- home
- Search
- Energy Research
- 11. Sustainability
- Digital.CSIC
- European Marine Science
- Energy Research
- 11. Sustainability
- Digital.CSIC
- European Marine Science
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Hungary, Hungary, Spain, France, SwitzerlandPublisher:Copernicus GmbH Funded by:AKA | Centre of Excellence in A..., EC | ACTRIS, EC | ERA-PLANET +2 projectsAKA| Centre of Excellence in Atmospheric Science From Molecular and Biolocigal processes to The Global Climate ,EC| ACTRIS ,EC| ERA-PLANET ,EC| ACTRIS PPP ,EC| ACTRIS-2M. Collaud Coen; E. Andrews; E. Andrews; A. Alastuey; T. P. Arsov; J. Backman; B. T. Brem; N. Bukowiecki; C. Couret; K. Eleftheriadis; H. Flentje; M. Fiebig; M. Gysel-Beer; J. L. Hand; A. Hoffer; R. Hooda; R. Hooda; C. Hueglin; W. Joubert; M. Keywood; J. E. Kim; S.-W. Kim; C. Labuschagne; N.-H. Lin; Y. Lin; C. Lund Myhre; K. Luoma; H. Lyamani; H. Lyamani; A. Marinoni; O. L. Mayol-Bracero; N. Mihalopoulos; M. Pandolfi; N. Prats; A. J. Prenni; J.-P. Putaud; L. Ries; F. Reisen; K. Sellegri; S. Sharma; P. Sheridan; J. P. Sherman; J. Sun; G. Titos; G. Titos; E. Torres; T. Tuch; R. Weller; A. Wiedensohler; P. Zieger; P. Zieger; P. Laj; P. Laj; P. Laj;handle: 10261/220893
Abstract. In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann–Kendall (MK) statistical test associated with several pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficient trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficient time series also exhibit primarily decreasing trends. For single scattering albedo, 52 % of the sites exhibit statistically significant positive trends, mostly in Asia, eastern/northern Europe and the Arctic, 22 % of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 26 % of sites have trends which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010–2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10-year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10-year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10-year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2009–2012 for all stations in the eastern and central USA. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage provides insight into potential aerosol effects on climate changes.
MTAK: REAL (Library ... arrow_drop_down MTAK: REAL (Library and Information Centre of the Hungarian Academy of SciencesArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2020Full-Text: https://insu.hal.science/insu-03706468Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://insu.hal.science/insu-03706468Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-20-8867-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 341visibility views 341 download downloads 789 Powered bymore_vert MTAK: REAL (Library ... arrow_drop_down MTAK: REAL (Library and Information Centre of the Hungarian Academy of SciencesArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2020Full-Text: https://insu.hal.science/insu-03706468Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://insu.hal.science/insu-03706468Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-20-8867-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, SpainPublisher:Frontiers Media SA Funded by:NSERC, ANR | SOMBEE, EC | FutureMARES +1 projectsNSERC ,ANR| SOMBEE ,EC| FutureMARES ,EC| TRIATLASJohanna J. Heymans; Alida Bundy; Villy Christensen; Marta Coll; Marta Coll; Kim de Mutsert; Elizabeth A. Fulton; Elizabeth A. Fulton; Chiara Piroddi; Yunne-Jai Shin; Jeroen Steenbeek; Morgane Travers-Trolet;handle: 10261/220707
Managing for the Future: Understanding the Relative Roles of Climate and Fishing on Structure and Dynamics of Marine Ecosystems.-- 5 pages, 1 figure The UN declared the 2021–2030 as the Decade of Ocean Science for Sustainable Development (Ocean Decade). The Ocean Decade's vision is to “develop scientific knowledge, build infrastructure and foster relationships for a sustainable and healthy ocean.” The Ocean Decade aims to achieve six societal outcomes: (1) A clean ocean, through identifying and removing sources of pollution; (2) A healthy and resilient ocean, with mapped and protected marine ecosystems; (3) A predicted ocean, enabling society to understand current and future ocean conditions; (4) A safe ocean, protecting people from ocean hazards; (5) A sustainably harvested ocean, providing food and resources for the blue economy; and (6) A transparent ocean, giving citizens equitable access to data, information and technologies. It also aims to provide concrete scientific support to coastal management, adaptation and restoration, marine spatial planning, marine protected areas, fisheries management, sustainable expansion of the blue economy, nationally determined contributions to the United Nations Framework Convention on Climate Change (UNFCCC), national ocean policies, development of national Research and Development (R&D), capacity development, and early warning systems. The Ocean Decade offers the ocean science community a unique opportunity to change the way we support sustainable development and galvanize ocean sciences for the future (Ryabinin et al., 2019). In addition, the UN Decade for Ecosystem Restoration (2021–2030), gives the ocean science community an imperative to work toward a sustainable future for the ocean. We challenge the marine ecosystem modeling community to address how we: (i) enable ocean managers and decision-makers to use our science, (ii) communicate our science, and most importantly (iii) ensure co-design of our science to achieve sustainable development. For this, we define ecosystem models as those that span physical and human drivers of change in the full ecosystem from plankton to top predators Y-jS and MT-T have been partially funded by the Biodiversa and Belmont Forum project SOMBEE (BiodivScen programme, ANR contract N°ANR-18-EBI4-0003-01). MC and JS were funded by the European Union's Horizon 2020 research and innovation programme under grant agreement N° 817578 (TRIATLAS project) and MC also received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 869300 (FutureMARES project). VC acknowledges support through NSERC Discovery Grant RGPIN-2019-04901 With the funding support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S), of the Spanish Research Agency (AEI) Peer reviewed
Frontiers in Marine ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.554573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 20visibility views 20 download downloads 103 Powered bymore_vert Frontiers in Marine ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.554573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Netherlands, United Kingdom, SpainPublisher:Frontiers Media SA Funded by:EC | CERESEC| CERESKatell G. Hamon; Cornelia M. Kreiss; John K. Pinnegar; John K. Pinnegar; Heleen Bartelings; Jurgen Batsleer; Ignacio A. Catalán; Dimitrios Damalas; Jan-Jaap Poos; Jan-Jaap Poos; Sandra Rybicki; Sevrine F. Sailley; Vasiliki Sgardeli; Myron A. Peck;handle: 10261/254533
Climate change is anticipated to have long-term and widespread direct consequences for the European marine ecosystems and subsequently for the European fishery sector. Additionally, many socio-economic and political factors linked to climate change scenarios will impact the future development of fishing industries. Robust projection modeling of bioeconomic consequences of climate change on the European fishing sector must identify all these factors and their potential future interaction. In this study, four socio-political scenarios developed in the EU project CERES (Climate change and European aquatic RESources) were operationalized and used in model projections of marine wild capture fisheries. Four CERES scenarios (“World Markets,” “National Enterprise,” “Global Sustainability” and “Local Stewardship”) were based on the IPCC framework of Shared Socio-economic Pathways (SSPs). For each of these scenarios, a set of quantitative outputs was generated to allow projections of bio-economic impacts to mid-century (2050) on wild-capture fisheries operating in different European regions. Specifically, projections accounted for future changes in fisheries management targets, access regulations, international agreements, fish and fuel prices, technological developments and marine spatial planning. This study thoroughly describes the elements of these four fisheries scenarios and demonstrates an example of the “regionalization” of these scenarios by summarizing how they were applied to the North Sea flatfish fishery. Bioeconomic projections highlight the importance of future developments in fuel and fish price development to the viability of that and other fisheries. Adapting these scenarios for use in other models and regions outside the 10 European fisheries examined in CERES would be highly beneficial by allowing direct comparison of the bioeconomic risks and opportunities posed by climate change.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.578516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 29 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.578516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Spain, Portugal, Spain, Norway, United Kingdom, United KingdomPublisher:Wiley Funded by:EC | WildFishGenes, EC | BEMAREC| WildFishGenes ,EC| BEMARJosep Alós; Kim Aarestrup; David Abecasis; Pedro Afonso; Alexandre Alonso‐Fernandez; Eneko Aspillaga; Margarida Barcelo‐Serra; Jonathan Bolland; Miguel Cabanellas‐Reboredo; Robert Lennox; Ross McGill; Aytaç Özgül; Jan Reubens; David Villegas‐Ríos;AbstractThe ocean is a key component of the Earth's dynamics, providing a great variety of ecosystem services to humans. Yet, human activities are globally changing its structure and major components, including marine biodiversity. In this context, the United Nations has proclaimed a Decade of Ocean Science for Sustainable Development to tackle the scientific challenges necessary for a sustainable use of the ocean by means of the Sustainable Development Goal 14 (SDG14). Here, we review how Acoustic animal Tracking, a widely distributed methodology of tracking marine biodiversity with electronic devices, can provide a roadmap for implementing the major Actions to achieve the SDG14. We show that acoustic tracking can be used to reduce and monitor the effects of marine pollution including noise, light, and plastic pollution. Acoustic tracking can be effectively used to monitor the responses of marine biodiversity to human‐made infrastructures and habitat restoration, as well as to determine the effects of hypoxia, ocean warming, and acidification. Acoustic tracking has been historically used to inform fisheries management, the design of marine protected areas, and the detection of essential habitats, rendering this technique particularly attractive to achieve the sustainable fishing and spatial protection target goals of the SDG14. Finally, acoustic tracking can contribute to end illegal, unreported, and unregulated fishing by providing tools to monitor marine biodiversity against poachers and promote the development of Small Islands Developing States and developing countries. To fully benefit from acoustic tracking supporting the SDG14 Targets, trans‐boundary collaborative efforts through tracking networks are required to promote ocean information sharing and ocean literacy. We therefore propose acoustic tracking and tracking networks as relevant contributors to tackle the scientific challenges that are necessary for a sustainable use of the ocean promoted by the United Nations.
NORCE vitenarkiv (No... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3046029Data sources: Bielefeld Academic Search Engine (BASE)University of Hull: Repository@HullArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 66visibility views 66 download downloads 92 Powered bymore_vert NORCE vitenarkiv (No... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3046029Data sources: Bielefeld Academic Search Engine (BASE)University of Hull: Repository@HullArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, Italy, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | LitRivusEC| LitRivusAuthors: Elisa Rojo-Nieto; Rosanna I. Schöneich-Argent; Rosanna I. Schöneich-Argent; Josué Viejo; +25 AuthorsElisa Rojo-Nieto; Rosanna I. Schöneich-Argent; Rosanna I. Schöneich-Argent; Josué Viejo; Rigers Bakiu; Georg Hanke; Oksana Savenko; Filipa Bessa; Nino Machitadze; Maria Pogojeva; Myrto Tourgeli; Carmen Morales-Caselles; María del Carmen Cabrera; Damià Barceló; Damià Barceló; Joana Pereira de Brito; Júlia Rigueira; Andrés Cózar; Antoine Bruge; Yuri Galletti; Mel Constant; Ahmet E. Kideys; Javier Castro-Jiménez; Javier Castro-Jiménez; Daniel González-Fernández; Roberto Crosti; Nuno Ratola; Giuseppe Suaria; Grzegorz Siedlewicz;handle: 10261/245111
Riverine systems act as converging pathways for discarded litter within drainage basins, becoming key elements in gauging the transfer of mismanaged waste into the ocean. However, riverine litter data are scarce and biased towards microplastics, generally lacking information about larger items. Based on the first ever database of riverine floating macrolitter across Europe, we have estimated that between 307 and 925 million litter items are released annually from Europe into the ocean. The plastic fraction represented 82% of the observed litter, mainly fragments and single-use items (that is, bottles, packaging and bags). Our modelled estimates show that a major portion of the total litter loading is routed through small-sized drainage basins (<100 km2), indicating the relevance of small rivers, streams and coastal run-off. Moreover, the major contribution of high-income countries to the macrolitter inputs suggests that reducing ocean pollution cannot be achieved only by improving waste management, but also requires changing consumption habits and behaviour to curb waste generation at source. The inability of countries with well-developed recovery systems to control the leakage of waste into the environment further supports the need to regulate the production and use of plastic on a global scale. We acknowledge the additional members (coordinators and observers) of RiLON, listed in Supplementary Data 5, for their support in the field data collection and feedback during the data quality control. D.G.-F. was supported by the JRC institutional exploratory project RIMMEL (272346), PLASTREND (BBVA Foundation) and the European Union (H2020-MSCA-IF-2018 846843 - LitRivus). J.V. and C.M.-C. were supported by the MIDaS project (Spanish Ministry of Science, Innovation and Universities, CTM2016-77106-R, AEI/FEDER/UE). Peer reviewed
Nature Sustainabilit... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTANature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-021-00722-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 174 citations 174 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 32visibility views 32 download downloads 30 Powered bymore_vert Nature Sustainabilit... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTANature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-021-00722-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, Spain, AustraliaPublisher:Frontiers Media SA Authors: Robert L. Stephenson; Robert L. Stephenson; Robert L. Stephenson; Alistair J. Hobday; +21 AuthorsRobert L. Stephenson; Robert L. Stephenson; Robert L. Stephenson; Alistair J. Hobday; Alistair J. Hobday; Edward H. Allison; Derek Armitage; Kate Brooks; Alida Bundy; Christopher Cvitanovic; Christopher Cvitanovic; Mark Dickey-Collas; Mark Dickey-Collas; Natalia de Miranda Grilli; Catalina Gomez; Astrid Jarre; Laura Kaikkonen; Rachel Kelly; Rachel Kelly; Romain López; Ella-Kari Muhl; Maria Grazia Pennino; Jamie C. Tam; Ingrid van Putten; Ingrid van Putten;handle: 10261/326418 , 10508/12014
In recent decades, scientists and practitioners have increasingly focused on identifying and codifying the best ways to manage activities in marine systems, leading to the development and implementation of concepts such as the social-ecological systems approach, ecosystem-based management, integrated management, marine spatial planning, participatory co-management, and the precautionary approach. To date, these concepts appear as separate entities: they have parallel literature streams; have been applied most often individually in attempts to improve governance and management; and in many ways, seem to be competing for attention. This patchwork of approaches may be hindering effective ocean governance. We propose that desirable features from these frameworks could be woven together to form the basis of more effective and equitable ocean governance arrangements across contexts, sectors, and scales. This article synthesizes the efforts of an IMBeR (Integrated Marine Biosphere Research Project) conference session and working group, that brought together experts in these diverse concepts with the objective of producing a synthesis of how they could be more effectively integrated for improved ocean sustainability outcomes. We reviewed and compared the concepts in terms of (a) the need to achieve a comprehensive suite of sustainability objectives, (b) similarities and differences in their scope, and (c) their place in practical management, policy and regulation. Achieving greater cross-sectoral integration, or a more holistic perspective on management for sustainability is at the core of each concept. All deal with aspects of governance and most, with improved participation in governance. The major differences in the origin and historical application of each concept are reflected in the degree of implicit or explicit focus given to different objectives of sustainability. Overall, the concepts are especially strong for ecological and institutional or governance considerations, moderately strong for economic aspects, and weakest for the social-cultural pillar of full spectrum sustainability. There is no panacea, and no emergent hierarchy among concepts. Some concepts fit better with top-down legislation-based efforts, others with more bottom-up stakeholder driven efforts. The selection of the core concepts for a situation will depend in a large part on which concepts are specified, or demand focus, in the legal and policy context of the situation (or area) of interest. No matter how influential or dominant a single concept might be, pragmatically, different concepts will be used in different areas, and there may always be the need for a combination of concepts and objectives woven together to achieve a cohesive quilt of sustainability.
Frontiers in Marine ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2021Data sources: Repositorio Institucional Digital del IEOUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.630547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 7 Powered bymore_vert Frontiers in Marine ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2021Data sources: Repositorio Institucional Digital del IEOUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.630547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 SpainPublisher:Frontiers Media SA Karen Evans; Tymon Zielinski; S. Chiba; Carlos Garcia-Soto; Carlos Garcia-Soto; Henn Ojaveer; Chul Park; Renison Ruwa; Jörn Oliver Schmidt; Jörn Oliver Schmidt; Alan Simcock; Anastasia Strati; Ca Thanh Vu;handle: 10508/11955 , 10261/321593
The ocean provides essential services to human wellbeing through climate regulation, provision of food, energy and livelihoods, protection of communities and nurturing of social and cultural values. Yet despite the ocean’s key role for all life, it is failing as a result of unsustainable human practices. The first global integrated assessment of the marine environment, produced by the United Nations under The Regular Process for Global Reporting and Assessment of the State of the Marine Environment, including Socioeconomic Aspects (the World Ocean Assessment), identified an overall decline in ocean health. The second assessment, launched in April 2021, although recognising some bright spots and improvements, stresses ongoing decline in the ocean as a result of many unabated anthropogenic stressors on the ocean. This highlights that society, as a whole, does not fully recognise or value the importance of the ocean to their lives and impacts on the ocean caused by human activities. Further, recognition of the need for immediate and effective solutions for mitigating impacts and enabling ecosystem recovery, and the associated societal changes required is lacking. The United Nations 2030 Agenda for Sustainable Development and the United Nations Decade of Ocean Science for Sustainable Development 2021–2030 both recognize that sustainability is both a desired and essential pathway for ensuring the ocean can continue to provide the services society depends on. The World Ocean Assessment has an important role to play in increasing awareness of the ocean, the changes occurring in the ocean, the human activities causing those changes and the progress being made in reducing and mitigating the impacts of human activities on the marine environment. This paper outlines the knowledge brokering role that the Regular Process provides on ocean issues to all aspects of society from policy makers, ocean managers, ocean users to the public. It identifies the challenges faced by the Regular Process in successfully carrying out that role and lessons learned in achieving widespread uptake and recognition. Within the Decade of Ocean Science for Sustainable Development, solutions in the form of instructions or guidelines for the use of the assessment can be developed and implemented.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2021License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2021.626532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 11 Powered bymore_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2021License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2021.626532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Spain, Germany, Canada, Spain, United Kingdom, Spain, Spain, France, SpainPublisher:Elsevier BV Funded by:EC | GLOBAQUAEC| GLOBAQUASylvain Dolédec; Ralf Merz; Claudio Paniconi; Arturo Elosegi; Redouane Choukr-Allah; Federico Ferrari; Nikolaos Voulvoulis; Isabel Muñoz; Sergi Sabater; Sergi Sabater; Georg Teutsch; Mira Petrovic; Mira Petrovic; Peter Grathwohl; Ralf Ludwig; Momir Paunović; Phoebe Koundouri; Phoebe Koundouri; Antoni Ginebreda; Alberto Bellin; Colin Jones; Giorgio Cassiani; Philippe Ker Rault; Peter Burek; Radmila Milačič; Adriaan Slob; Grigory Nikulin; Damià Barceló; Damià Barceló; Alícia Navarro-Ortega; Nikolaos Skoulikidis; Vicenç Acuña; Laia Sabater; Kasper Kok;Water scarcity is a serious environmental problem in many European regions, and will likely increase in the near future as a consequence of increased abstraction and climate change. Water scarcity exacerbates the effects of multiple stressors, and thus results in decreased water quality. It impacts river ecosystems, threatens the services they provide, and it will force managers and policy-makers to change their current practices. The EU-FP7 project GLOBAQUA aims at identifying the prevalence, interaction and linkages between stressors, and to assess their effects on the chemical and ecological status of freshwater ecosystems in order to improve water management practice and policies. GLOBAQUA assembles a multidisciplinary team of 21 European plus 2 non-European scientific institutions, as well as water authorities and river basin managers. The project includes experts in hydrology, chemistry, biology, geomorphology, modelling, socio-economics, governance science, knowledge brokerage, and policy advocacy. GLOBAQUA studies six river basins (Ebro, Adige, Sava, Evrotas, Anglian and Souss Massa) affected by water scarcity, and aims to answer the following questions: how does water scarcity interact with other existing stressors in the study river basins? How will these interactions change according to the different scenarios of future global change? Which will be the foreseeable consequences for river ecosystems? How will these in turn affect the services the ecosystems provide? How should management and policies be adapted to minimise the ecological, economic and societal consequences? These questions will be approached by combining data-mining, field- and laboratory-based research, and modelling. Here, we outline the general structure of the project and the activities to be conducted within the fourteen work-packages of GLOBAQUA.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2014License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/26811Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADUGiDocs – Universitat de GironaArticle . 2015License: CC BY NC NDData sources: DUGiDocs – Universitat de GironaINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)Eberhard Karls University Tübingen: Publication SystemArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut national de la recherche scientifique, Québec: Espace INRSArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2014.06.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 172 citations 172 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 120visibility views 120 download downloads 404 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2014License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/26811Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADUGiDocs – Universitat de GironaArticle . 2015License: CC BY NC NDData sources: DUGiDocs – Universitat de GironaINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)Eberhard Karls University Tübingen: Publication SystemArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut national de la recherche scientifique, Québec: Espace INRSArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2014.06.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:MDPI AG Authors: Tymon Zielinski; Izabela Kotynska-Zielinska; Carlos Garcia-Soto;doi: 10.3390/su14020926
handle: 10261/321137 , 10508/16305
In this paper, we discuss the importance of the efficient communication of science results to citizens across the world. In order for people to absorb information, we need to understand the principles and apply the best available means to facilitate the process of increasing global awareness of the changes. This explicitly applies to the verification of how we appeal to people with respect to various environmental issues and, hence, how we can modernize the educational approaches to challenge the global change. We state that, in order to follow the philosophy of sustainable development goals with respect to ocean issues, we need an attractive alternative to the existing areas of consumption. We also state that the ocean issues are at the core of any process aiming to secure sustainability. New methods and tools of education and scientific communication, especially those which are offered by non-formal approaches, are necessary, and we present here some of the activities of the EU4Ocean coalition as best practice examples.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2022License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14020926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 11 Powered bymore_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2022License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14020926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Portugal, SpainPublisher:Elsevier BV del Río, S.; Canas, R.; Cano, E.; Cano-Ortiz, A.; Musarella, C.; Pinto-Gomes, C.; Penas, A.;handle: 10261/254003
16 páginas, 5 figuras, 4 tablas. Global change is expected to impact on the distribution and abundance of forests. Spain represents the south-western limit of distribution for several types of deciduous forests and, as part of the Mediterranean Basin, it has all the characteristics to be affected by climate change. This study analyses the effects of climate change on habitat suitability and vulnerability in four categories of deciduous forests: Fagus sylvatica L., Quercus petraea (Matt.) Leibl., Quercus robur L. and Betula celtiberica Rothm. and Vasc. The approach combines an ensemble platform for species distribution models (SDMs) using three algorithms applied to four global circulation models (GCMs) driven by two representative concentration pathways (RCPs). Bioclimatic, biogeographic, soil and topographic variables were taken into consideration as predictors to build 320 single distribution models. Ensemble-forecasting models were then produced for each forest category and RCPs by computing a consensus of single-model projections. The adapted proposal of the Intergovernmental Panel on Climate Change (IPCC) was also applied to deal with the uncertainty and notify the likelihood of the outcomes. The results revealed generalized losses in habitat suitability compared to current conditions for all the forest categories, which were more drastic for the RCP 8.5 emission pathway. Exceptions worth noting are forests of Fagus sylvatica (likelihood 25%-50%) and Quercus robur (likelihood 75%-100%) in the Orocantabrian biogeo-graphic subprovince, and Quercus petraea formations in the Cantabrian Atlantic subprovince (likelihood 25%- 50%). Betula celtiberica would suffer the largest losses of habitat suitability under the climate change scenarios analysed. The vulnerability analysis confirmed that the deciduous formations least affected by climate change in future will be the Orocantabrian forests, while the Pyrenean and Oroiberian communities are the most vulnerable. The models developed in this study provide decision-makers with basic information and a useful tool for designing plans for the conservation and management of these forests in order to mitigate the impact of climate change. The study also highlights the importance and usefulness of conducting analyses at the biogeographic level, since the effects of climate change may be different and require management and conservation policies at local level. Peer reviewed
Ecological Indicator... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2021.108202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 62visibility views 62 download downloads 145 Powered bymore_vert Ecological Indicator... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2021.108202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Hungary, Hungary, Spain, France, SwitzerlandPublisher:Copernicus GmbH Funded by:AKA | Centre of Excellence in A..., EC | ACTRIS, EC | ERA-PLANET +2 projectsAKA| Centre of Excellence in Atmospheric Science From Molecular and Biolocigal processes to The Global Climate ,EC| ACTRIS ,EC| ERA-PLANET ,EC| ACTRIS PPP ,EC| ACTRIS-2M. Collaud Coen; E. Andrews; E. Andrews; A. Alastuey; T. P. Arsov; J. Backman; B. T. Brem; N. Bukowiecki; C. Couret; K. Eleftheriadis; H. Flentje; M. Fiebig; M. Gysel-Beer; J. L. Hand; A. Hoffer; R. Hooda; R. Hooda; C. Hueglin; W. Joubert; M. Keywood; J. E. Kim; S.-W. Kim; C. Labuschagne; N.-H. Lin; Y. Lin; C. Lund Myhre; K. Luoma; H. Lyamani; H. Lyamani; A. Marinoni; O. L. Mayol-Bracero; N. Mihalopoulos; M. Pandolfi; N. Prats; A. J. Prenni; J.-P. Putaud; L. Ries; F. Reisen; K. Sellegri; S. Sharma; P. Sheridan; J. P. Sherman; J. Sun; G. Titos; G. Titos; E. Torres; T. Tuch; R. Weller; A. Wiedensohler; P. Zieger; P. Zieger; P. Laj; P. Laj; P. Laj;handle: 10261/220893
Abstract. In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann–Kendall (MK) statistical test associated with several pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficient trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficient time series also exhibit primarily decreasing trends. For single scattering albedo, 52 % of the sites exhibit statistically significant positive trends, mostly in Asia, eastern/northern Europe and the Arctic, 22 % of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 26 % of sites have trends which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010–2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10-year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10-year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10-year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2009–2012 for all stations in the eastern and central USA. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage provides insight into potential aerosol effects on climate changes.
MTAK: REAL (Library ... arrow_drop_down MTAK: REAL (Library and Information Centre of the Hungarian Academy of SciencesArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2020Full-Text: https://insu.hal.science/insu-03706468Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://insu.hal.science/insu-03706468Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-20-8867-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 341visibility views 341 download downloads 789 Powered bymore_vert MTAK: REAL (Library ... arrow_drop_down MTAK: REAL (Library and Information Centre of the Hungarian Academy of SciencesArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2020Full-Text: https://insu.hal.science/insu-03706468Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://insu.hal.science/insu-03706468Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-20-8867-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, SpainPublisher:Frontiers Media SA Funded by:NSERC, ANR | SOMBEE, EC | FutureMARES +1 projectsNSERC ,ANR| SOMBEE ,EC| FutureMARES ,EC| TRIATLASJohanna J. Heymans; Alida Bundy; Villy Christensen; Marta Coll; Marta Coll; Kim de Mutsert; Elizabeth A. Fulton; Elizabeth A. Fulton; Chiara Piroddi; Yunne-Jai Shin; Jeroen Steenbeek; Morgane Travers-Trolet;handle: 10261/220707
Managing for the Future: Understanding the Relative Roles of Climate and Fishing on Structure and Dynamics of Marine Ecosystems.-- 5 pages, 1 figure The UN declared the 2021–2030 as the Decade of Ocean Science for Sustainable Development (Ocean Decade). The Ocean Decade's vision is to “develop scientific knowledge, build infrastructure and foster relationships for a sustainable and healthy ocean.” The Ocean Decade aims to achieve six societal outcomes: (1) A clean ocean, through identifying and removing sources of pollution; (2) A healthy and resilient ocean, with mapped and protected marine ecosystems; (3) A predicted ocean, enabling society to understand current and future ocean conditions; (4) A safe ocean, protecting people from ocean hazards; (5) A sustainably harvested ocean, providing food and resources for the blue economy; and (6) A transparent ocean, giving citizens equitable access to data, information and technologies. It also aims to provide concrete scientific support to coastal management, adaptation and restoration, marine spatial planning, marine protected areas, fisheries management, sustainable expansion of the blue economy, nationally determined contributions to the United Nations Framework Convention on Climate Change (UNFCCC), national ocean policies, development of national Research and Development (R&D), capacity development, and early warning systems. The Ocean Decade offers the ocean science community a unique opportunity to change the way we support sustainable development and galvanize ocean sciences for the future (Ryabinin et al., 2019). In addition, the UN Decade for Ecosystem Restoration (2021–2030), gives the ocean science community an imperative to work toward a sustainable future for the ocean. We challenge the marine ecosystem modeling community to address how we: (i) enable ocean managers and decision-makers to use our science, (ii) communicate our science, and most importantly (iii) ensure co-design of our science to achieve sustainable development. For this, we define ecosystem models as those that span physical and human drivers of change in the full ecosystem from plankton to top predators Y-jS and MT-T have been partially funded by the Biodiversa and Belmont Forum project SOMBEE (BiodivScen programme, ANR contract N°ANR-18-EBI4-0003-01). MC and JS were funded by the European Union's Horizon 2020 research and innovation programme under grant agreement N° 817578 (TRIATLAS project) and MC also received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 869300 (FutureMARES project). VC acknowledges support through NSERC Discovery Grant RGPIN-2019-04901 With the funding support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S), of the Spanish Research Agency (AEI) Peer reviewed
Frontiers in Marine ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.554573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 20visibility views 20 download downloads 103 Powered bymore_vert Frontiers in Marine ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.554573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Netherlands, United Kingdom, SpainPublisher:Frontiers Media SA Funded by:EC | CERESEC| CERESKatell G. Hamon; Cornelia M. Kreiss; John K. Pinnegar; John K. Pinnegar; Heleen Bartelings; Jurgen Batsleer; Ignacio A. Catalán; Dimitrios Damalas; Jan-Jaap Poos; Jan-Jaap Poos; Sandra Rybicki; Sevrine F. Sailley; Vasiliki Sgardeli; Myron A. Peck;handle: 10261/254533
Climate change is anticipated to have long-term and widespread direct consequences for the European marine ecosystems and subsequently for the European fishery sector. Additionally, many socio-economic and political factors linked to climate change scenarios will impact the future development of fishing industries. Robust projection modeling of bioeconomic consequences of climate change on the European fishing sector must identify all these factors and their potential future interaction. In this study, four socio-political scenarios developed in the EU project CERES (Climate change and European aquatic RESources) were operationalized and used in model projections of marine wild capture fisheries. Four CERES scenarios (“World Markets,” “National Enterprise,” “Global Sustainability” and “Local Stewardship”) were based on the IPCC framework of Shared Socio-economic Pathways (SSPs). For each of these scenarios, a set of quantitative outputs was generated to allow projections of bio-economic impacts to mid-century (2050) on wild-capture fisheries operating in different European regions. Specifically, projections accounted for future changes in fisheries management targets, access regulations, international agreements, fish and fuel prices, technological developments and marine spatial planning. This study thoroughly describes the elements of these four fisheries scenarios and demonstrates an example of the “regionalization” of these scenarios by summarizing how they were applied to the North Sea flatfish fishery. Bioeconomic projections highlight the importance of future developments in fuel and fish price development to the viability of that and other fisheries. Adapting these scenarios for use in other models and regions outside the 10 European fisheries examined in CERES would be highly beneficial by allowing direct comparison of the bioeconomic risks and opportunities posed by climate change.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.578516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 29 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.578516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Spain, Portugal, Spain, Norway, United Kingdom, United KingdomPublisher:Wiley Funded by:EC | WildFishGenes, EC | BEMAREC| WildFishGenes ,EC| BEMARJosep Alós; Kim Aarestrup; David Abecasis; Pedro Afonso; Alexandre Alonso‐Fernandez; Eneko Aspillaga; Margarida Barcelo‐Serra; Jonathan Bolland; Miguel Cabanellas‐Reboredo; Robert Lennox; Ross McGill; Aytaç Özgül; Jan Reubens; David Villegas‐Ríos;AbstractThe ocean is a key component of the Earth's dynamics, providing a great variety of ecosystem services to humans. Yet, human activities are globally changing its structure and major components, including marine biodiversity. In this context, the United Nations has proclaimed a Decade of Ocean Science for Sustainable Development to tackle the scientific challenges necessary for a sustainable use of the ocean by means of the Sustainable Development Goal 14 (SDG14). Here, we review how Acoustic animal Tracking, a widely distributed methodology of tracking marine biodiversity with electronic devices, can provide a roadmap for implementing the major Actions to achieve the SDG14. We show that acoustic tracking can be used to reduce and monitor the effects of marine pollution including noise, light, and plastic pollution. Acoustic tracking can be effectively used to monitor the responses of marine biodiversity to human‐made infrastructures and habitat restoration, as well as to determine the effects of hypoxia, ocean warming, and acidification. Acoustic tracking has been historically used to inform fisheries management, the design of marine protected areas, and the detection of essential habitats, rendering this technique particularly attractive to achieve the sustainable fishing and spatial protection target goals of the SDG14. Finally, acoustic tracking can contribute to end illegal, unreported, and unregulated fishing by providing tools to monitor marine biodiversity against poachers and promote the development of Small Islands Developing States and developing countries. To fully benefit from acoustic tracking supporting the SDG14 Targets, trans‐boundary collaborative efforts through tracking networks are required to promote ocean information sharing and ocean literacy. We therefore propose acoustic tracking and tracking networks as relevant contributors to tackle the scientific challenges that are necessary for a sustainable use of the ocean promoted by the United Nations.
NORCE vitenarkiv (No... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3046029Data sources: Bielefeld Academic Search Engine (BASE)University of Hull: Repository@HullArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 66visibility views 66 download downloads 92 Powered bymore_vert NORCE vitenarkiv (No... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3046029Data sources: Bielefeld Academic Search Engine (BASE)University of Hull: Repository@HullArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, Italy, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | LitRivusEC| LitRivusAuthors: Elisa Rojo-Nieto; Rosanna I. Schöneich-Argent; Rosanna I. Schöneich-Argent; Josué Viejo; +25 AuthorsElisa Rojo-Nieto; Rosanna I. Schöneich-Argent; Rosanna I. Schöneich-Argent; Josué Viejo; Rigers Bakiu; Georg Hanke; Oksana Savenko; Filipa Bessa; Nino Machitadze; Maria Pogojeva; Myrto Tourgeli; Carmen Morales-Caselles; María del Carmen Cabrera; Damià Barceló; Damià Barceló; Joana Pereira de Brito; Júlia Rigueira; Andrés Cózar; Antoine Bruge; Yuri Galletti; Mel Constant; Ahmet E. Kideys; Javier Castro-Jiménez; Javier Castro-Jiménez; Daniel González-Fernández; Roberto Crosti; Nuno Ratola; Giuseppe Suaria; Grzegorz Siedlewicz;handle: 10261/245111
Riverine systems act as converging pathways for discarded litter within drainage basins, becoming key elements in gauging the transfer of mismanaged waste into the ocean. However, riverine litter data are scarce and biased towards microplastics, generally lacking information about larger items. Based on the first ever database of riverine floating macrolitter across Europe, we have estimated that between 307 and 925 million litter items are released annually from Europe into the ocean. The plastic fraction represented 82% of the observed litter, mainly fragments and single-use items (that is, bottles, packaging and bags). Our modelled estimates show that a major portion of the total litter loading is routed through small-sized drainage basins (<100 km2), indicating the relevance of small rivers, streams and coastal run-off. Moreover, the major contribution of high-income countries to the macrolitter inputs suggests that reducing ocean pollution cannot be achieved only by improving waste management, but also requires changing consumption habits and behaviour to curb waste generation at source. The inability of countries with well-developed recovery systems to control the leakage of waste into the environment further supports the need to regulate the production and use of plastic on a global scale. We acknowledge the additional members (coordinators and observers) of RiLON, listed in Supplementary Data 5, for their support in the field data collection and feedback during the data quality control. D.G.-F. was supported by the JRC institutional exploratory project RIMMEL (272346), PLASTREND (BBVA Foundation) and the European Union (H2020-MSCA-IF-2018 846843 - LitRivus). J.V. and C.M.-C. were supported by the MIDaS project (Spanish Ministry of Science, Innovation and Universities, CTM2016-77106-R, AEI/FEDER/UE). Peer reviewed
Nature Sustainabilit... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTANature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-021-00722-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 174 citations 174 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 32visibility views 32 download downloads 30 Powered bymore_vert Nature Sustainabilit... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTANature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-021-00722-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, Spain, AustraliaPublisher:Frontiers Media SA Authors: Robert L. Stephenson; Robert L. Stephenson; Robert L. Stephenson; Alistair J. Hobday; +21 AuthorsRobert L. Stephenson; Robert L. Stephenson; Robert L. Stephenson; Alistair J. Hobday; Alistair J. Hobday; Edward H. Allison; Derek Armitage; Kate Brooks; Alida Bundy; Christopher Cvitanovic; Christopher Cvitanovic; Mark Dickey-Collas; Mark Dickey-Collas; Natalia de Miranda Grilli; Catalina Gomez; Astrid Jarre; Laura Kaikkonen; Rachel Kelly; Rachel Kelly; Romain López; Ella-Kari Muhl; Maria Grazia Pennino; Jamie C. Tam; Ingrid van Putten; Ingrid van Putten;handle: 10261/326418 , 10508/12014
In recent decades, scientists and practitioners have increasingly focused on identifying and codifying the best ways to manage activities in marine systems, leading to the development and implementation of concepts such as the social-ecological systems approach, ecosystem-based management, integrated management, marine spatial planning, participatory co-management, and the precautionary approach. To date, these concepts appear as separate entities: they have parallel literature streams; have been applied most often individually in attempts to improve governance and management; and in many ways, seem to be competing for attention. This patchwork of approaches may be hindering effective ocean governance. We propose that desirable features from these frameworks could be woven together to form the basis of more effective and equitable ocean governance arrangements across contexts, sectors, and scales. This article synthesizes the efforts of an IMBeR (Integrated Marine Biosphere Research Project) conference session and working group, that brought together experts in these diverse concepts with the objective of producing a synthesis of how they could be more effectively integrated for improved ocean sustainability outcomes. We reviewed and compared the concepts in terms of (a) the need to achieve a comprehensive suite of sustainability objectives, (b) similarities and differences in their scope, and (c) their place in practical management, policy and regulation. Achieving greater cross-sectoral integration, or a more holistic perspective on management for sustainability is at the core of each concept. All deal with aspects of governance and most, with improved participation in governance. The major differences in the origin and historical application of each concept are reflected in the degree of implicit or explicit focus given to different objectives of sustainability. Overall, the concepts are especially strong for ecological and institutional or governance considerations, moderately strong for economic aspects, and weakest for the social-cultural pillar of full spectrum sustainability. There is no panacea, and no emergent hierarchy among concepts. Some concepts fit better with top-down legislation-based efforts, others with more bottom-up stakeholder driven efforts. The selection of the core concepts for a situation will depend in a large part on which concepts are specified, or demand focus, in the legal and policy context of the situation (or area) of interest. No matter how influential or dominant a single concept might be, pragmatically, different concepts will be used in different areas, and there may always be the need for a combination of concepts and objectives woven together to achieve a cohesive quilt of sustainability.
Frontiers in Marine ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2021Data sources: Repositorio Institucional Digital del IEOUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.630547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 7 Powered bymore_vert Frontiers in Marine ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2021Data sources: Repositorio Institucional Digital del IEOUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.630547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 SpainPublisher:Frontiers Media SA Karen Evans; Tymon Zielinski; S. Chiba; Carlos Garcia-Soto; Carlos Garcia-Soto; Henn Ojaveer; Chul Park; Renison Ruwa; Jörn Oliver Schmidt; Jörn Oliver Schmidt; Alan Simcock; Anastasia Strati; Ca Thanh Vu;handle: 10508/11955 , 10261/321593
The ocean provides essential services to human wellbeing through climate regulation, provision of food, energy and livelihoods, protection of communities and nurturing of social and cultural values. Yet despite the ocean’s key role for all life, it is failing as a result of unsustainable human practices. The first global integrated assessment of the marine environment, produced by the United Nations under The Regular Process for Global Reporting and Assessment of the State of the Marine Environment, including Socioeconomic Aspects (the World Ocean Assessment), identified an overall decline in ocean health. The second assessment, launched in April 2021, although recognising some bright spots and improvements, stresses ongoing decline in the ocean as a result of many unabated anthropogenic stressors on the ocean. This highlights that society, as a whole, does not fully recognise or value the importance of the ocean to their lives and impacts on the ocean caused by human activities. Further, recognition of the need for immediate and effective solutions for mitigating impacts and enabling ecosystem recovery, and the associated societal changes required is lacking. The United Nations 2030 Agenda for Sustainable Development and the United Nations Decade of Ocean Science for Sustainable Development 2021–2030 both recognize that sustainability is both a desired and essential pathway for ensuring the ocean can continue to provide the services society depends on. The World Ocean Assessment has an important role to play in increasing awareness of the ocean, the changes occurring in the ocean, the human activities causing those changes and the progress being made in reducing and mitigating the impacts of human activities on the marine environment. This paper outlines the knowledge brokering role that the Regular Process provides on ocean issues to all aspects of society from policy makers, ocean managers, ocean users to the public. It identifies the challenges faced by the Regular Process in successfully carrying out that role and lessons learned in achieving widespread uptake and recognition. Within the Decade of Ocean Science for Sustainable Development, solutions in the form of instructions or guidelines for the use of the assessment can be developed and implemented.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2021License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2021.626532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 11 Powered bymore_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2021License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2021.626532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Spain, Germany, Canada, Spain, United Kingdom, Spain, Spain, France, SpainPublisher:Elsevier BV Funded by:EC | GLOBAQUAEC| GLOBAQUASylvain Dolédec; Ralf Merz; Claudio Paniconi; Arturo Elosegi; Redouane Choukr-Allah; Federico Ferrari; Nikolaos Voulvoulis; Isabel Muñoz; Sergi Sabater; Sergi Sabater; Georg Teutsch; Mira Petrovic; Mira Petrovic; Peter Grathwohl; Ralf Ludwig; Momir Paunović; Phoebe Koundouri; Phoebe Koundouri; Antoni Ginebreda; Alberto Bellin; Colin Jones; Giorgio Cassiani; Philippe Ker Rault; Peter Burek; Radmila Milačič; Adriaan Slob; Grigory Nikulin; Damià Barceló; Damià Barceló; Alícia Navarro-Ortega; Nikolaos Skoulikidis; Vicenç Acuña; Laia Sabater; Kasper Kok;Water scarcity is a serious environmental problem in many European regions, and will likely increase in the near future as a consequence of increased abstraction and climate change. Water scarcity exacerbates the effects of multiple stressors, and thus results in decreased water quality. It impacts river ecosystems, threatens the services they provide, and it will force managers and policy-makers to change their current practices. The EU-FP7 project GLOBAQUA aims at identifying the prevalence, interaction and linkages between stressors, and to assess their effects on the chemical and ecological status of freshwater ecosystems in order to improve water management practice and policies. GLOBAQUA assembles a multidisciplinary team of 21 European plus 2 non-European scientific institutions, as well as water authorities and river basin managers. The project includes experts in hydrology, chemistry, biology, geomorphology, modelling, socio-economics, governance science, knowledge brokerage, and policy advocacy. GLOBAQUA studies six river basins (Ebro, Adige, Sava, Evrotas, Anglian and Souss Massa) affected by water scarcity, and aims to answer the following questions: how does water scarcity interact with other existing stressors in the study river basins? How will these interactions change according to the different scenarios of future global change? Which will be the foreseeable consequences for river ecosystems? How will these in turn affect the services the ecosystems provide? How should management and policies be adapted to minimise the ecological, economic and societal consequences? These questions will be approached by combining data-mining, field- and laboratory-based research, and modelling. Here, we outline the general structure of the project and the activities to be conducted within the fourteen work-packages of GLOBAQUA.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2014License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/26811Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADUGiDocs – Universitat de GironaArticle . 2015License: CC BY NC NDData sources: DUGiDocs – Universitat de GironaINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)Eberhard Karls University Tübingen: Publication SystemArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut national de la recherche scientifique, Québec: Espace INRSArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2014.06.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 172 citations 172 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 120visibility views 120 download downloads 404 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2014License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/26811Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADUGiDocs – Universitat de GironaArticle . 2015License: CC BY NC NDData sources: DUGiDocs – Universitat de GironaINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)Eberhard Karls University Tübingen: Publication SystemArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut national de la recherche scientifique, Québec: Espace INRSArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2014.06.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:MDPI AG Authors: Tymon Zielinski; Izabela Kotynska-Zielinska; Carlos Garcia-Soto;doi: 10.3390/su14020926
handle: 10261/321137 , 10508/16305
In this paper, we discuss the importance of the efficient communication of science results to citizens across the world. In order for people to absorb information, we need to understand the principles and apply the best available means to facilitate the process of increasing global awareness of the changes. This explicitly applies to the verification of how we appeal to people with respect to various environmental issues and, hence, how we can modernize the educational approaches to challenge the global change. We state that, in order to follow the philosophy of sustainable development goals with respect to ocean issues, we need an attractive alternative to the existing areas of consumption. We also state that the ocean issues are at the core of any process aiming to secure sustainability. New methods and tools of education and scientific communication, especially those which are offered by non-formal approaches, are necessary, and we present here some of the activities of the EU4Ocean coalition as best practice examples.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2022License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14020926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 11 Powered bymore_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2022License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14020926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Portugal, SpainPublisher:Elsevier BV del Río, S.; Canas, R.; Cano, E.; Cano-Ortiz, A.; Musarella, C.; Pinto-Gomes, C.; Penas, A.;handle: 10261/254003
16 páginas, 5 figuras, 4 tablas. Global change is expected to impact on the distribution and abundance of forests. Spain represents the south-western limit of distribution for several types of deciduous forests and, as part of the Mediterranean Basin, it has all the characteristics to be affected by climate change. This study analyses the effects of climate change on habitat suitability and vulnerability in four categories of deciduous forests: Fagus sylvatica L., Quercus petraea (Matt.) Leibl., Quercus robur L. and Betula celtiberica Rothm. and Vasc. The approach combines an ensemble platform for species distribution models (SDMs) using three algorithms applied to four global circulation models (GCMs) driven by two representative concentration pathways (RCPs). Bioclimatic, biogeographic, soil and topographic variables were taken into consideration as predictors to build 320 single distribution models. Ensemble-forecasting models were then produced for each forest category and RCPs by computing a consensus of single-model projections. The adapted proposal of the Intergovernmental Panel on Climate Change (IPCC) was also applied to deal with the uncertainty and notify the likelihood of the outcomes. The results revealed generalized losses in habitat suitability compared to current conditions for all the forest categories, which were more drastic for the RCP 8.5 emission pathway. Exceptions worth noting are forests of Fagus sylvatica (likelihood 25%-50%) and Quercus robur (likelihood 75%-100%) in the Orocantabrian biogeo-graphic subprovince, and Quercus petraea formations in the Cantabrian Atlantic subprovince (likelihood 25%- 50%). Betula celtiberica would suffer the largest losses of habitat suitability under the climate change scenarios analysed. The vulnerability analysis confirmed that the deciduous formations least affected by climate change in future will be the Orocantabrian forests, while the Pyrenean and Oroiberian communities are the most vulnerable. The models developed in this study provide decision-makers with basic information and a useful tool for designing plans for the conservation and management of these forests in order to mitigate the impact of climate change. The study also highlights the importance and usefulness of conducting analyses at the biogeographic level, since the effects of climate change may be different and require management and conservation policies at local level. Peer reviewed
Ecological Indicator... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2021.108202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 62visibility views 62 download downloads 145 Powered bymore_vert Ecological Indicator... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2021.108202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu