential for producing valuable substances for feed, food, nutraceutical, and pharmaceutical industries . Furthermore, other applications can be attributed to the photosynthetic process performed by these microorganisms such as CO2 mitigation, wastewater treatment, and biofuels production. Whatever the process, it must be designed considering the specific characteristics of these microorganisms. Thus microalgae (according to applied phycology) are photosynthetic microorganism able to perform oxygenic photosynthesis. Both cyanobacteria with a prokaryotic cell structure and microalgae with a eukaryotic cell structure are usually included in this category. These microorganisms are photoautotrophs, although they may also grow under mixotrophic or heterotrophic conditions. For the production of microalgae under phototrophic conditions, it is necessary to use photobioreactors that must be adequately designed, built, and operated to satisfy the requirements of the selected microalgae. Multiple designs and configurations of photobioreactors have been proposed, but no optimal design still exists. For whatever application, the photobioreactor to be used must be adequately selected according to the requirements of process. Thus the establishment of the requirements of the biological system to be used is required to adequately design the optimal photobioreactor, which constitutes the starting point when designing a microalga-based process. Two major categories of photobioreactors are considered: open and closed. As open cultivation systems (having direct contact with the environment), artificial ponds, tanks, raceways (shallow racetracks mixed by paddle wheels), and thin-layer (i.e., inclined-surface systems) platforms are often used. As closed cultivation systems (having no direct contact between the culture and the atmosphere), bubble columns, tubular loops, and flat-panels are typically used. At present, open systems are feasible for the production of thousands of tons of biomass significantly cheaper than that from closed systems.
CNR ExploRA arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/b978...Part of book or chapter of book . 2018Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-08-101023-5.00001-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/b978...Part of book or chapter of book . 2018Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-08-101023-5.00001-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 PortugalPublisher:Elsevier BV Authors: Pagels, F; Lopes, G; Vasconcelos, V; Guedes, A.C.;pmid: 32222686
Carotenoids and phycobiliproteins have a high economic value, due to their wide range of biological and industrial applications. The implementation of strategies to increase their production, such as the application of two-phase light cultivation systems, can stimulate pigments production, increasing economic turnover. In this sense, Cyanobium sp. was grown in seven different two-phase white/red cultivation arrangements, varying the time of each light from 0 to 21 days. Biomass, photosynthetic activity, pigments profile and antioxidant capacity were measured along time. Red light increased photosynthetic activity and pigments content (ca. 1.8-fold), and the use of a two-phase cultivation system generally raised bioactivity and production of phytochemicals. Among the studied, the optimal cultivation condition was found with 10 days of white followed by 4 days of red light. The optimized growth led to a productivity of 137.4 ± 0.8 mg L-1 d-1 of biomass, 17.0 ± 0.2 mg L-1 d-1 of total phycobiliproteins and 4.5 ± 0.2 mg L-1 d-1 of carotenoids.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.123105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.123105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SwitzerlandPublisher:Elsevier BV Funded by:EC | ENVIROGRIDSEC| ENVIROGRIDSBaer, Roger; Rouholahnedjad, E.; Rahman, Kazi; Abbaspour, K.C.; Lehmann, Anthony;Abstract Agriculture in the Black Sea catchment is responsible for a considerable share of the area's total water withdrawal and the majority of its total water consumption. It therefore plays a key role in sustainable water resources management. However, in the future water resources will be exposed to climate change. This assessment aims at identifying the most vulnerable regions and to explain the reasons of this vulnerability. It is based on a combination of the well-known Driver–Pressure–State–Impact–Response framework (DPSIR) and the vulnerability concept as defined by the Intergovernmental Panel on Climate Change (IPCC). Three distinctive climate change scenarios are used to assess their impacts on water resources for agriculture: (1) an increase in temperature; (2) a decrease in precipitation; and (3) a combination of the first and second scenarios. The data for this assessment is derived from a SWAT model (Soil and Water Assessment Tool). The results show that the regions of the Black Sea catchment are impacted by climate change differently. Some countries benefit from climate change (e.g., Turkey, Ukraine, Romania, Moldova, Hungary, Bulgaria) while others will encounter considerably worse agro-climatic conditions in the future (e.g., Montenegro, Austria, Bosnia–Herzegovina). Additionally, natural plant growth conditions mostly improve due to more suitable temperature conditions. In contrast, the deteriorating agricultural conditions mainly result from a diminishing irrigation potential that is caused by reduced precipitation. The conclusion emphasises the important role of the legal framework as well as more sustainable agronomic practices and proposes improvements for future assessment methods in this research field.
Archive ouverte UNIG... arrow_drop_down Environmental Science & PolicyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2014.04.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Archive ouverte UNIG... arrow_drop_down Environmental Science & PolicyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2014.04.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 PortugalPublisher:Springer Science and Business Media LLC Funded by:EC | BLUEandGREENEC| BLUEandGREENCatarina Basto Silva; Luísa M. P. Valente; Elisabete Matos; Miguel Brandão; Belmira Neto;This study performs an exploratory comparative evaluation of various animal and vegetable protein and lipid sources, used as feed in the aquaculture industry. The ingredients studied include fishmeal (FM) and fish oil (FO) from fisheries by-products, meal and fat by-products from poultry slaughter, FM and FO from Peruvian anchovy capture, and soybean meal and oil. The boundaries studied include the production or capture, the ingredient processing unit and the transport to the unit that processes the ingredients into aquafeeds in Portugal. The LCA impact assessment method is the CML-IA baseline V3.04/EU25 and the results were obtained for the characterisation step. Some of the inventory data were collected from a Portuguese company (Savinor) that processes both by-products from local fisheries and by-products from poultry production. Savinor provided data specifically associated with the ingredients’ production. Obtained data were complemented with literature data from: fish capture and poultry production. Inventory data for the production of ingredients from Peruvian anchovy and soybeans were retrieved from literature. It was assumed that the transport of the ingredients produced from Peruvian anchovy, between Lima and Rotterdam, is made in a transoceanic vessel, and it is considered a transport by truck between Rotterdam and Ovar, for soybean ingredients and FM/FO produced from Peruvian anchovy. This paper shows that poultry meal and poultry fat from poultry slaughter by-products have the larger contribution to all environmental impact categories evaluated, being the production of poultry the life cycle stage that contributes most to the overall categories. On the other hand, FM and FO from Peruvian anchovy were the ingredients with a lower contribution to all impact categories, except for abiotic depletion category, for FM from Peruvian anchovy, and abiotic depletion, abiotic depletion (fossil fuels) and ozone layer depletion for FO from Peruvian anchovy. For these categories, soybean meal and oil had lower impacts, respectively. The ingredients were compared by classes (protein and lipid sources). A general conclusion is that soybean meal and oil and FM/FO from Peruvian anchovy appear to be very interesting options for aquafeeds from an LCA perspective. However, some limitations identified for this study, as, for instance, that it does not account for the environmental benefits associated with the use of the mentioned by-products, that would otherwise be considered wastes (i.e. by-products from the fish canning sector and poultry slaughter) shall be evaluated in future studies.
Repositório Aberto d... arrow_drop_down Repositório Aberto da Universidade do PortoArticle . 2018Data sources: Repositório Aberto da Universidade do PortoThe International Journal of Life Cycle AssessmentArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-017-1414-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Repositório Aberto d... arrow_drop_down Repositório Aberto da Universidade do PortoArticle . 2018Data sources: Repositório Aberto da Universidade do PortoThe International Journal of Life Cycle AssessmentArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-017-1414-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Saudi Arabia, Saudi Arabia, United Kingdom, GermanyPublisher:American Association for the Advancement of Science (AAAS) Pörtner, H-O; Scholes, R J; Arneth, A; Barnes, D K A; Burrows, M T; Diamond, S E; Duarte, C M; Kiessling, W; Leadley, P; Managi, S; McElwee, P; Midgley, G; Ngo, H T; Obura, D; Pascual, U; Sankaran, M; Shin, Y J; Val, A L;Earth’s biodiversity and human societies face pollution, overconsumption of natural resources, urbanization, demographic shifts, social and economic inequalities, and habitat loss, many of which are exacerbated by climate change. Here, we review links among climate, biodiversity, and society and develop a roadmap toward sustainability. These include limiting warming to 1.5°C and effectively conserving and restoring functional ecosystems on 30 to 50% of land, freshwater, and ocean “scapes.” We envision a mosaic of interconnected protected and shared spaces, including intensively used spaces, to strengthen self-sustaining biodiversity, the capacity of people and nature to adapt to and mitigate climate change, and nature’s contributions to people. Fostering interlinked human, ecosystem, and planetary health for a livable future urgently requires bold implementation of transformative policy interventions through interconnected institutions, governance, and social systems from local to global levels.
https://dx.doi.org/1... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abl4881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abl4881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | MUSESEC| MUSESDaniel Depellegrin; Chiara Venier; Zacharoula Kyriazi; Vassiliki Vassilopoulou; Chiara Castellani; Emiliano Ramieri; Martina Bocci; Javier Fernandez; Andrea Barbanti;pmid: 30414590
European seas are experiencing rapid development. The anthropogenic demand for marine resources and space exerts the need for novel concepts for sustainable resource exploitation and smart space allocation. Multi-Use (MU) is an emerging concept to overcome spatial claims and support Blue Growth, however its actual potentials and current status of implementation in different sea basins is to a large extent unexplored. An analytical framework using a mixed method approach is proposed for the identification and analysis of MU potentialities in eight EU countries of the Euro-Mediterranean sea basin. The paper addresses opportunities and challenges of ten existing and potential MU combinations driven by three maritime sectors: tourism, renewable energy and Oil & Gas industry. Opportunities and challenges for MU development were presented in terms of drivers, added values, barriers and impacts. Results show that highest potential for MU development are related to tourism-driven MU combinations (e.g. pescatourism), but also emerging MU potentials exist related to Floating Offshore Wind energy and aquaculture (Gulf of Lion) and the re-use of Oil & Gas decommissioned platforms (Northern-Central Adriatic Sea). Findings were discussed for their geospatial distribution and their policy, socio-economic, technical and environmental boundary conditions. Recommendations on actions to foster MU development in the Euro-Mediterranean sea space are provided.
CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 ItalyPublisher:Springer Science and Business Media LLC Hans-Otto Pörtner; Hans-Otto Pörtner; Rui Rosa; Tundi Agardy; Helena Calado; Larry B. Crowder; Sara García-Morales; Michael K. Orbach; Francisco H. Andrade; Catarina Frazão Santos; Catarina Frazão Santos; Elena Gissi; Charles N. Ehler; Benjamin S. Halpern;The acceleration of global warming and increased vulnerability of marine social-ecological systems affect the benefits provided by the ocean. Spatial planning of marine areas is vital to balance multiple human demands and ensure a healthy ocean, while supporting global ocean goals. To thrive in a changing ocean though, marine spatial planning (MSP) must effectively integrate climate change. By reviewing existing literature on MSP and climate change, we explore the links between them and with ocean sustainability, highlight management challenges, and identify potential pathways to guide action towards the effective integration of climate impacts in MSP.
CNR ExploRA arrow_drop_down Nature SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-020-0513-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Nature SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-020-0513-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SwitzerlandPublisher:Elsevier BV Funded by:EC | ENVIROGRIDSEC| ENVIROGRIDSA. Lehmann; G. Giuliani; E. Mancosu; K.C. Abbaspour; S. Sözen; D. Gorgan; A. Beel; N. Ray;The environmental status of the Black Sea is obviously closely related to its catchment. Being a closed sea, this large water body drains an area of more than 2 million km2, encompassing 23 countries inhabited by more than 180 million people. The main environ- mental issues faced by the Black Sea catchment are the same as elsewhere in Europe. These problems are exacerbated by global changes with drastic changes predicted in temperature and precipitation by the end of the century, as well as land use and demographic changes. These environmental problems are taking place in a complex geopolitical situation. In this particular context, data sharing is essential to inform managers and policy-makers about the state of the environment, which will ultimately influence the state of the Black Sea itself. The enviroGRIDS project was set up in order to promote international data sharing initia- tives such as the Global Earth Observation System of Systems and the European INSPIRE directive. The enviroGRIDS project was successful in reaching the following objectives: (a) performing a gap analysis on existing Earth observations systems in the region; (b) devel- oping regional capacities at institutional, infrastructure and human resource levels; (c) creating regional scenarios to set the scene for plausible climatic, demographic and land use futures; (d) building the first hydrological model for the entire Black Sea catchment; (e) developing the Black Sea Catchment Observation System based on interoperability stan- dards and Grid computing technologies; (f) showcasing data sharing in several case studies, addressing important environmental issues while building a network of people with improved capacity on data sharing principles. These relative successes should not, however, hide the difficulties in making the necessary Earth observation data available to scientists, decision makers and the public, as the mind-sets at all levels are changing slowly. Controlling the access to data is still perceived by many as a necessity to guarantee the power of the state on society and as a way to preserve its security. The need to develop national spatial data infrastructures (SDI) is very important to convince all ministries and data owner that publically funded data should be made publically available. The progress in the implementation of SDI seems more limited by political agendas than by technology. It is clear, however, that implementation of the INSPIRE directive in Europe is a prerequisite for the success of many other environmental policies (e.g. Water Framework Directive; Marine Strategy Framework Directive; Biodiversity strategy 2020).
Archive ouverte UNIG... arrow_drop_down Environmental Science & PolicyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2014.02.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archive ouverte UNIG... arrow_drop_down Environmental Science & PolicyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2014.02.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2017 ItalyPublisher:Elsevier BV Funded by:EC | SABANAEC| SABANAF.G. Acién; E. Molina; A. Reis; G. Torzillo; G.C. Zittelli; C. Sepúlveda; J. Masojídek;Microalgae have a large biotechnological potential for producing valuable substances for feed, food, nutraceutical, and pharmaceutical industries . Furthermore, other applications can be attributed to the photosynthetic process performed by these microorganisms such as CO2 mitigation, wastewater treatment, and biofuels production. Whatever the process, it must be designed considering the specific characteristics of these microorganisms. Thus microalgae (according to applied phycology) are photosynthetic microorganism able to perform oxygenic photosynthesis. Both cyanobacteria with a prokaryotic cell structure and microalgae with a eukaryotic cell structure are usually included in this category. These microorganisms are photoautotrophs, although they may also grow under mixotrophic or heterotrophic conditions. For the production of microalgae under phototrophic conditions, it is necessary to use photobioreactors that must be adequately designed, built, and operated to satisfy the requirements of the selected microalgae. Multiple designs and configurations of photobioreactors have been proposed, but no optimal design still exists. For whatever application, the photobioreactor to be used must be adequately selected according to the requirements of process. Thus the establishment of the requirements of the biological system to be used is required to adequately design the optimal photobioreactor, which constitutes the starting point when designing a microalga-based process. Two major categories of photobioreactors are considered: open and closed. As open cultivation systems (having direct contact with the environment), artificial ponds, tanks, raceways (shallow racetracks mixed by paddle wheels), and thin-layer (i.e., inclined-surface systems) platforms are often used. As closed cultivation systems (having no direct contact between the culture and the atmosphere), bubble columns, tubular loops, and flat-panels are typically used. At present, open systems are feasible for the production of thousands of tons of biomass significantly cheaper than that from closed systems.
CNR ExploRA arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/b978...Part of book or chapter of book . 2018Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-08-101023-5.00001-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/b978...Part of book or chapter of book . 2018Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-08-101023-5.00001-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu