search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • 7. Clean energy
  • Transport Research
  • Netherlands

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Luigi Pio Prencipe; J. Theresia van Essen; Leonardo Caggiani; Michele Ottomanelli; +1 Authors

    Electric car-sharing systems have attracted large attention in recent years as a new business model for achieving both economic and environmental benefits in urban areas. Among different types, the one considered in this paper is the so-called one-way car-sharing system whereby a user can begin and end a trip at any station of the system. At the same time, the Vehicle-to-Grid (V2G) concept is emerging as a possible innovative solution for smart power grid control. A management system that combines car-sharing system operations and V2G technology is a recent challenge for academia and industry. In this work, a mixed integer linear programming formulation is proposed to find the optimal management of electric vehicles in a one-way car-sharing system integrated with V2G technology. The proposed mathematical model allows finding the optimal start-of-day electric vehicles distribution that maximizes the total revenue obtained from system users and V2G profits through daily electric vehicles charging/discharging schedules. These schedules are based on mean daily users' electric vehicles requests and electricity prices. The model can be applied to evaluate the possible average daily profitability of V2G operations. In order to test the model performance, we applied it to a small-size test network and a real-size test network (the Delft network in the Netherlands). Under the model assumptions, the adoption of V2G technology allows to fully cover the daily charging costs due to users’ trips and to obtain V2G profits by taking advantage of electric vehicles unused time without significantly reducing the satisfied car-sharing system demand. Most of the energy purchased to charge the electric vehicles batteries is provided back to the grid during energy peak load demand, creating benefits also for energy providers. ; Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the ...

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    18
    citations18
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility34
    visibilityviews34
    downloaddownloads53
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Luigi Pio Prencipe; J. Theresia van Essen; Leonardo Caggiani; Michele Ottomanelli; +1 Authors

    Electric car-sharing systems have attracted large attention in recent years as a new business model for achieving both economic and environmental benefits in urban areas. Among different types, the one considered in this paper is the so-called one-way car-sharing system whereby a user can begin and end a trip at any station of the system. At the same time, the Vehicle-to-Grid (V2G) concept is emerging as a possible innovative solution for smart power grid control. A management system that combines car-sharing system operations and V2G technology is a recent challenge for academia and industry. In this work, a mixed integer linear programming formulation is proposed to find the optimal management of electric vehicles in a one-way car-sharing system integrated with V2G technology. The proposed mathematical model allows finding the optimal start-of-day electric vehicles distribution that maximizes the total revenue obtained from system users and V2G profits through daily electric vehicles charging/discharging schedules. These schedules are based on mean daily users' electric vehicles requests and electricity prices. The model can be applied to evaluate the possible average daily profitability of V2G operations. In order to test the model performance, we applied it to a small-size test network and a real-size test network (the Delft network in the Netherlands). Under the model assumptions, the adoption of V2G technology allows to fully cover the daily charging costs due to users’ trips and to obtain V2G profits by taking advantage of electric vehicles unused time without significantly reducing the satisfied car-sharing system demand. Most of the energy purchased to charge the electric vehicles batteries is provided back to the grid during energy peak load demand, creating benefits also for energy providers. ; Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the ...

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    18
    citations18
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility34
    visibilityviews34
    downloaddownloads53
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph