- home
- Search
- Energy Research
- clinical medicine
- CN
- Neuroscience
- Energy Research
- clinical medicine
- CN
- Neuroscience
description Publicationkeyboard_double_arrow_right Article , Journal 2002Publisher:Elsevier BV Authors: Gebrewold A; Bella T. Altura; Burton M. Altura; Randall L. Barbour;pmid: 12106806
Previously, it has been suggested that acute ethanol (alcohol) administration can result in concentration-dependent vasoconstriction and decreased cerebral blood flow. Here, we present in vivo results using rapid (240 nm/min) optical backscatter measurements, with an intact cranial preparation in the rat, indicating that acute infusion of ethanol directly into the rat brain rapidly produces dose-dependent vasoconstriction of the cerebral microcirculation associated with a pronounced reduction in tissue blood content, pronounced rises in deoxyhemoglobin, significantly increased levels of reduced cytochrome oxidase and microvascular damage as the dose increases. Furthermore, we present in vivo experiments demonstrating the capability of magnesium ions (Mg(2+)) to attenuate and prevent these deleterious responses. Optical backscatter spectra (500-800 nm) were obtained by directing a single sending and receiving fiber to a portion of the left parietal cranium (in anesthetized rats), shaved to a translucent appearance to facilitate optical penetration. In the absence of added Mg(2+), infusion of a 10% solution of ethanol at 0.34 ml/min ( approximately 26.8 mg/min) produced prompt vasoconstriction as evidenced by a greater than 90% loss of oxyhemoglobin from the field-of-view and increases in levels of reduced cytochrome oxidase to between 50% and >90%. These effects were partially, to nearly completely, attenuated by the addition of MgCl(2) to the infusate containing added ethanol. Of special interest was the observation that attenuation of the vasoconstrictive effect of ethanol by Mg(2+) persisted despite a subsequent ethanol challenge without added Mg(2+). The results obtained demonstrate that, depending on dose, ethanol can produce prompt and severe vasoconstriction of the intact cerebral microcirculation and that infusion of moderate doses of Mg(2+) can largely attenuate and prevent this response. We conclude that appreciable, graded changes in cerebral cytochrome oxidase aa(3), blood volume and the state of hemoglobin occur at minimal tissue levels of ethanol which can be modulated by Mg(2+).
European Journal of ... arrow_drop_down European Journal of PharmacologyArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0014-2999(02)01831-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert European Journal of ... arrow_drop_down European Journal of PharmacologyArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0014-2999(02)01831-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1994Publisher:Wiley K. J. Moore; Martin C. Salinsky; Martin C. Salinsky; M. F. Lubozynski; Steven B. Johnson; John F. Annegers; Blanka A. Schaumann; Blanka A. Schaumann;pmid: 8112257
Summary: The potential role of genetic factors in the etiology of posttraumatic and alcohol‐associated seizures was studied in 289 male patients with recurrent seizures and in 174 individuals who had never experienced a seizure. The incidence of seizures in first‐degree relatives of probands was compared with that in relatives of unaffected individuals. Relatives of patients with alcoholassociated seizures had a rate ratio of 2.45 [95% confidence interval (CI) 1.41–4.251, whereas no excess incidence was noted among relatives of posttraumatic epilepsy patients (rate ratio 1.20, 0.64–2.25 CI). Relatives of probands with both antecedents showed an intermediate rate ratio of 1.72 (0.92–3.20 CI). Among probands with alcohol‐associated seizures, the rate ratio of 2.05 for patients with alcohol‐related seizures (i.e., spontaneously occurring seizures in association with chronic alcohol abuse) was slightly higher than that of 1.85 for probands with alcohol withdrawal seizures. Trauma severity had a slight impact on the incidence of affected relatives; patients with severe head injuries had a rate ratio of 0.73 and probands with milder trauma had a rate ratio of 0.99. The results indicate a limited, if any, role of genetic predisposition in development of posttraumatic seizures. Alcoholrelated seizures, however, showed familial aggregation of unprovoked seizures, suggesting an involvement of genetic factors in the origin of such seizures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1528-1157.1994.tb02911.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 51 citations 51 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1528-1157.1994.tb02911.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Bin Zhao; YunPeng Wang; Yunxiao Li; Xiaomeng Qiao; Peng Yan; Yongsheng Zhu; Jianghua Lai;pmid: 25837445
Previous studies suggest that the nucleus accumbens shell (AcbSh) and core (AcbC) regions may have distinct roles in ethanol consumption. N-Methyl-d-aspartate receptor 1 (NMDAR1), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinases (ERKs) have been demonstrated to contribute to and possibly interact in the molecular mechanism underlying ethanol dependence and relapse. However, little is known regarding the mechanisms underlying the effects of ethanol exposure, withdrawal, and re-exposure, particularly with regard to NMDAR1-CaMKII-ERK signaling in accumbens subregions. In the present study, rats were provided with a 6% ethanol solution as their only drinking source. We found that ethanol exerted locomotor stimulant and anxiolytic effects in open field behaviors. Phosphorylation of NMDAR1, CaMKII and ERK was significantly decreased in the AcbSh and AcbC following chronic ethanol exposure. Ethanol withdrawal increased phospho-NMDAR1 and phospho-CaMKII expression in the AcbSh. Ethanol withdrawal also induced an increase of phospho-ERK1/2 in both the AcbSh and AcbC, while ethanol re-exposure decreased phospho-ERK in the AcbSh. These results indicated that the activation of NMDAR1-CaMKII-ERK signaling in the AcbSh but not the AcbC would contribute more to ethanol drinking and chronic ethanol-related negative emotional states.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neulet.2015.03.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neulet.2015.03.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Yujie Wu; Yujie Wu; Donghang Zhang; Donghang Zhang; Jin Liu; Jin Liu; Yaoxin Yang; Yaoxin Yang; Mengchan Ou; Mengchan Ou; Bin Liu; Cheng Zhou; Cheng Zhou;Ethanol can induce acute stimulant responses in animals and human beings. Moreover, repeated exposure to ethanol may produce increased sensitivity to its acute locomotor stimulant actions, a process referred to as locomotor sensitization. The molecular mechanism of the development of acute stimulant responses and locomotor sensitization by ethanol is not fully understood. Sodium leak channel (NALCN) is widely expressed in central nervous system and controls the basal excitability of neurons. The present study aims to determine whether NALCN is implicated in the ethanol-induced acute responses and locomotor sensitization in mice. Here, our results showed that ethanol caused acute stimulant responses in DBA/2 mice. Locomotor sensitization was successfully induced following the sensitization procedure. Accordingly, the expression levels of NALCN mRNA and protein in the nucleus accumbens (NAc) were markedly increased in the sensitization mice compared to the control mice. Knockdown the expression levels of NALCN in the NAc alleviated both the ethanol-induced acute responses and locomotor sensitization. Our findings indicate that upregulation of NALCN expression in the NAc contributes to the ethanol-induced acute stimulant responses and locomotor sensitization in DBA/2 mice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnins.2021.687470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnins.2021.687470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1995Publisher:Elsevier BV Authors: Anton Hermann; E. Lahnsteiner;pmid: 7644136
Ethanol has a concentration dependent dual effect on electrical activity of rat CA1 hippocampal neurons. Low concentrations of ethanol (0.001%) enhance whereas high concentrations (0.5%) suppress synaptic transmission. Ethanol has no effect on cell input resistance and orthodromic or somatic threshold of action potentials. Cholera toxin, an activator of stimulatory guanine nucleotide binding regulatory protein (Gs), prevented the ethanol effects on field excitatory postsynaptic potentials (EPSPs). Staurosporine, an inhibitor of protein kinases, bisindolylmaleimide, an inhibitor of protein kinase C, and phorbol-12,13-dibutyrate (PDBu), an activator of protein kinase C, blocked the effect of ethanol on field EPSPs. Our results show that ethanol at extremely low concentrations is able to affect synaptic transmission and suggest that the molecular mechanism of ethanol action involves the activation of Gs protein and protein kinase C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0304-3940(95)11579-l&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0304-3940(95)11579-l&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Frontiers Media SA Authors: Jingying Wu; Sheng-Di Chen; Hui-Dong Tang; Li Cao;Ethanol-responsive movement disorders are a group of movement disorders of which clinical manifestation could receive significant improvement after ethanol intake, including essential tremor, myoclonus-dystonia, and some other hyperkinesia. Emerging evidence supports that the sensitivity of these conditions to ethanol might be attributed to similar anatomical targets and pathophysiologic mechanisms. Cerebellum and cerebellum-related networks play a critical role in these diseases. Suppression of inhibitory neurotransmission and hyper-excitability of these regions are the key points for pathogenesis. GABA pathways, the main inhibitory system involved in these regions, were firstly linked to the pathogenesis of these diseases, and GABAA receptors and GABAB receptors play critical roles in ethanol responsiveness. Moreover, impairment of low-voltage-activated calcium channels, which were considered as a contributor to oscillation activity of the nervous system, also participates in the sensitivity of ethanol in relevant disease. Glutamate transporters and receptors that are closely associated with GABA pathways are the action sites for ethanol as well. Accordingly, alternative medicines aiming at these shared mechanisms appeared subsequently to mimic ethanol-like effects with less liability, and some of them have achieved positive effects on different diseases with well-tolerance. However, more clinical trials with a large sample and long-term follow-ups are needed for pragmatic use of these medicines, and further investigations on mechanisms will continue to deepen the understanding of these diseases and also accelerate the discovery of ideal treatment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fneur.2020.00892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fneur.2020.00892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Friedbert Weiss; Marisa Roberto; Roberto Ciccocioppo; Hongwu Li; Serena Stopponi; Anna Maria Borruto;For several decades, genetically selected alcohol-preferring rats have been successfully used to mimic and study alcohol use disorders (AUD). These rat lines have been instrumental in advancing our understanding of the neurobiology of alcoholism and enabling pharmacological studies to evaluate drug efficacy on alcohol drinking and relapse. Moreover, the results of these studies have identified genetic variables that are linked to AUD vulnerability. This is an up-to-date review that focuses on genetically selected Marchigian Sardinian alcohol-preferring (msP) rats. To support the translational relevance of the findings that are obtained from msP rats and highlight important similarities to AUD patients, we also discuss the results of recent brain imaging studies. Finally, to demonstrate the importance of studying sex differences in animal models of AUD, we present original data that highlight behavioral differences in the response to alcohol in male and female rats. Female msP rats exhibited higher alcohol consumption compared with males. Furthermore, msP rats of both sexes exhibit higher anxiety- and depressive-like behaviors in the elevated plus maze and forced swim test, respectively, compared with unselected Wistar controls. Notably, voluntary alcohol drinking decreases foot-shock stress and depressive-like behavior in both sexes, whereas anxiety-like behavior in the elevated plus maze is attenuated only in males. These findings suggest that male and female msP rats both drink high amounts of alcohol to self-medicate negative affective symptoms. For females, this behavior may be driven by an attempt to treat stress and depressive-like conditions. For males, generalized anxiety appears to be an important additional factor in the motivation to drink alcohol. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2020.108446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2020.108446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Hongyan Zhang; Lulu Xu; Junwei Xiong; Xinxin Li; Yindong Yang; Yong Liu; Chunfeng Zhang; Qiyu Wang; Jiajia Wang; Pengyu Wang; Xiaobin Wu; Xue Wang; Xiaofeng Zhu; Yanzhong Guan;pmid: 36401060
Alcohol use disorder (AUD) is a common and complex disorder resulting from repetitive alcohol drinking. The mesocorticolimbic dopamine (DA) system, originating from the ventral tegmental area (VTA) in the midbrain, is involved in the rewarding effect of ethanol. The γ-aminobutyric acid (GABA) neurons in VTA appear to be key substrates of acute and chronic ethanol, which regulates DA neurotransmission indirectly in the mesocorticolimbic system. Despite significant research on the relationship between brain-derived neurotrophic factor (BDNF) and reduced alcohol consumption in male rats involving tropomyosin-related kinase B (TrkB), the mechanisms of BDNF-TrkB regulating alcohol behavior remain scarce. K+-Cl- cotransporter 2 (KCC2) plays a crucial role in synaptic function in GABAergic neurons by modulating intracellular chlorine homeostasis. Here, we found that 4-week intermittent alcohol exposure impaired the function of KCC2 in VTA, evidenced by a lower expression level of phosphorylated KCC2 and decreased ratio of phosphorylated KCC2 to total KCC2, especially 72 h after withdrawal from 4-week ethanol exposure in male rats. CLP290 (a KCC2 activator) reduced excessive alcohol consumption after alcohol withdrawal, whereas VU0240551 (a specific KCC2 inhibitor) further enhanced alcohol intake. Importantly, VU0240551 reversed the attenuating effects of BDNF and 7,8-dihydroxyflavone (7,8-DHF) on alcohol consumption after withdrawal. Moreover, intraperitoneal injection of 7,8-DHF upregulated KCC2 expression and phosphorylated KCC2 in VTA 72 h after withdrawal from ethanol exposure in male rats. Collectively, our data indicate that KCC2 may be critical in the regulating action of BDNF-TrkB on ethanol consumption in AUD.
Molecular Neurobiolo... arrow_drop_down Molecular NeurobiologyArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12035-022-03126-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Molecular Neurobiolo... arrow_drop_down Molecular NeurobiologyArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12035-022-03126-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1998Publisher:Wiley John L. Kubie; Burton M. Altura; S. E. Fox; Nandor Ludvig; Bella T. Altura;Intercellular communication in brain is coded in neuronal firing patterns, determined by the interplay of intra‐ and extracellular molecular systems. It is not clear how ethanol perturbs this molecular interplay in the motivational, emotional, and cognitive neural networks in brain to induce those specific, aberrant, cell‐firing patterns that lead to craving for alcohol, excessive alcohol consumption, and impaired cognition. However, resolution of this problem is essential to an understanding of the basic mechanisms of alcohol‐related disorders and to develop effective therapies for their treatment. It is difficult to obtain information on the molecular background of cell‐firing regulation in brain during behavioral events. We have recently developed a new in vivo method, combined single‐cell recording/ intracerebral microdialysis in freely behaving animals, which has the ability to extract such information from brain. The principal feature of the technique is that it records the firing of single neurons in discrete brain sites and deliver drugs, alone or in combinations, via microdialysis, into the extracellular environment of the recorded cells, while the experimental animal is behaving freely. Accordingly, the method allows the determination of drug actions on cellular firing within distinct neural circuits during normal and abnormal behaviors. Thus, it can provide insights into the physiological or pathophysiological molecular machinery of the examined cells. The present paper describes this method, demonstrates how administration of ethanol via intrahippocampal microdialysis affects the firing of hippocampal place cells, and discusses the potential of the technique in future alcohol research.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 1998 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefAlcoholism Clinical and Experimental ResearchArticle . 1998 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1097/00000374-199802000-00005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 1998 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefAlcoholism Clinical and Experimental ResearchArticle . 1998 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1097/00000374-199802000-00005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Xin Jian Zhu; Rong Zhou; S. Wang;pmid: 20688136
Prenatal exposure to a relatively high-dose ethanol (EtOH) caused anxiety-like behavior of adult male rat offspring. Previous studies have demonstrated that GABA system in the basolateral amygdala complex (BLA) is involved in the pathogensis of anxiety-related disorders. The role of GABAergic system in the BLA was investigated in anxiety-like behavior evoked by prenatal EtOH exposure. The infusion of midazolam (MDZ), a positive modulator of GABA(A) receptor, into the BLA prevented anxiety-like behavior in EtOH-offspring without affecting the corresponding behavior of control offspring. The data suggest that anxiety-like behavior could be causally related to increased neuronal excitability attributable to depressed GABAergic inhibition in the BLA. To test this hypothesis, evoked potential was studied using brain slices from EtOH-offspring. Potential evoked in the BLA by single stimuli applied to external capsule showed multispike responses, indicative of GABAergic disinhibition. These multiple responses were no longer evident after the perfusion with MDZ. In the slices from EtOH-offspring, paired-pulse inhibition (GABA(A)-dependent) was suppressed. Also, in EtOH-offspring, long-term potentiation (LTP) was induced by a single train of high frequency stimulation, which did not induce LTP in control rats. Moreover, MDZ pretreatment prevented the facilitating effect of EtOH on LTP induction. The data provide the functional evidence that prenatal EtOH exposure attenuates GABAergic inhibition in the BLA resulting in neuronal hyperexcitability and anxiety-like behavior of adult rat offspring.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuroscience.2010.07.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuroscience.2010.07.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2002Publisher:Elsevier BV Authors: Gebrewold A; Bella T. Altura; Burton M. Altura; Randall L. Barbour;pmid: 12106806
Previously, it has been suggested that acute ethanol (alcohol) administration can result in concentration-dependent vasoconstriction and decreased cerebral blood flow. Here, we present in vivo results using rapid (240 nm/min) optical backscatter measurements, with an intact cranial preparation in the rat, indicating that acute infusion of ethanol directly into the rat brain rapidly produces dose-dependent vasoconstriction of the cerebral microcirculation associated with a pronounced reduction in tissue blood content, pronounced rises in deoxyhemoglobin, significantly increased levels of reduced cytochrome oxidase and microvascular damage as the dose increases. Furthermore, we present in vivo experiments demonstrating the capability of magnesium ions (Mg(2+)) to attenuate and prevent these deleterious responses. Optical backscatter spectra (500-800 nm) were obtained by directing a single sending and receiving fiber to a portion of the left parietal cranium (in anesthetized rats), shaved to a translucent appearance to facilitate optical penetration. In the absence of added Mg(2+), infusion of a 10% solution of ethanol at 0.34 ml/min ( approximately 26.8 mg/min) produced prompt vasoconstriction as evidenced by a greater than 90% loss of oxyhemoglobin from the field-of-view and increases in levels of reduced cytochrome oxidase to between 50% and >90%. These effects were partially, to nearly completely, attenuated by the addition of MgCl(2) to the infusate containing added ethanol. Of special interest was the observation that attenuation of the vasoconstrictive effect of ethanol by Mg(2+) persisted despite a subsequent ethanol challenge without added Mg(2+). The results obtained demonstrate that, depending on dose, ethanol can produce prompt and severe vasoconstriction of the intact cerebral microcirculation and that infusion of moderate doses of Mg(2+) can largely attenuate and prevent this response. We conclude that appreciable, graded changes in cerebral cytochrome oxidase aa(3), blood volume and the state of hemoglobin occur at minimal tissue levels of ethanol which can be modulated by Mg(2+).
European Journal of ... arrow_drop_down European Journal of PharmacologyArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0014-2999(02)01831-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert European Journal of ... arrow_drop_down European Journal of PharmacologyArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0014-2999(02)01831-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1994Publisher:Wiley K. J. Moore; Martin C. Salinsky; Martin C. Salinsky; M. F. Lubozynski; Steven B. Johnson; John F. Annegers; Blanka A. Schaumann; Blanka A. Schaumann;pmid: 8112257
Summary: The potential role of genetic factors in the etiology of posttraumatic and alcohol‐associated seizures was studied in 289 male patients with recurrent seizures and in 174 individuals who had never experienced a seizure. The incidence of seizures in first‐degree relatives of probands was compared with that in relatives of unaffected individuals. Relatives of patients with alcoholassociated seizures had a rate ratio of 2.45 [95% confidence interval (CI) 1.41–4.251, whereas no excess incidence was noted among relatives of posttraumatic epilepsy patients (rate ratio 1.20, 0.64–2.25 CI). Relatives of probands with both antecedents showed an intermediate rate ratio of 1.72 (0.92–3.20 CI). Among probands with alcohol‐associated seizures, the rate ratio of 2.05 for patients with alcohol‐related seizures (i.e., spontaneously occurring seizures in association with chronic alcohol abuse) was slightly higher than that of 1.85 for probands with alcohol withdrawal seizures. Trauma severity had a slight impact on the incidence of affected relatives; patients with severe head injuries had a rate ratio of 0.73 and probands with milder trauma had a rate ratio of 0.99. The results indicate a limited, if any, role of genetic predisposition in development of posttraumatic seizures. Alcoholrelated seizures, however, showed familial aggregation of unprovoked seizures, suggesting an involvement of genetic factors in the origin of such seizures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1528-1157.1994.tb02911.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 51 citations 51 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1528-1157.1994.tb02911.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Bin Zhao; YunPeng Wang; Yunxiao Li; Xiaomeng Qiao; Peng Yan; Yongsheng Zhu; Jianghua Lai;pmid: 25837445
Previous studies suggest that the nucleus accumbens shell (AcbSh) and core (AcbC) regions may have distinct roles in ethanol consumption. N-Methyl-d-aspartate receptor 1 (NMDAR1), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinases (ERKs) have been demonstrated to contribute to and possibly interact in the molecular mechanism underlying ethanol dependence and relapse. However, little is known regarding the mechanisms underlying the effects of ethanol exposure, withdrawal, and re-exposure, particularly with regard to NMDAR1-CaMKII-ERK signaling in accumbens subregions. In the present study, rats were provided with a 6% ethanol solution as their only drinking source. We found that ethanol exerted locomotor stimulant and anxiolytic effects in open field behaviors. Phosphorylation of NMDAR1, CaMKII and ERK was significantly decreased in the AcbSh and AcbC following chronic ethanol exposure. Ethanol withdrawal increased phospho-NMDAR1 and phospho-CaMKII expression in the AcbSh. Ethanol withdrawal also induced an increase of phospho-ERK1/2 in both the AcbSh and AcbC, while ethanol re-exposure decreased phospho-ERK in the AcbSh. These results indicated that the activation of NMDAR1-CaMKII-ERK signaling in the AcbSh but not the AcbC would contribute more to ethanol drinking and chronic ethanol-related negative emotional states.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neulet.2015.03.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neulet.2015.03.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Yujie Wu; Yujie Wu; Donghang Zhang; Donghang Zhang; Jin Liu; Jin Liu; Yaoxin Yang; Yaoxin Yang; Mengchan Ou; Mengchan Ou; Bin Liu; Cheng Zhou; Cheng Zhou;Ethanol can induce acute stimulant responses in animals and human beings. Moreover, repeated exposure to ethanol may produce increased sensitivity to its acute locomotor stimulant actions, a process referred to as locomotor sensitization. The molecular mechanism of the development of acute stimulant responses and locomotor sensitization by ethanol is not fully understood. Sodium leak channel (NALCN) is widely expressed in central nervous system and controls the basal excitability of neurons. The present study aims to determine whether NALCN is implicated in the ethanol-induced acute responses and locomotor sensitization in mice. Here, our results showed that ethanol caused acute stimulant responses in DBA/2 mice. Locomotor sensitization was successfully induced following the sensitization procedure. Accordingly, the expression levels of NALCN mRNA and protein in the nucleus accumbens (NAc) were markedly increased in the sensitization mice compared to the control mice. Knockdown the expression levels of NALCN in the NAc alleviated both the ethanol-induced acute responses and locomotor sensitization. Our findings indicate that upregulation of NALCN expression in the NAc contributes to the ethanol-induced acute stimulant responses and locomotor sensitization in DBA/2 mice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnins.2021.687470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnins.2021.687470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1995Publisher:Elsevier BV Authors: Anton Hermann; E. Lahnsteiner;pmid: 7644136
Ethanol has a concentration dependent dual effect on electrical activity of rat CA1 hippocampal neurons. Low concentrations of ethanol (0.001%) enhance whereas high concentrations (0.5%) suppress synaptic transmission. Ethanol has no effect on cell input resistance and orthodromic or somatic threshold of action potentials. Cholera toxin, an activator of stimulatory guanine nucleotide binding regulatory protein (Gs), prevented the ethanol effects on field excitatory postsynaptic potentials (EPSPs). Staurosporine, an inhibitor of protein kinases, bisindolylmaleimide, an inhibitor of protein kinase C, and phorbol-12,13-dibutyrate (PDBu), an activator of protein kinase C, blocked the effect of ethanol on field EPSPs. Our results show that ethanol at extremely low concentrations is able to affect synaptic transmission and suggest that the molecular mechanism of ethanol action involves the activation of Gs protein and protein kinase C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0304-3940(95)11579-l&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0304-3940(95)11579-l&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Frontiers Media SA Authors: Jingying Wu; Sheng-Di Chen; Hui-Dong Tang; Li Cao;Ethanol-responsive movement disorders are a group of movement disorders of which clinical manifestation could receive significant improvement after ethanol intake, including essential tremor, myoclonus-dystonia, and some other hyperkinesia. Emerging evidence supports that the sensitivity of these conditions to ethanol might be attributed to similar anatomical targets and pathophysiologic mechanisms. Cerebellum and cerebellum-related networks play a critical role in these diseases. Suppression of inhibitory neurotransmission and hyper-excitability of these regions are the key points for pathogenesis. GABA pathways, the main inhibitory system involved in these regions, were firstly linked to the pathogenesis of these diseases, and GABAA receptors and GABAB receptors play critical roles in ethanol responsiveness. Moreover, impairment of low-voltage-activated calcium channels, which were considered as a contributor to oscillation activity of the nervous system, also participates in the sensitivity of ethanol in relevant disease. Glutamate transporters and receptors that are closely associated with GABA pathways are the action sites for ethanol as well. Accordingly, alternative medicines aiming at these shared mechanisms appeared subsequently to mimic ethanol-like effects with less liability, and some of them have achieved positive effects on different diseases with well-tolerance. However, more clinical trials with a large sample and long-term follow-ups are needed for pragmatic use of these medicines, and further investigations on mechanisms will continue to deepen the understanding of these diseases and also accelerate the discovery of ideal treatment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fneur.2020.00892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fneur.2020.00892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Friedbert Weiss; Marisa Roberto; Roberto Ciccocioppo; Hongwu Li; Serena Stopponi; Anna Maria Borruto;For several decades, genetically selected alcohol-preferring rats have been successfully used to mimic and study alcohol use disorders (AUD). These rat lines have been instrumental in advancing our understanding of the neurobiology of alcoholism and enabling pharmacological studies to evaluate drug efficacy on alcohol drinking and relapse. Moreover, the results of these studies have identified genetic variables that are linked to AUD vulnerability. This is an up-to-date review that focuses on genetically selected Marchigian Sardinian alcohol-preferring (msP) rats. To support the translational relevance of the findings that are obtained from msP rats and highlight important similarities to AUD patients, we also discuss the results of recent brain imaging studies. Finally, to demonstrate the importance of studying sex differences in animal models of AUD, we present original data that highlight behavioral differences in the response to alcohol in male and female rats. Female msP rats exhibited higher alcohol consumption compared with males. Furthermore, msP rats of both sexes exhibit higher anxiety- and depressive-like behaviors in the elevated plus maze and forced swim test, respectively, compared with unselected Wistar controls. Notably, voluntary alcohol drinking decreases foot-shock stress and depressive-like behavior in both sexes, whereas anxiety-like behavior in the elevated plus maze is attenuated only in males. These findings suggest that male and female msP rats both drink high amounts of alcohol to self-medicate negative affective symptoms. For females, this behavior may be driven by an attempt to treat stress and depressive-like conditions. For males, generalized anxiety appears to be an important additional factor in the motivation to drink alcohol. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2020.108446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2020.108446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Hongyan Zhang; Lulu Xu; Junwei Xiong; Xinxin Li; Yindong Yang; Yong Liu; Chunfeng Zhang; Qiyu Wang; Jiajia Wang; Pengyu Wang; Xiaobin Wu; Xue Wang; Xiaofeng Zhu; Yanzhong Guan;pmid: 36401060
Alcohol use disorder (AUD) is a common and complex disorder resulting from repetitive alcohol drinking. The mesocorticolimbic dopamine (DA) system, originating from the ventral tegmental area (VTA) in the midbrain, is involved in the rewarding effect of ethanol. The γ-aminobutyric acid (GABA) neurons in VTA appear to be key substrates of acute and chronic ethanol, which regulates DA neurotransmission indirectly in the mesocorticolimbic system. Despite significant research on the relationship between brain-derived neurotrophic factor (BDNF) and reduced alcohol consumption in male rats involving tropomyosin-related kinase B (TrkB), the mechanisms of BDNF-TrkB regulating alcohol behavior remain scarce. K+-Cl- cotransporter 2 (KCC2) plays a crucial role in synaptic function in GABAergic neurons by modulating intracellular chlorine homeostasis. Here, we found that 4-week intermittent alcohol exposure impaired the function of KCC2 in VTA, evidenced by a lower expression level of phosphorylated KCC2 and decreased ratio of phosphorylated KCC2 to total KCC2, especially 72 h after withdrawal from 4-week ethanol exposure in male rats. CLP290 (a KCC2 activator) reduced excessive alcohol consumption after alcohol withdrawal, whereas VU0240551 (a specific KCC2 inhibitor) further enhanced alcohol intake. Importantly, VU0240551 reversed the attenuating effects of BDNF and 7,8-dihydroxyflavone (7,8-DHF) on alcohol consumption after withdrawal. Moreover, intraperitoneal injection of 7,8-DHF upregulated KCC2 expression and phosphorylated KCC2 in VTA 72 h after withdrawal from ethanol exposure in male rats. Collectively, our data indicate that KCC2 may be critical in the regulating action of BDNF-TrkB on ethanol consumption in AUD.
Molecular Neurobiolo... arrow_drop_down Molecular NeurobiologyArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12035-022-03126-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Molecular Neurobiolo... arrow_drop_down Molecular NeurobiologyArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12035-022-03126-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1998Publisher:Wiley John L. Kubie; Burton M. Altura; S. E. Fox; Nandor Ludvig; Bella T. Altura;Intercellular communication in brain is coded in neuronal firing patterns, determined by the interplay of intra‐ and extracellular molecular systems. It is not clear how ethanol perturbs this molecular interplay in the motivational, emotional, and cognitive neural networks in brain to induce those specific, aberrant, cell‐firing patterns that lead to craving for alcohol, excessive alcohol consumption, and impaired cognition. However, resolution of this problem is essential to an understanding of the basic mechanisms of alcohol‐related disorders and to develop effective therapies for their treatment. It is difficult to obtain information on the molecular background of cell‐firing regulation in brain during behavioral events. We have recently developed a new in vivo method, combined single‐cell recording/ intracerebral microdialysis in freely behaving animals, which has the ability to extract such information from brain. The principal feature of the technique is that it records the firing of single neurons in discrete brain sites and deliver drugs, alone or in combinations, via microdialysis, into the extracellular environment of the recorded cells, while the experimental animal is behaving freely. Accordingly, the method allows the determination of drug actions on cellular firing within distinct neural circuits during normal and abnormal behaviors. Thus, it can provide insights into the physiological or pathophysiological molecular machinery of the examined cells. The present paper describes this method, demonstrates how administration of ethanol via intrahippocampal microdialysis affects the firing of hippocampal place cells, and discusses the potential of the technique in future alcohol research.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 1998 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefAlcoholism Clinical and Experimental ResearchArticle . 1998 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1097/00000374-199802000-00005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 1998 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefAlcoholism Clinical and Experimental ResearchArticle . 1998 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1097/00000374-199802000-00005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Xin Jian Zhu; Rong Zhou; S. Wang;pmid: 20688136
Prenatal exposure to a relatively high-dose ethanol (EtOH) caused anxiety-like behavior of adult male rat offspring. Previous studies have demonstrated that GABA system in the basolateral amygdala complex (BLA) is involved in the pathogensis of anxiety-related disorders. The role of GABAergic system in the BLA was investigated in anxiety-like behavior evoked by prenatal EtOH exposure. The infusion of midazolam (MDZ), a positive modulator of GABA(A) receptor, into the BLA prevented anxiety-like behavior in EtOH-offspring without affecting the corresponding behavior of control offspring. The data suggest that anxiety-like behavior could be causally related to increased neuronal excitability attributable to depressed GABAergic inhibition in the BLA. To test this hypothesis, evoked potential was studied using brain slices from EtOH-offspring. Potential evoked in the BLA by single stimuli applied to external capsule showed multispike responses, indicative of GABAergic disinhibition. These multiple responses were no longer evident after the perfusion with MDZ. In the slices from EtOH-offspring, paired-pulse inhibition (GABA(A)-dependent) was suppressed. Also, in EtOH-offspring, long-term potentiation (LTP) was induced by a single train of high frequency stimulation, which did not induce LTP in control rats. Moreover, MDZ pretreatment prevented the facilitating effect of EtOH on LTP induction. The data provide the functional evidence that prenatal EtOH exposure attenuates GABAergic inhibition in the BLA resulting in neuronal hyperexcitability and anxiety-like behavior of adult rat offspring.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuroscience.2010.07.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuroscience.2010.07.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu