- home
- Search
- Energy Research
- 13. Climate action
- 15. Life on land
- AU
- Netherlands
- Energy Research
- 13. Climate action
- 15. Life on land
- AU
- Netherlands
Research data keyboard_double_arrow_right Dataset 2017Embargo end date: 17 Feb 2018Publisher:Dryad Digital Repository Authors: Wade, Ruth N.; Karley, Alison J.; Johnson, Scott N.; Hartley, Sue E.;1. Predicted changes in the frequency and intensity of extreme rainfall events in the UK have the potential to disrupt terrestrial ecosystem function. However, responses of different trophic levels to these changes in rainfall patterns, and the underlying mechanisms, are not well characterised. 2. This study aimed to investigate how changes in both the quantity and frequency of rainfall events will affect the outcome of interactions between plants, insect herbivores (above- and below- ground) and natural enemies. 3. Hordeum vulgare L. plants were grown in controlled conditions and in the field, and subjected to three precipitation scenarios: ambient (based on a local 10 year average rainfall); continuous drought (40% reduction compared to ambient); drought/ deluge (40% reduction compared to ambient at a reduced frequency). The effects of these watering regimes and wireworm (Agriotes species) root herbivory on the performance of the plants, aphid herbivores above-ground (Sitobion avenae, Metapolophium dirhodum and Rhopalosiphum padi), and natural enemies of aphids including ladybirds (Harmonia axyridis) were assessed from measurements of plant growth, insect abundance and mass, and assays of feeding behaviour. 4. Continuous drought decreased plant biomass, whereas reducing the frequency of watering events did not affect plant biomass but did alter plant chemical composition. In controlled conditions, continuous drought ameliorated the negative impact of wireworms on plant biomass. 5. Compared to the ambient treatment, aphid mass was increased by 15% when feeding on plants subjected to drought/ deluge; and ladybirds were 66% heavier when feeding on these aphids but this did not affect ladybird prey choice. In field conditions, wireworms feeding below-ground reduced the number of shoot-feeding aphids under ambient and continuous drought conditions but not under drought/ deluge. 6. Predicted changes in both the frequency and intensity of precipitation events under climate change have the potential to limit plant growth, but reduce wireworm herbivory, while simultaneously promoting above-ground aphid numbers and mass, with these effects transferring to the third trophic level. Understanding the effect of future changes in precipitation on species interactions is critical for determining their potential impact on ecosystem functioning and constructing accurate predictions under global change scenarios. Controlled environment and field experimental dataData file containing all data reported in the paper including plant, soil and insect data from controlled environment and field experiments. First spreadsheet in the data file contains a key to explain all abbreviations used throughout the file.Experimental data.xlsx
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.t6m9m.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.t6m9m.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Australia, NetherlandsPublisher:MDPI AG Funded by:EC | FAirWAYEC| FAirWAYAuthors:Morten Graversgaard;
Beatrice Hedelin; Laurence Smith; Flemming Gertz; +9 AuthorsMorten Graversgaard
Morten Graversgaard in OpenAIREMorten Graversgaard;
Beatrice Hedelin; Laurence Smith; Flemming Gertz;Morten Graversgaard
Morten Graversgaard in OpenAIREAnker Lajer Højberg;
John Langford; Grit Martinez;Anker Lajer Højberg
Anker Lajer Højberg in OpenAIREErik Mostert;
Emilia Ptak;Erik Mostert
Erik Mostert in OpenAIREHeidi Peterson;
Nico Stelljes; Cors Van den Brink;Heidi Peterson
Heidi Peterson in OpenAIREJens Christian Refsgaard;
Jens Christian Refsgaard
Jens Christian Refsgaard in OpenAIREdoi: 10.3390/su10051634
handle: 11343/227486
Diffuse Water Pollution from Agriculture (DWPA) and its governance has received increased attention as a policy concern across the globe. Mitigation of DWPA is a complex problem that requires a mix of policy instruments and a multi-agency, broad societal response. In this paper, opportunities and barriers for developing co-governance, defined as collaborative societal involvement in the functions of government, and its suitability for mitigation of DWPA are reviewed using seven case studies in Europe (Poland, Denmark, Sweden, The Netherlands and UK), Australia (Murray-Darling Basin) and North America (State of Minnesota). An analytical framework for assessing opportunities and barriers of co-governance was developed and applied in this review. Results indicated that five key issues constitute both opportunities and barriers, and include: (i) pressure for change; (ii) connected governance structures and allocation of resources and funding; (iii) leadership and establishment of partnerships through capacity building; (iv) use and co-production of knowledge; and (v) time commitment to develop water co-governance.
Sustainability arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 80visibility views 80 download downloads 91 Powered bymore_vert Sustainability arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint , Report 2019 France, Spain, United Kingdom, France, United Kingdom, United Kingdom, Finland, FrancePublisher:American Association for the Advancement of Science (AAAS) Publicly fundedFunded by:NSF | Predicting Regional Invas..., EC | BIOBIO, EC | ECOWORM +13 projectsNSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,EC| BIOBIO ,EC| ECOWORM ,EC| SPECIALS ,NSERC ,FWF| The macrofauna decomposer food web on alpine pastureland ,EC| TERRESTREVOL ,EC| AGFORWARD ,NWO| EV Diagnostics for monitoring therapy byliquid tuneable Coulter flowcytometry (project 3.2) ,FWF| Litter decomposition and humus formation in highalpine soils ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| Gradual_Change ,FCT| LA 1 ,NSF| IGERT: Ecology, Management and Restoration of Integrated Human/Natural Landscapes ,EC| FUNDIVEUROPE ,AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactionsAuthors: Devin Routh;Aidan M. Keith;
Geoff H. Baker;Aidan M. Keith
Aidan M. Keith in OpenAIREBoris Schröder;
+142 AuthorsBoris Schröder
Boris Schröder in OpenAIREDevin Routh;Aidan M. Keith;
Geoff H. Baker;Aidan M. Keith
Aidan M. Keith in OpenAIREBoris Schröder;
Fredrick O. Ayuke;Boris Schröder
Boris Schröder in OpenAIREIñigo Virto;
Iñigo Virto
Iñigo Virto in OpenAIREThomas W. Crowther;
Thomas W. Crowther
Thomas W. Crowther in OpenAIREAnahí Domínguez;
Yvan Capowiez;Anahí Domínguez
Anahí Domínguez in OpenAIREIrina V. Zenkova;
Irina V. Zenkova
Irina V. Zenkova in OpenAIREKonstantin B. Gongalsky;
Konstantin B. Gongalsky
Konstantin B. Gongalsky in OpenAIREMartin Holmstrup;
Sandy M. Smith;Martin Holmstrup
Martin Holmstrup in OpenAIREMark E. Caulfield;
Mark E. Caulfield
Mark E. Caulfield in OpenAIREChristian Mulder;
Robin Beauséjour;Christian Mulder
Christian Mulder in OpenAIREShishir Paudel;
Shishir Paudel
Shishir Paudel in OpenAIREMatthias C. Rillig;
Matthias C. Rillig
Matthias C. Rillig in OpenAIREMichael Steinwandter;
Michiel Rutgers; Takuo Hishi;Michael Steinwandter
Michael Steinwandter in OpenAIRELoes van Schaik;
Jérôme Mathieu;Loes van Schaik
Loes van Schaik in OpenAIREGuillaume Xavier Rousseau;
José Antonio Talavera;Guillaume Xavier Rousseau
Guillaume Xavier Rousseau in OpenAIREMiguel Á. Rodríguez;
Miguel Á. Rodríguez
Miguel Á. Rodríguez in OpenAIRENico Eisenhauer;
Nico Eisenhauer
Nico Eisenhauer in OpenAIRECarlos Fragoso;
H. Lalthanzara; Thibaud Decaëns; Luis M. Hernández;Carlos Fragoso
Carlos Fragoso in OpenAIREAdrian A. Wackett;
David J. Russell;Adrian A. Wackett
Adrian A. Wackett in OpenAIREWeixin Zhang;
Weixin Zhang
Weixin Zhang in OpenAIREDavid A. Wardle;
David A. Wardle
David A. Wardle in OpenAIREScott R. Loss;
Scott R. Loss
Scott R. Loss in OpenAIRESteven J. Fonte;
Steven J. Fonte
Steven J. Fonte in OpenAIRELiliana B. Falco;
Liliana B. Falco
Liliana B. Falco in OpenAIREOlaf Schmidt;
Olaf Schmidt
Olaf Schmidt in OpenAIRERadim Matula;
Radim Matula
Radim Matula in OpenAIREShaieste Gholami;
Darío J. Díaz Cosín; Anna Rożen; Robert L. Bradley;Shaieste Gholami
Shaieste Gholami in OpenAIREWim H. van der Putten;
Michael J. Gundale; Andrea Dávalos; Andrea Dávalos; Rosa Fernández;Wim H. van der Putten
Wim H. van der Putten in OpenAIREJohan van den Hoogen;
Johan van den Hoogen
Johan van den Hoogen in OpenAIREFranciska T. de Vries;
Victoria Nuzzo; Mujeeb Rahman P;Franciska T. de Vries
Franciska T. de Vries in OpenAIREAndré L.C. Franco;
André L.C. Franco
André L.C. Franco in OpenAIREJan Hendrik Moos;
Jan Hendrik Moos
Jan Hendrik Moos in OpenAIREJoann K. Whalen;
Martine Fugère;Joann K. Whalen
Joann K. Whalen in OpenAIREMac A. Callaham;
Mac A. Callaham
Mac A. Callaham in OpenAIREMiwa Arai;
Miwa Arai
Miwa Arai in OpenAIREElizabeth M. Bach;
Yiqing Li; Raphaël Marichal; Jonatan Klaminder; Monika Joschko; George G. Brown;Elizabeth M. Bach
Elizabeth M. Bach in OpenAIREMichael B. Wironen;
Dolores Trigo; Nathaniel H. Wehr;Michael B. Wironen
Michael B. Wironen in OpenAIREMaria Kernecker;
Kristine N. Hopfensperger; Amy Choi;Maria Kernecker
Maria Kernecker in OpenAIREEsperanza Huerta Lwanga;
Sanna T. Kukkonen;Esperanza Huerta Lwanga
Esperanza Huerta Lwanga in OpenAIREBasil V. Iannone;
Veikko Huhta; Birgitta König-Ries; Guénola Pérès;Basil V. Iannone
Basil V. Iannone in OpenAIRESalvador Rebollo;
Olga Ferlian;Salvador Rebollo
Salvador Rebollo in OpenAIRENick van Eekeren;
Anne W. de Valença; Eric Blanchart;Nick van Eekeren
Nick van Eekeren in OpenAIREMatthew W. Warren;
Matthew W. Warren
Matthew W. Warren in OpenAIREJohan Pansu;
Christoph Emmerling;Johan Pansu
Johan Pansu in OpenAIRECourtland Kelly;
Courtland Kelly
Courtland Kelly in OpenAIREJavier Rodeiro-Iglesias;
Javier Rodeiro-Iglesias
Javier Rodeiro-Iglesias in OpenAIREArmand W. Koné;
Armand W. Koné
Armand W. Koné in OpenAIREMuhammad Rashid;
Muhammad Rashid; Alexander M. Roth;Muhammad Rashid
Muhammad Rashid in OpenAIREDavorka K. Hackenberger;
Michael Schirrmann;Davorka K. Hackenberger
Davorka K. Hackenberger in OpenAIREAlberto Orgiazzi;
Bryant C. Scharenbroch;Alberto Orgiazzi
Alberto Orgiazzi in OpenAIREUlrich Brose;
Ulrich Brose
Ulrich Brose in OpenAIREHelen Phillips;
Diana H. Wall; Noa Kekuewa Lincoln; Andrew R. Holdsworth; Raúl Piñeiro; Tunsisa T. Hurisso; Tunsisa T. Hurisso;Helen Phillips
Helen Phillips in OpenAIREMónica Gutiérrez López;
Mónica Gutiérrez López
Mónica Gutiérrez López in OpenAIREKlaus Birkhofer;
Yahya Kooch; Michel Loreau;Klaus Birkhofer
Klaus Birkhofer in OpenAIREJulia Seeber;
Jaswinder Singh; Volkmar Wolters;Julia Seeber
Julia Seeber in OpenAIRERadoslava Kanianska;
Jiro Tsukamoto; Visa Nuutinen;Radoslava Kanianska
Radoslava Kanianska in OpenAIREGerardo Moreno;
Gerardo Moreno
Gerardo Moreno in OpenAIREMarie Luise Carolina Bartz;
Juan B. Jesús Lidón;Marie Luise Carolina Bartz
Marie Luise Carolina Bartz in OpenAIREDaniel R. Lammel;
Daniel R. Lammel;Daniel R. Lammel
Daniel R. Lammel in OpenAIREMadhav P. Thakur;
Madhav P. Thakur
Madhav P. Thakur in OpenAIREFelicity Crotty;
Julia Krebs;Felicity Crotty
Felicity Crotty in OpenAIREIurii M. Lebedev;
Steven J. Vanek;Iurii M. Lebedev
Iurii M. Lebedev in OpenAIREMarta Novo;
Marta Novo
Marta Novo in OpenAIRECarlos A. Guerra;
José Camilo Bedano; Bernd Blossey;Carlos A. Guerra
Carlos A. Guerra in OpenAIRELorenzo Pérez-Camacho;
Lorenzo Pérez-Camacho
Lorenzo Pérez-Camacho in OpenAIREJoanne M. Bennett;
Joanne M. Bennett
Joanne M. Bennett in OpenAIRENobuhiro Kaneko;
Nobuhiro Kaneko
Nobuhiro Kaneko in OpenAIREMadalina Iordache;
Madalina Iordache
Madalina Iordache in OpenAIREAndrés Esteban Duhour;
Maria J. I. Briones; Abegail T Fusilero; Maxim Shashkov; Maxim Shashkov;Andrés Esteban Duhour
Andrés Esteban Duhour in OpenAIREEhsan Sayad;
Ehsan Sayad
Ehsan Sayad in OpenAIREThomas Bolger;
Alejandro Morón-Ríos; Lindsey Norgrove; Benjamin Schwarz;Thomas Bolger
Thomas Bolger in OpenAIREBart Muys;
Bart Muys
Bart Muys in OpenAIREJohan Neirynck;
Johan Neirynck
Johan Neirynck in OpenAIREJean-François Ponge;
Erin K. Cameron; Kelly S. Ramirez;Jean-François Ponge
Jean-François Ponge in OpenAIREpmid: 31649197
pmc: PMC7335308
Earthworm distribution in global soils Earthworms are key components of soil ecological communities, performing vital functions in decomposition and nutrient cycling through ecosystems. Using data from more than 7000 sites, Phillips et al. developed global maps of the distribution of earthworm diversity, abundance, and biomass (see the Perspective by Fierer). The patterns differ from those typically found in aboveground taxa; there are peaks of diversity and abundance in the mid-latitude regions and peaks of biomass in the tropics. Climate variables strongly influence these patterns, and changes are likely to have cascading effects on other soil organisms and wider ecosystem functions. Science , this issue p. 480 ; see also p. 425
Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 286 citations 286 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 53visibility views 53 download downloads 424 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Authors: Anantharajah, Kirsty (author);Setyowati, A.B. (author);
Setyowati, A.B. (author)
Setyowati, A.B. (author) in OpenAIREClimate change is already having substantial adverse impacts across the globe, and these are projected to worsen dramatically in years to come without rapid and far-reaching measures to transition to low carbon development. Crucially, massive financial investment will be necessary to fast track a low carbon transition and the level of finance required will arguably be well beyond the resources and capability of public finance alone. With a focus on climate finance in Asia and the Pacific and drawing empirical evidence from our work in Fiji and Indonesia, this article investigates complex realities of climate finance as it flows to the recipient countries. This article reveals how existing structures and power relations impact the outcomes of financing transitions to low carbon energy. The findings suggest that climate finance flows primarily to the most bankable, lowest risk, highest return, and often the largest scale projects. Moreover, the prioritisation of large-scale projects tends to result in preference for on-grid as opposed to off-grid renewable infrastructures, the reinforcement of technological preferences of powerful stakeholders, and the exclusion of smaller projects and developers. Consequently, it could exacerbate rather than ameliorate existing inequalities with the most vulnerable groups gaining little if any benefits from such finance. This article concludes by highlighting the importance of designing climate finance governance and financial products that could mitigate multi-scalar inequalities and design the mechanisms that internalise the need for critical, intersectional co-benefit delivery. ; Energie and Industrie
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2022.102550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 17visibility views 17 download downloads 48 Powered bymore_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2022.102550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Netherlands, United KingdomPublisher:Cogitatio Authors:Rob Roggema;
Rob Roggema
Rob Roggema in OpenAIRENico Tillie;
Nico Tillie
Nico Tillie in OpenAIREGreg Keeffe;
Wanglin Yan;Greg Keeffe
Greg Keeffe in OpenAIREhandle: 1959.7/uws:63223
In this article a planning approach is proposed to accommodate different paces of urbanisation. Instead of responding to a single problem with a Pavlov-type of response, analysis shows that the transformational tempi of different urban landscapes require multiple deployment strategies to develop urban environments that are sustainable and resilient. The application of nature-based solutions, enhancing both human and natural health in cities, is used as the foundation for the design of deployment strategies that respond to different paces of urban change. The results show that urban characteristics, such as population density and built space is, partly, dependent on the underlying landscape characteristics, therefore show specific development pathways. To create liveable and sustainable urban areas that can deal holistically with a range of intertwined problems, specific deployment strategies should be used in each specific urban context. This benefits the city-precinct as a whole and at the local scale. Even small nature-based solutions, applied as the right deployment strategy in the right context, have profound impact as the starting point of a far-reaching urban transformation. The case-study for Oimachi in Japan illustrates how this planning approach can be applied, how the different urban rhythms are identified, and to which results this leads.
Urban Planning arrow_drop_down Social Science Open Access RepositoryArticle . 2021Data sources: Social Science Open Access RepositoryUniversity of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17645/up.v6i2.3779&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 23visibility views 23 download downloads 11 Powered bymore_vert Urban Planning arrow_drop_down Social Science Open Access RepositoryArticle . 2021Data sources: Social Science Open Access RepositoryUniversity of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17645/up.v6i2.3779&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:MDPI AG Funded by:NWO | TransActNWO| TransActAuthors:Ali Soleymani;
Paula van den Brom; Samir Ahmed; Maaike Konings; +5 AuthorsAli Soleymani
Ali Soleymani in OpenAIREAli Soleymani;
Paula van den Brom; Samir Ahmed; Maaike Konings; Ellen Sjoer; Laure Itard;Ali Soleymani
Ali Soleymani in OpenAIREWim Zeiler;
Wim Zeiler
Wim Zeiler in OpenAIREMaarten De Laat;
Marcus Specht;Maarten De Laat
Maarten De Laat in OpenAIREThe energy management systems industry in the built environment is currently an important topic. Buildings use about 40% of the total global energy worldwide. Therefore, the energy management system’s sector is one of the most influential sectors to realize changes and transformation of energy use. New data science technologies used in building energy management systems might not only bring many technical challenges, but also they raise significant educational challenges for professionals who work in the field of energy management systems. Learning and educational issues are mainly due to the transformation of professional practices and networks, emerging technologies, and a big shift in how people work, communicate, and share their knowledge across the professional and academic sectors. In this study, we have investigated three different companies active in the building services sector to identify the main motivation and barriers to knowledge adoption, transfer, and exchange between different professionals in the energy management sector and explore the technologies that have been used in this field using the boundary-crossing framework. The results of our study show the importance of understanding professional learning networks in the building services sector. Additionally, the role of learning culture, incentive structure, and technologies behind the educational system of each organization are explained. Boundary-crossing helps to analyze the barriers and challenges in the educational setting and how new educational technologies can be embedded. Based on our results, future studies with a bigger sample and deeper analysis of technologies are needed to have a better understanding of current educational problems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/educsci13020215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/educsci13020215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Finland, Netherlands, FinlandPublisher:Elsevier BV Authors:Avishek Goel;
Avishek Goel
Avishek Goel in OpenAIREArnold Ismailov;
Elyas M. Moghaddam;Arnold Ismailov
Arnold Ismailov in OpenAIREChao He;
+1 AuthorsAvishek Goel;
Avishek Goel
Avishek Goel in OpenAIREArnold Ismailov;
Elyas M. Moghaddam;Arnold Ismailov
Arnold Ismailov in OpenAIREChao He;
Jukka Konttinen;
Jukka Konttinen
Jukka Konttinen in OpenAIREBiomass Chemical Looping Gasification (BCLG) is a cost-effective and efficient alternative to conventional gasification. The selection of appropriate oxygen carriers (OCs) is crucial for stable BCLG performance. These OCs need to possess high reactivity, selectivity, material strength, and resistance to sintering. The study investigated various OC materials, including industrial wastes (copper, nickel slag, desulphurization, LD, and ladle slags), residential waste (sewage sludge ash), and natural ore (manganese). The evaluation of OCs focused on reactivity, H 2 -selectivity, mechanical strength and sintering behaviour. Except for ladle slag, all OC samples exhibited favourable reactivity due to the presence of Fe- and Mn-oxides possessing high oxygen transport capacity (10–17.6%). Nickel slag, manganese ore, and desulphurisation slag displayed notable H 2 -selectivity (8.7 to 10.4). It can be attributed to the presence of less-active (lattice) oxygen, limiting strong oxygen agents such as Fe 2 O 3 , Fe 3 O 4 , and Mn 2 O 3 . Moreover, desulphurization slag contained highly selective Ca 2 Fe 2 O 5 , which falls within the partial oxidation zone of the Ellingham diagram. Furthermore, all OC samples exhibited desirable material strength (>20 MPa), suitable for fluidised bed reactors. However, nickel, LD, and ladle slags demonstrated limited sintering with sintering onset temperatures exceeding 963 °C. This limited sintering may be attributed to the absence of iron silicates, iron-bearing aluminium silicates, manganese silicates, and potassium that contributed to the low thermal stability observed in the remaining OCs. Altogether, nickel slag calcined at 1100 °C was identified as the most promising OC material with optimal reactivity, selectivity, material strength, and minimal sintering for BCLG. Overall, this study provides a detailed and scientific methodology for OC selection and can aid future OC development. ; Complex Fluid Processing
Tampere University: ... arrow_drop_down Tampere University: TrepoArticle . 2023License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/150259Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2023.143948&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Tampere University: ... arrow_drop_down Tampere University: TrepoArticle . 2023License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/150259Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2023.143948&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Frontiers Media SA Authors:Sanne Muis;
Sanne Muis; Maialen Irazoqui Apecechea;Sanne Muis
Sanne Muis in OpenAIREJob Dullaart;
+6 AuthorsJob Dullaart
Job Dullaart in OpenAIRESanne Muis;
Sanne Muis; Maialen Irazoqui Apecechea;Sanne Muis
Sanne Muis in OpenAIREJob Dullaart;
Joao de Lima Rego;Job Dullaart
Job Dullaart in OpenAIREKristine Skovgaard Madsen;
Kristine Skovgaard Madsen
Kristine Skovgaard Madsen in OpenAIREJian Su;
Kun Yan; Martin Verlaan; Martin Verlaan;The world’s coastal areas are increasingly at risk of coastal flooding due to sea-level rise (SLR). We present a novel global dataset of extreme sea levels, the Coastal Dataset for the Evaluation of Climate Impact (CoDEC), which can be used to accurately map the impact of climate change on coastal regions around the world. The third generation Global Tide and Surge Model (GTSM), with a coastal resolution of 2.5 km (1.25 km in Europe), was used to simulate extreme sea levels for the ERA5 climate reanalysis from 1979 to 2017, as well as for future climate scenarios from 2040 to 2100. The validation against observed sea levels demonstrated a good performance, and the annual maxima had a mean bias (MB) of -0.04 m, which is 50% lower than the MB of the previous GTSR dataset. By the end of the century (2071–2100), it is projected that the 1 in 10-year water levels will have increased 0.34 m on average for RCP4.5, while some locations may experience increases of up to 0.5 m. The change in return levels is largely driven by SLR, although at some locations changes in storms surges and interaction with tides amplify the impact of SLR with changes up to 0.2 m. By presenting an application of the CoDEC dataset to the city of Copenhagen, we demonstrate how climate impact indicators derived from simulation can contribute to an understanding of climate impact on a local scale. Moreover, the CoDEC output locations are designed to be used as boundary conditions for regional models, and we envisage that they will be used for dynamic downscaling.
Frontiers in Marine ... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2020Data sources: DANS (Data Archiving and Networked Services)Frontiers in Marine ScienceArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 157 citations 157 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 95visibility views 95 download downloads 95 Powered bymore_vert Frontiers in Marine ... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2020Data sources: DANS (Data Archiving and Networked Services)Frontiers in Marine ScienceArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Malaysia, NetherlandsPublisher:Springer Science and Business Media LLC Authors: Mohamed Abdulrahman Al-samet; Masafumi Goto;Nabisab Mujawar Mubarak;
Nabisab Mujawar Mubarak
Nabisab Mujawar Mubarak in OpenAIRESaqr Abdulrakeeb Al-Muraisy;
Saqr Abdulrakeeb Al-Muraisy
Saqr Abdulrakeeb Al-Muraisy in OpenAIREpmid: 34255262
The ever-increasing organic waste generation in Malaysia is a significant contributor to greenhouse gas (GHG) emissions. However, organic wastes can be utilized to produce biogas by anaerobic digestion, which is a promising option for both energy and material recovery from organic wastes with high moisture content. Therefore, this study was formulated to investigate the feasibility of anaerobic co-digestion of three types of organic wastes generated in significantly huge quantities in Malaysia, namely palm oil mill effluent (POME), food waste (FW), and sewage sludge (SWS). The biomethane potential (BMP) test was used to evaluate the biomethane potential from these organic wastes under mesophilic conditions to establish a stable and balanced microbial community, which may lack in mono-digestion, to improve biogas production. Comparative performance was made at different food to microorganism (F/M) ratios to investigate methane production in three groups of assays, namely A, B, and C. In groups A and B, the effect of F/M ratio variation on methane production was investigated, while in group C, the effect of varying the co-substrate mixture on methane yield was examined. The findings showed that the highest methane yields achieved for mono-digestion of POME and SWS in group A were 164.44 mL-CH4/g-CODadded and 65.34 mL-CH4/g-CODadded, respectively, at an F/M ratio of 0.8 and 197.90 mL-CH4/g-CODadded for FW in group B at an F/M ratio of 0.5. In addition, the highest methane yield achieved from the anaerobic co-digestion was at 151.47 mL-CH4/g-CODadded from the co-digestion of the POME and SWS (50:50) at an F/M ratio of 1.7 in group A. Both AD and AcoD were tested to fit into two kinetic models: the modified Gompertz and the transfer function models. The results showed that the modified Gompertz model had a better fit and was more adjusted to the experimental results for both AD and AcoD. The importance of this research lies in the economics of anaerobically co-digesting these abundance feedstocks and the variations in their characteristics which were found to increase their methane yield and process efficiency in anaerobic co-digestion.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-15287-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 22visibility views 22 download downloads 53 Powered bymore_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-15287-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 NetherlandsPublisher:Springer Science and Business Media LLC Funded by:UKRI | The Emergence of Habitabl...UKRI| The Emergence of Habitable Conditions in the Solar SystemAuthors:Rosa Santomartino;
Rosa Santomartino
Rosa Santomartino in OpenAIRENils Averesch;
Marufa Bhuiyan;Nils Averesch
Nils Averesch in OpenAIRECharles S. Cockell;
+11 AuthorsCharles S. Cockell
Charles S. Cockell in OpenAIRERosa Santomartino;
Rosa Santomartino
Rosa Santomartino in OpenAIRENils Averesch;
Marufa Bhuiyan;Nils Averesch
Nils Averesch in OpenAIRECharles S. Cockell;
Charles S. Cockell
Charles S. Cockell in OpenAIREJesse R. Colangelo-Lillis;
Jesse R. Colangelo-Lillis
Jesse R. Colangelo-Lillis in OpenAIREYosephine Gumulya;
Yosephine Gumulya
Yosephine Gumulya in OpenAIREBenjamin A.E. Lehner;
Ivanna Lopez-Ayala;Benjamin A.E. Lehner
Benjamin A.E. Lehner in OpenAIRESean McMahon;
Sean McMahon
Sean McMahon in OpenAIREAnurup Mohanty;
Anurup Mohanty
Anurup Mohanty in OpenAIRESergio R. Santa Maria;
Sergio R. Santa Maria
Sergio R. Santa Maria in OpenAIRECamilla Urbaniak;
Camilla Urbaniak
Camilla Urbaniak in OpenAIRER. Volger;
R. Volger
R. Volger in OpenAIREJiseon Yang;
Jiseon Yang
Jiseon Yang in OpenAIRELuis Zea;
Luis Zea
Luis Zea in OpenAIREpmid: 36944638
pmc: PMC10030976
AbstractFinding sustainable approaches to achieve independence from terrestrial resources is of pivotal importance for the future of space exploration. This is relevant not only to establish viable space exploration beyond low Earth–orbit, but also for ethical considerations associated with the generation of space waste and the preservation of extra-terrestrial environments. Here we propose and highlight a series of microbial biotechnologies uniquely suited to establish sustainable processes for in situ resource utilization and loop-closure. Microbial biotechnologies research and development for space sustainability will be translatable to Earth applications, tackling terrestrial environmental issues, thereby supporting the United Nations Sustainable Development Goals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37070-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37070-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu