- home
- Search
Filters
Clear All- Energy Research
- Closed Access
- 7. Clean energy
- Transport Research
- Netherlands
- Energy Research
- Closed Access
- 7. Clean energy
- Transport Research
- Netherlands
description Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Authors: Luigi Pio Prencipe; J. Theresia van Essen; Leonardo Caggiani; Michele Ottomanelli; +1 AuthorsLuigi Pio Prencipe; J. Theresia van Essen; Leonardo Caggiani; Michele Ottomanelli; Gonçalo Homem de Almeida Correia;Electric car-sharing systems have attracted large attention in recent years as a new business model for achieving both economic and environmental benefits in urban areas. Among different types, the one considered in this paper is the so-called one-way car-sharing system whereby a user can begin and end a trip at any station of the system. At the same time, the Vehicle-to-Grid (V2G) concept is emerging as a possible innovative solution for smart power grid control. A management system that combines car-sharing system operations and V2G technology is a recent challenge for academia and industry. In this work, a mixed integer linear programming formulation is proposed to find the optimal management of electric vehicles in a one-way car-sharing system integrated with V2G technology. The proposed mathematical model allows finding the optimal start-of-day electric vehicles distribution that maximizes the total revenue obtained from system users and V2G profits through daily electric vehicles charging/discharging schedules. These schedules are based on mean daily users' electric vehicles requests and electricity prices. The model can be applied to evaluate the possible average daily profitability of V2G operations. In order to test the model performance, we applied it to a small-size test network and a real-size test network (the Delft network in the Netherlands). Under the model assumptions, the adoption of V2G technology allows to fully cover the daily charging costs due to users’ trips and to obtain V2G profits by taking advantage of electric vehicles unused time without significantly reducing the satisfied car-sharing system demand. Most of the energy purchased to charge the electric vehicles batteries is provided back to the grid during energy peak load demand, creating benefits also for energy providers. ; Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the ...
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.133147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 34visibility views 34 download downloads 53 Powered bymore_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.133147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Authors: Luigi Pio Prencipe; J. Theresia van Essen; Leonardo Caggiani; Michele Ottomanelli; +1 AuthorsLuigi Pio Prencipe; J. Theresia van Essen; Leonardo Caggiani; Michele Ottomanelli; Gonçalo Homem de Almeida Correia;Electric car-sharing systems have attracted large attention in recent years as a new business model for achieving both economic and environmental benefits in urban areas. Among different types, the one considered in this paper is the so-called one-way car-sharing system whereby a user can begin and end a trip at any station of the system. At the same time, the Vehicle-to-Grid (V2G) concept is emerging as a possible innovative solution for smart power grid control. A management system that combines car-sharing system operations and V2G technology is a recent challenge for academia and industry. In this work, a mixed integer linear programming formulation is proposed to find the optimal management of electric vehicles in a one-way car-sharing system integrated with V2G technology. The proposed mathematical model allows finding the optimal start-of-day electric vehicles distribution that maximizes the total revenue obtained from system users and V2G profits through daily electric vehicles charging/discharging schedules. These schedules are based on mean daily users' electric vehicles requests and electricity prices. The model can be applied to evaluate the possible average daily profitability of V2G operations. In order to test the model performance, we applied it to a small-size test network and a real-size test network (the Delft network in the Netherlands). Under the model assumptions, the adoption of V2G technology allows to fully cover the daily charging costs due to users’ trips and to obtain V2G profits by taking advantage of electric vehicles unused time without significantly reducing the satisfied car-sharing system demand. Most of the energy purchased to charge the electric vehicles batteries is provided back to the grid during energy peak load demand, creating benefits also for energy providers. ; Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the ...
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.133147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 34visibility views 34 download downloads 53 Powered bymore_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.133147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu