- home
- Search
- Energy Research
- 3. Good health
- DE
- EU
- Neuroscience
- Energy Research
- 3. Good health
- DE
- EU
- Neuroscience
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Oxford University Press (OUP) Authors: Fiona, Meyer-Bockenkamp; Phileas J, Proskynitopoulos; Alexander, Glahn; Marc, Muschler; +6 AuthorsFiona, Meyer-Bockenkamp; Phileas J, Proskynitopoulos; Alexander, Glahn; Marc, Muschler; Lars, Hagemeier; Vanessa, Preuss; Michael, Klintschar; Johannes, Achenbach; Helge, Frieling; Mathias, Rhein;pmid: 37041103
Abstract Aims Alcohol use alters the reward signaling processes contributing to the development of addiction. We studied the effects of alcohol use disorder (AUD) on brain regions and blood of deceased women and men to examine sex-dependent differences in epigenetic changes associated with AUD. We investigated the effects of alcohol use on the gene promoter methylation of GABBR1 coding for GABAB receptor subunit 1 in blood and brain. Methods We chose six brain regions associated with addiction and the reward pathway (nucleus arcuatus, nucleus accumbens, the mamillary bodies, amygdala, hippocampus and anterior temporal cortex) and performed epigenetic profiling of the proximal promoter of the GABBR1 gene of post-mortem brain and blood samples of 17 individuals with AUD pathology (4 female, 13 male) and 31 healthy controls (10 female, 21 male). Results Our results show sex-specific effects of AUD on GABBR1 promoter methylation. Especially, CpG −4 showed significant tissue-independent changes and significantly decreased methylation levels for the AUD group in the amygdala and the mammillary bodies of men. We saw prominent and consistent change in CpG-4 across all investigated tissues. For women, no significant loci were observed. Conclusion We found sex-dependent differences in GABBR1 promoter methylation in relation to AUD. CpG-4 hypomethylation in male individuals with AUD is consistent for most brain regions. Blood shows similar results without reaching significance, potentially serving as a peripheral marker for addiction-associated neuronal adaptations. Further research is needed to discover more contributing factors in the pathological alterations of alcohol addiction to offer sex-specific biomarkers and treatment.
Alcohol and Alcoholi... arrow_drop_down Alcohol and AlcoholismArticle . 2023 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/alcalc/agad022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Alcohol and Alcoholi... arrow_drop_down Alcohol and AlcoholismArticle . 2023 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/alcalc/agad022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Andreas Zimmer; Eva Drews;pmid: 19800387
It has been estimated that more than 80% of alcoholics are also nicotine dependent and that, vice versa, the rate of alcoholism is substantially increased by a factor of 4-10 in the nicotine-dependent population. However, the cause for this very high degree of comorbidity is still largely unknown. At the molecular and cellular level, both drugs have very different mechanisms of action. Nicotine specifically activates ligand-gated ion channels in the brain, which are normally gated by acetylcholine, while alcohol interacts with various neurotransmitter receptors. Despite this diversity, both drugs seem to engage the endogenous opioid system as a modulator of some of its pharmacological effect. An acute exposure to nicotine or alcohol leads to a release of opioid peptides in specific brain regions, thus resulting in an activation of their corresponding receptors. If the brain is exposed repeatedly or chronically to these drugs, adaptive changes in the level and expression of opioid peptides and receptors occur. These adaptive changes are thought to contribute to the homeostatic or allostatic adaptations of the brain, which have been associated with drug dependence. This review summarizes pharmacological and genetic studies in animal models and in humans that have addressed the role of specific opioid peptides and receptors in various stages of the addiction process.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pneurobio.2009.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pneurobio.2009.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1986Publisher:Springer Science and Business Media LLC M. Lader; V. Christensen; G. Frcka; A. Melhuish; K. Fredricson Overø;doi: 10.1007/bf00606656
pmid: 3467975
Citalopram, a selective 5-HT uptake inhibitor with antidepressant properties, was assessed in three studies in 12 healthy subjects using a battery of EEG, psychological, subjective and symptomatic measures. Study A involved the administration of citalopram, 20 mg and 40 mg, amitriptyline 50 mg and placebo in single dose using a balanced cross-over design. The test battery was applied before, and 1 and 3 h after each drug. Citalopram decreased slow-wave EEG activity whereas amitriptyline increased power in most EEG wavebands. Citalopram increased tapping rate and symbol copying whereas amitriptyline impaired these and other psychomotor tasks. Subjectively, amitriptyline was much more sedative than citalopram and produced more complaints of dry mouth. Study B comprised the administration of citalopram in the usual clinical dose of 40 mg, amitriptyline in the low clinical dose of 75 mg and placebo, each given for 9 nights using a balanced cross-over design. The test battery was applied on the first morning (pre-drug) and on the morning after the last nightly dose. None of the physiological tests showed any drug effects. Subjectively, citalopram was associated with feelings of shaking, nausea, loss of appetite and physical tiredness; amitriptyline produced feelings of shaking, nausea, loss of appetite, dryness of mouth, irritability, dizziness and indigestion; in general, amitriptyline effects were more marked than those of citalopram. Plasma samples were taken on the last day and plasma concentrations of both drugs and their metabolites were found to be in the expected range for the regimens used.(ABSTRACT TRUNCATED AT 250 WORDS)
European Journal of ... arrow_drop_down European Journal of Clinical PharmacologyArticle . 1986 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00606656&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 65 citations 65 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert European Journal of ... arrow_drop_down European Journal of Clinical PharmacologyArticle . 1986 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00606656&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2017Funded by:EC | NESTEREC| NESTERAuthors: Schippert, Hans Fredrik Soares;BACKGROUND: On the subject of cerebral infarction, it is a common saying that “time is brain”. The prognosis of a patient who has received thrombolysis after such an infarction becomes significantly better as the time from symptom debut until the thrombolytic bolus lessens. Identifying the factors that contribute to longer times before thrombolysis for patients could thus be meaningful, and this is exactly what the aim of this assignment is. METHODS: Data was collected from the digital documents of patients who had received thrombolytic treatment from Akershus University Hospital. Both linear and categorical variables were registered from fields such as the patients’ background, vitals and disease severity. Time from onset to arrival at the hospital and time from arrival to the start of the infusion were registered in detail, and potentially delaying factors such as uncertain time of symptom debut and suspected contraindications were explored. The official Norwegian limit for delayed thrombolysis is 40 minutes, and thus this was chosen as the limit in this assignment as well. RESULTS: A total of 100 patients were registered, having received thrombolysis in 2015 and 2016. 50 men and 50 women were registered, with a mean age of 67.6. The mean NIHSS on arrival was 7.63 (standard variance 6.06). The mean time from symptom debut until arrival was 90.09 min (standard variance 48.91) and the mean time from arrival until the thrombolysis was given was 46.24 min (standard variance 33.40). 48.0% of the patients received thrombolysis more than 40 min after arrival, thus defining it as delayed treatment. The factors which showed a significant association with delayed treatment, using a confidence interval of 95%, were smoking (p=0.028), necessary prethrombolytic reduction in blood pressure (p=0.002), suspected contraindication (p=0.023) and uncertain severity of disease (p=0.001). Factors that unexpectedly showed no significant association with delayed treatment were uncertain time of symptom debut and high NIHSS on arrival. CONCLUSION: Factors that may have contributed to delayed thrombolysis were smoking, prethrombolytic reduction of blood pressure, suspected contraindications and uncertain severity of disease. In order to shorten the time from arrival to treatment, the effects of these factors on the efficiency of the thrombolytic procedure must be minimized. This could be attempted by using tools such as stricter, clearer guidelines and hospital campaigns targeting the attitudes of the personnel. All this being said, this assignment has made it clear that the treatment of cerebral infarctions is largely successful.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nora_uio__no::17d8d5baa9af6bfa1af7ca2d4a38d412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nora_uio__no::17d8d5baa9af6bfa1af7ca2d4a38d412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1973Publisher:Springer Science and Business Media LLC Authors: R. Stock; Josef Krieglstein;doi: 10.1007/bf00500993
pmid: 4267538
The isolated perfused rat brain was used for a comparative study of the effects of chloral hydrate and trichloroethanol on cerebral energy metabolism. After a perfusion period of 30 min the brain levels of the following substrates and metabolites were measured spectrophotometrically: P-creatine, creatine, ATP, ADP, AMP, glycogen, glucose, glucose-6-P, fructose diphosphate, α-glycero-P, dihydroxyacetone-P, pyruvate, lactate, glutamate, α-ketoglutarate and ammonia. Furthermore, the concentration of chloral hydrate and trichloroethanol in the isolated brain and in the perfusion medium was measured colorimetrically. Little more than 10% of chloral hydrate in the isolated brain and in the perfusion medium were reduced to trichloroethanol. In intact animals there were about 70% of chloral hydrate transformed. Chloral hydrate and trichloroethanol caused an accumulation of P-creatine, no change in the lactate/pyruvate ratio, an increase of the glucose concentration and a decrease of glucose-6-P level in the isolated brain. The rise of brain glucose level was more pronounced after trichloroethanol than after chloral hydrate. The effects of chloral hydrate and trichloroethanol on brain glucose and glucose-6-P levels suggest an inhibition of brain hexokinase activity by these drugs.
Naunyn-Schmiedeberg ... arrow_drop_down Naunyn-Schmiedeberg s Archives of PharmacologyArticle . 1973 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00500993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 30 citations 30 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Naunyn-Schmiedeberg ... arrow_drop_down Naunyn-Schmiedeberg s Archives of PharmacologyArticle . 1973 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00500993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Elsevier BV Kerstin Genz; Tatyana Tenkova; Ursula Felderhoff-Mueser; Petra Bittigau; Krikor Dikranian; Chrysanthy Ikonomidou; John W. Olney; Christian Koch; Friederike Hoerster;pmid: 11448448
In the immature mammalian brain during a period of rapid growth (brain growth spurt/synaptogenesis period), neuronal apoptosis can be triggered by the transient blockade of glutamate N-methyl-d-aspartate (NMDA) receptors, or the excessive activation of gamma-aminobutyric acid (GABA(A)) receptors. Apoptogenic agents include anesthetics (ketamine, nitrous oxide, isoflurane, propofol, halothane), anticonvulsants (benzodiazepines, barbiturates), and drugs of abuse (phencyclidine, ketamine, ethanol). In humans, the brain growth spurt period starts in the sixth month of pregnancy and extends to the third year after birth. Ethanol, which has both NMDA antagonist and GABA(A) agonist properties, is particularly effective in triggering widespread apoptotic neurodegeneration during this vulnerable period. Thus, maternal ingestion of ethanol during the third trimester of pregnancy can readily explain the dysmorphogenic changes in the fetal brain and consequent neurobehavioral disturbances that characterize the human fetal alcohol syndrome. In addition, there is basis for concern that agents used in pediatric and obstetrical medicine for purposes of sedation, anesthesia, and seizure management may cause apoptotic neuronal death in the developing human brain.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0006-2952(01)00696-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 260 citations 260 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0006-2952(01)00696-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:[no funder available]Patrick Bach; Judith Zaiser; Sina Zimmermann; Tatjana Gessner; Sabine Hoffmann; Sarah Gerhardt; Oksana Berhe; Nina Kim Bekier; Martin Abel; Philipp Radler; Jens Langejürgen; Heike Tost; Bernd Lenz; Sabine Vollstädt-Klein; Jan Stallkamp; Clemens Kirschbaum; Falk Kiefer;pmid: 37678541
Stress and alcohol cues trigger alcohol consumption and relapse in alcohol use disorder. However, the neurobiological processes underlying their interaction are not well understood. Thus, we conducted a randomized, controlled neuroimaging study to investigate the effects of psychosocial stress on neural cue reactivity and addictive behaviors.Neural alcohol cue reactivity was assessed in 91 individuals with alcohol use disorder using a validated functional magnetic resonance imaging (fMRI) task. Activation patterns were measured twice, at baseline and during a second fMRI session, prior to which participants were assigned to psychosocial stress (experimental condition) or a matched control condition or physical exercise (control conditions). Together with fMRI data, alcohol craving and cortisol levels were assessed, and alcohol use data were collected during a 12-month follow-up. Analyses tested the effects of psychosocial stress on neural cue reactivity and associations with cortisol levels, craving, and alcohol use.Compared with both control conditions, psychosocial stress elicited higher alcohol cue-induced activation in the left anterior insula (familywise error-corrected p < .05) and a stress- and cue-specific dynamic increase in insula activation over time (F22,968 = 2.143, p = .007), which was predicted by higher cortisol levels during the experimental intervention (r = 0.310, false discovery rate-corrected p = .016). Cue-induced insula activation was positively correlated with alcohol craving during fMRI (r = 0.262, false discovery rate-corrected p = .032) and alcohol use during follow-up (r = 0.218, false discovery rate-corrected p = .046).Results indicate a stress-induced sensitization of cue-induced activation in the left insula as a neurobiological correlate of the effects of psychosocial stress on alcohol craving and alcohol use in alcohol use disorder, which likely reflects changes in salience attribution and goal-directed behavior.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biopsych.2023.08.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biopsych.2023.08.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:Elsevier BV Johannes Kornhuber; Detlef Degner; K. Javaheripour; S. Bleich; E. Rüther; K Spilker; Jens Wiltfang; Christoph Kurth; M Quintela-Schneider;pmid: 11036188
The exact mechanism of brain atrophy in patients with chronic alcoholism remains unknown. There is growing evidence that chronic alcoholism is associated with oxidative stress and with a derangement in sulphur amino acid metabolism (e.g. ethanol-induced hyperhomocysteinemia). Furthermore, it has been reported that homocysteine induces neuronal cell death by stimulating N-methyl-D-aspartate receptors as well as by producing free radicals. To further evaluate this latter hypothesis we analysed serum levels of both homocysteine and markers of oxidative stress (malondialdehyde) in alcoholic patients who underwent withdrawal from alcohol. Homocysteine and malondialdehyde were quantified by high performance liquid chromatography (HPLC) in serum samples of 35 patients (active drinkers). There was a significant correlation (P<0. 01) between blood alcohol concentration and elevated homocysteine (Spearman's r=0.71) and malondialdehyde (r=0.90) levels on admission. In addition, homocysteine and malondialdehyde levels were found to be significant decreased after 3 days of withdrawal treatment (Wilcoxon test: homocysteine, Z=-5.127; malondialdehyde, Z=-3.120; P<0.01). We postulate that excitatory neurotransmitters and mechanisms of oxidative stress in patients with chronic alcoholism may partly mediate excitotoxic neuronal damage and hereby cause brain shrinkage.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0304-3940(00)01505-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 58 citations 58 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0304-3940(00)01505-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1998Publisher:Springer Science and Business Media LLC Graziano Pinna; Murat Eravci; Hans Prengel; Luis Hiedra; F. Bauer; Harald Meinhold; J. Wolf; Oliver Brödel; Andreas Baumgartner; Günter Schmidt;pmid: 9489935
The effects of acute, low-dose administration of ethanol (1 g/kg bodyweight) and the mu-opioid receptor agonist etonitazene (30 microg/kg bodyweight) on the activities of the iodothyronine deiodinase isoenzymes were investigated in nine regions of the rat brain. The experiments were performed at three different times of the 24-h cycle (1300, 2100 and 0500 hours) and the rats were decapitated 30 and 120 min after administration of the respective drugs. Interest was focused on changes in the two enzymes that catalyze 1) 5'-deiodination of thyroxine (T4) to the biologically active triiodothyronine (T3), i.e. type II 5'-deiodinase (5'D-II) and 2) 5 (or inner-ring) deiodination of T3 to the biologically inactive 3'3-T2, i.e. type III deiodinase (5D-III). 120 min after administration of ethanol and etonitazene 5D-III activity was selectively inhibited in the frontal cortex (at 1300 and 1700 hours) and the amygdala (at all three measuring times). The 5'D-II activity was significantly enhanced 30 min after administration of etonitazene in the frontal cortex, amygdala and limbic forebrain, and after administration of ethanol in the amygdala alone. These effects on 5'D-II activity were seen at 2100 hours only. In conclusion, the two different addictive drugs both reduced the inactivation of the physiologically active thyroid hormone T3 and enhanced its production. These effects occurred almost exclusively in the brain regions which were most likely to be involved in the rewarding properties of addictive drugs. As thyroid hormones have stimulating and mood-elevating properties, an involvement of these hormones in the reinforcing effects of addictive drugs seems conceivable.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s002130050486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s002130050486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Springer Science and Business Media LLC Authors: Randolf Riemann; Michael Herzog;pmid: 14610681
Night time alcohol ingestion influences nocturnal breathing in patients with sleep apnea syndrome or respiratory diseases. To evaluate the influence of nocturnal alcohol ingestion on the cardio-respiratory activity of healthy men, 8 snoring and 13 non-snoring male subjects were measured for 3 nights after alcohol ingestion. Blood alcohol concentration was 0.0, 0.5 and 0.8%, respectively. During each night polysomnographic data were obtained and analyzed. The apnea-hypopnea index was significantly higher in snoring than in non-snoring participants and increased in both groups under the influence of alcohol. Non-snoring males showed a significant increase of hypopneas under nocturnal alcohol ingestion (0.96-1.65-2.06). Mean oxygen saturation (SAO(2)) was significantly higher in non-snoring compared to snoring males, and both groups showed a significant decrease (non-snoring: 96.06%-95.7%-95.52%; snoring: 95.54%-94.74%-94.53%). Snoring individuals had a significant decrease in SAO(2) during NREM4, whereas SAO(2) was reduced significantly in REM and NREM3 in non-snoring subjects. The nocturnal heart rate was significantly increased in both groups under the influence of alcohol. The study proves that snoring and non-snoring healthy males are affected by nocturnal alcohol ingestion. Under the effect of alcohol, these patients can develop signs of a sleep apnea syndrome, which should be considered clinically.
European Archives of... arrow_drop_down European Archives of Oto-Rhino-LaryngologyArticle . 2003 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00405-003-0704-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert European Archives of... arrow_drop_down European Archives of Oto-Rhino-LaryngologyArticle . 2003 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00405-003-0704-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Oxford University Press (OUP) Authors: Fiona, Meyer-Bockenkamp; Phileas J, Proskynitopoulos; Alexander, Glahn; Marc, Muschler; +6 AuthorsFiona, Meyer-Bockenkamp; Phileas J, Proskynitopoulos; Alexander, Glahn; Marc, Muschler; Lars, Hagemeier; Vanessa, Preuss; Michael, Klintschar; Johannes, Achenbach; Helge, Frieling; Mathias, Rhein;pmid: 37041103
Abstract Aims Alcohol use alters the reward signaling processes contributing to the development of addiction. We studied the effects of alcohol use disorder (AUD) on brain regions and blood of deceased women and men to examine sex-dependent differences in epigenetic changes associated with AUD. We investigated the effects of alcohol use on the gene promoter methylation of GABBR1 coding for GABAB receptor subunit 1 in blood and brain. Methods We chose six brain regions associated with addiction and the reward pathway (nucleus arcuatus, nucleus accumbens, the mamillary bodies, amygdala, hippocampus and anterior temporal cortex) and performed epigenetic profiling of the proximal promoter of the GABBR1 gene of post-mortem brain and blood samples of 17 individuals with AUD pathology (4 female, 13 male) and 31 healthy controls (10 female, 21 male). Results Our results show sex-specific effects of AUD on GABBR1 promoter methylation. Especially, CpG −4 showed significant tissue-independent changes and significantly decreased methylation levels for the AUD group in the amygdala and the mammillary bodies of men. We saw prominent and consistent change in CpG-4 across all investigated tissues. For women, no significant loci were observed. Conclusion We found sex-dependent differences in GABBR1 promoter methylation in relation to AUD. CpG-4 hypomethylation in male individuals with AUD is consistent for most brain regions. Blood shows similar results without reaching significance, potentially serving as a peripheral marker for addiction-associated neuronal adaptations. Further research is needed to discover more contributing factors in the pathological alterations of alcohol addiction to offer sex-specific biomarkers and treatment.
Alcohol and Alcoholi... arrow_drop_down Alcohol and AlcoholismArticle . 2023 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/alcalc/agad022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Alcohol and Alcoholi... arrow_drop_down Alcohol and AlcoholismArticle . 2023 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/alcalc/agad022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Andreas Zimmer; Eva Drews;pmid: 19800387
It has been estimated that more than 80% of alcoholics are also nicotine dependent and that, vice versa, the rate of alcoholism is substantially increased by a factor of 4-10 in the nicotine-dependent population. However, the cause for this very high degree of comorbidity is still largely unknown. At the molecular and cellular level, both drugs have very different mechanisms of action. Nicotine specifically activates ligand-gated ion channels in the brain, which are normally gated by acetylcholine, while alcohol interacts with various neurotransmitter receptors. Despite this diversity, both drugs seem to engage the endogenous opioid system as a modulator of some of its pharmacological effect. An acute exposure to nicotine or alcohol leads to a release of opioid peptides in specific brain regions, thus resulting in an activation of their corresponding receptors. If the brain is exposed repeatedly or chronically to these drugs, adaptive changes in the level and expression of opioid peptides and receptors occur. These adaptive changes are thought to contribute to the homeostatic or allostatic adaptations of the brain, which have been associated with drug dependence. This review summarizes pharmacological and genetic studies in animal models and in humans that have addressed the role of specific opioid peptides and receptors in various stages of the addiction process.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pneurobio.2009.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pneurobio.2009.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1986Publisher:Springer Science and Business Media LLC M. Lader; V. Christensen; G. Frcka; A. Melhuish; K. Fredricson Overø;doi: 10.1007/bf00606656
pmid: 3467975
Citalopram, a selective 5-HT uptake inhibitor with antidepressant properties, was assessed in three studies in 12 healthy subjects using a battery of EEG, psychological, subjective and symptomatic measures. Study A involved the administration of citalopram, 20 mg and 40 mg, amitriptyline 50 mg and placebo in single dose using a balanced cross-over design. The test battery was applied before, and 1 and 3 h after each drug. Citalopram decreased slow-wave EEG activity whereas amitriptyline increased power in most EEG wavebands. Citalopram increased tapping rate and symbol copying whereas amitriptyline impaired these and other psychomotor tasks. Subjectively, amitriptyline was much more sedative than citalopram and produced more complaints of dry mouth. Study B comprised the administration of citalopram in the usual clinical dose of 40 mg, amitriptyline in the low clinical dose of 75 mg and placebo, each given for 9 nights using a balanced cross-over design. The test battery was applied on the first morning (pre-drug) and on the morning after the last nightly dose. None of the physiological tests showed any drug effects. Subjectively, citalopram was associated with feelings of shaking, nausea, loss of appetite and physical tiredness; amitriptyline produced feelings of shaking, nausea, loss of appetite, dryness of mouth, irritability, dizziness and indigestion; in general, amitriptyline effects were more marked than those of citalopram. Plasma samples were taken on the last day and plasma concentrations of both drugs and their metabolites were found to be in the expected range for the regimens used.(ABSTRACT TRUNCATED AT 250 WORDS)
European Journal of ... arrow_drop_down European Journal of Clinical PharmacologyArticle . 1986 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00606656&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 65 citations 65 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert European Journal of ... arrow_drop_down European Journal of Clinical PharmacologyArticle . 1986 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00606656&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2017Funded by:EC | NESTEREC| NESTERAuthors: Schippert, Hans Fredrik Soares;BACKGROUND: On the subject of cerebral infarction, it is a common saying that “time is brain”. The prognosis of a patient who has received thrombolysis after such an infarction becomes significantly better as the time from symptom debut until the thrombolytic bolus lessens. Identifying the factors that contribute to longer times before thrombolysis for patients could thus be meaningful, and this is exactly what the aim of this assignment is. METHODS: Data was collected from the digital documents of patients who had received thrombolytic treatment from Akershus University Hospital. Both linear and categorical variables were registered from fields such as the patients’ background, vitals and disease severity. Time from onset to arrival at the hospital and time from arrival to the start of the infusion were registered in detail, and potentially delaying factors such as uncertain time of symptom debut and suspected contraindications were explored. The official Norwegian limit for delayed thrombolysis is 40 minutes, and thus this was chosen as the limit in this assignment as well. RESULTS: A total of 100 patients were registered, having received thrombolysis in 2015 and 2016. 50 men and 50 women were registered, with a mean age of 67.6. The mean NIHSS on arrival was 7.63 (standard variance 6.06). The mean time from symptom debut until arrival was 90.09 min (standard variance 48.91) and the mean time from arrival until the thrombolysis was given was 46.24 min (standard variance 33.40). 48.0% of the patients received thrombolysis more than 40 min after arrival, thus defining it as delayed treatment. The factors which showed a significant association with delayed treatment, using a confidence interval of 95%, were smoking (p=0.028), necessary prethrombolytic reduction in blood pressure (p=0.002), suspected contraindication (p=0.023) and uncertain severity of disease (p=0.001). Factors that unexpectedly showed no significant association with delayed treatment were uncertain time of symptom debut and high NIHSS on arrival. CONCLUSION: Factors that may have contributed to delayed thrombolysis were smoking, prethrombolytic reduction of blood pressure, suspected contraindications and uncertain severity of disease. In order to shorten the time from arrival to treatment, the effects of these factors on the efficiency of the thrombolytic procedure must be minimized. This could be attempted by using tools such as stricter, clearer guidelines and hospital campaigns targeting the attitudes of the personnel. All this being said, this assignment has made it clear that the treatment of cerebral infarctions is largely successful.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nora_uio__no::17d8d5baa9af6bfa1af7ca2d4a38d412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nora_uio__no::17d8d5baa9af6bfa1af7ca2d4a38d412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1973Publisher:Springer Science and Business Media LLC Authors: R. Stock; Josef Krieglstein;doi: 10.1007/bf00500993
pmid: 4267538
The isolated perfused rat brain was used for a comparative study of the effects of chloral hydrate and trichloroethanol on cerebral energy metabolism. After a perfusion period of 30 min the brain levels of the following substrates and metabolites were measured spectrophotometrically: P-creatine, creatine, ATP, ADP, AMP, glycogen, glucose, glucose-6-P, fructose diphosphate, α-glycero-P, dihydroxyacetone-P, pyruvate, lactate, glutamate, α-ketoglutarate and ammonia. Furthermore, the concentration of chloral hydrate and trichloroethanol in the isolated brain and in the perfusion medium was measured colorimetrically. Little more than 10% of chloral hydrate in the isolated brain and in the perfusion medium were reduced to trichloroethanol. In intact animals there were about 70% of chloral hydrate transformed. Chloral hydrate and trichloroethanol caused an accumulation of P-creatine, no change in the lactate/pyruvate ratio, an increase of the glucose concentration and a decrease of glucose-6-P level in the isolated brain. The rise of brain glucose level was more pronounced after trichloroethanol than after chloral hydrate. The effects of chloral hydrate and trichloroethanol on brain glucose and glucose-6-P levels suggest an inhibition of brain hexokinase activity by these drugs.
Naunyn-Schmiedeberg ... arrow_drop_down Naunyn-Schmiedeberg s Archives of PharmacologyArticle . 1973 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00500993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 30 citations 30 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Naunyn-Schmiedeberg ... arrow_drop_down Naunyn-Schmiedeberg s Archives of PharmacologyArticle . 1973 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00500993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Elsevier BV Kerstin Genz; Tatyana Tenkova; Ursula Felderhoff-Mueser; Petra Bittigau; Krikor Dikranian; Chrysanthy Ikonomidou; John W. Olney; Christian Koch; Friederike Hoerster;pmid: 11448448
In the immature mammalian brain during a period of rapid growth (brain growth spurt/synaptogenesis period), neuronal apoptosis can be triggered by the transient blockade of glutamate N-methyl-d-aspartate (NMDA) receptors, or the excessive activation of gamma-aminobutyric acid (GABA(A)) receptors. Apoptogenic agents include anesthetics (ketamine, nitrous oxide, isoflurane, propofol, halothane), anticonvulsants (benzodiazepines, barbiturates), and drugs of abuse (phencyclidine, ketamine, ethanol). In humans, the brain growth spurt period starts in the sixth month of pregnancy and extends to the third year after birth. Ethanol, which has both NMDA antagonist and GABA(A) agonist properties, is particularly effective in triggering widespread apoptotic neurodegeneration during this vulnerable period. Thus, maternal ingestion of ethanol during the third trimester of pregnancy can readily explain the dysmorphogenic changes in the fetal brain and consequent neurobehavioral disturbances that characterize the human fetal alcohol syndrome. In addition, there is basis for concern that agents used in pediatric and obstetrical medicine for purposes of sedation, anesthesia, and seizure management may cause apoptotic neuronal death in the developing human brain.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0006-2952(01)00696-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 260 citations 260 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0006-2952(01)00696-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:[no funder available]Patrick Bach; Judith Zaiser; Sina Zimmermann; Tatjana Gessner; Sabine Hoffmann; Sarah Gerhardt; Oksana Berhe; Nina Kim Bekier; Martin Abel; Philipp Radler; Jens Langejürgen; Heike Tost; Bernd Lenz; Sabine Vollstädt-Klein; Jan Stallkamp; Clemens Kirschbaum; Falk Kiefer;pmid: 37678541
Stress and alcohol cues trigger alcohol consumption and relapse in alcohol use disorder. However, the neurobiological processes underlying their interaction are not well understood. Thus, we conducted a randomized, controlled neuroimaging study to investigate the effects of psychosocial stress on neural cue reactivity and addictive behaviors.Neural alcohol cue reactivity was assessed in 91 individuals with alcohol use disorder using a validated functional magnetic resonance imaging (fMRI) task. Activation patterns were measured twice, at baseline and during a second fMRI session, prior to which participants were assigned to psychosocial stress (experimental condition) or a matched control condition or physical exercise (control conditions). Together with fMRI data, alcohol craving and cortisol levels were assessed, and alcohol use data were collected during a 12-month follow-up. Analyses tested the effects of psychosocial stress on neural cue reactivity and associations with cortisol levels, craving, and alcohol use.Compared with both control conditions, psychosocial stress elicited higher alcohol cue-induced activation in the left anterior insula (familywise error-corrected p < .05) and a stress- and cue-specific dynamic increase in insula activation over time (F22,968 = 2.143, p = .007), which was predicted by higher cortisol levels during the experimental intervention (r = 0.310, false discovery rate-corrected p = .016). Cue-induced insula activation was positively correlated with alcohol craving during fMRI (r = 0.262, false discovery rate-corrected p = .032) and alcohol use during follow-up (r = 0.218, false discovery rate-corrected p = .046).Results indicate a stress-induced sensitization of cue-induced activation in the left insula as a neurobiological correlate of the effects of psychosocial stress on alcohol craving and alcohol use in alcohol use disorder, which likely reflects changes in salience attribution and goal-directed behavior.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biopsych.2023.08.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biopsych.2023.08.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:Elsevier BV Johannes Kornhuber; Detlef Degner; K. Javaheripour; S. Bleich; E. Rüther; K Spilker; Jens Wiltfang; Christoph Kurth; M Quintela-Schneider;pmid: 11036188
The exact mechanism of brain atrophy in patients with chronic alcoholism remains unknown. There is growing evidence that chronic alcoholism is associated with oxidative stress and with a derangement in sulphur amino acid metabolism (e.g. ethanol-induced hyperhomocysteinemia). Furthermore, it has been reported that homocysteine induces neuronal cell death by stimulating N-methyl-D-aspartate receptors as well as by producing free radicals. To further evaluate this latter hypothesis we analysed serum levels of both homocysteine and markers of oxidative stress (malondialdehyde) in alcoholic patients who underwent withdrawal from alcohol. Homocysteine and malondialdehyde were quantified by high performance liquid chromatography (HPLC) in serum samples of 35 patients (active drinkers). There was a significant correlation (P<0. 01) between blood alcohol concentration and elevated homocysteine (Spearman's r=0.71) and malondialdehyde (r=0.90) levels on admission. In addition, homocysteine and malondialdehyde levels were found to be significant decreased after 3 days of withdrawal treatment (Wilcoxon test: homocysteine, Z=-5.127; malondialdehyde, Z=-3.120; P<0.01). We postulate that excitatory neurotransmitters and mechanisms of oxidative stress in patients with chronic alcoholism may partly mediate excitotoxic neuronal damage and hereby cause brain shrinkage.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0304-3940(00)01505-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 58 citations 58 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0304-3940(00)01505-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1998Publisher:Springer Science and Business Media LLC Graziano Pinna; Murat Eravci; Hans Prengel; Luis Hiedra; F. Bauer; Harald Meinhold; J. Wolf; Oliver Brödel; Andreas Baumgartner; Günter Schmidt;pmid: 9489935
The effects of acute, low-dose administration of ethanol (1 g/kg bodyweight) and the mu-opioid receptor agonist etonitazene (30 microg/kg bodyweight) on the activities of the iodothyronine deiodinase isoenzymes were investigated in nine regions of the rat brain. The experiments were performed at three different times of the 24-h cycle (1300, 2100 and 0500 hours) and the rats were decapitated 30 and 120 min after administration of the respective drugs. Interest was focused on changes in the two enzymes that catalyze 1) 5'-deiodination of thyroxine (T4) to the biologically active triiodothyronine (T3), i.e. type II 5'-deiodinase (5'D-II) and 2) 5 (or inner-ring) deiodination of T3 to the biologically inactive 3'3-T2, i.e. type III deiodinase (5D-III). 120 min after administration of ethanol and etonitazene 5D-III activity was selectively inhibited in the frontal cortex (at 1300 and 1700 hours) and the amygdala (at all three measuring times). The 5'D-II activity was significantly enhanced 30 min after administration of etonitazene in the frontal cortex, amygdala and limbic forebrain, and after administration of ethanol in the amygdala alone. These effects on 5'D-II activity were seen at 2100 hours only. In conclusion, the two different addictive drugs both reduced the inactivation of the physiologically active thyroid hormone T3 and enhanced its production. These effects occurred almost exclusively in the brain regions which were most likely to be involved in the rewarding properties of addictive drugs. As thyroid hormones have stimulating and mood-elevating properties, an involvement of these hormones in the reinforcing effects of addictive drugs seems conceivable.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s002130050486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s002130050486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Springer Science and Business Media LLC Authors: Randolf Riemann; Michael Herzog;pmid: 14610681
Night time alcohol ingestion influences nocturnal breathing in patients with sleep apnea syndrome or respiratory diseases. To evaluate the influence of nocturnal alcohol ingestion on the cardio-respiratory activity of healthy men, 8 snoring and 13 non-snoring male subjects were measured for 3 nights after alcohol ingestion. Blood alcohol concentration was 0.0, 0.5 and 0.8%, respectively. During each night polysomnographic data were obtained and analyzed. The apnea-hypopnea index was significantly higher in snoring than in non-snoring participants and increased in both groups under the influence of alcohol. Non-snoring males showed a significant increase of hypopneas under nocturnal alcohol ingestion (0.96-1.65-2.06). Mean oxygen saturation (SAO(2)) was significantly higher in non-snoring compared to snoring males, and both groups showed a significant decrease (non-snoring: 96.06%-95.7%-95.52%; snoring: 95.54%-94.74%-94.53%). Snoring individuals had a significant decrease in SAO(2) during NREM4, whereas SAO(2) was reduced significantly in REM and NREM3 in non-snoring subjects. The nocturnal heart rate was significantly increased in both groups under the influence of alcohol. The study proves that snoring and non-snoring healthy males are affected by nocturnal alcohol ingestion. Under the effect of alcohol, these patients can develop signs of a sleep apnea syndrome, which should be considered clinically.
European Archives of... arrow_drop_down European Archives of Oto-Rhino-LaryngologyArticle . 2003 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00405-003-0704-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert European Archives of... arrow_drop_down European Archives of Oto-Rhino-LaryngologyArticle . 2003 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00405-003-0704-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu