search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
45,609 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 3. Good health
  • 2. Zero hunger
  • US
  • DE
  • SDSN Greece

  • Authors: Reinsch, S.; Koller, E.; Sowerby, A.; De Dato, G.; +17 Authors

    The data consists of annual measurements of standing aboveground plant biomass, annual aboveground net primary productivity and annual soil respiration between 1998 and 2012. Data were collected from seven European shrublands that were subject to the climate manipulations drought and warming. Sites were located in the United Kingdom (UK), the Netherlands (NL), Denmark ( two sites, DK-B and DK-M), Hungary (HU), Spain (SP) and Italy (IT). All field sites consisted of untreated control plots, plots where the plant canopy air is artificially warmed during night time hours, and plots where rainfall is excluded from the plots at least during the plants growing season. Standing aboveground plant biomass (grams biomass per square metre) was measured in two undisturbed areas within the plots using the pin-point method (UK, DK-M, DK-B), or along a transect (IT, SP, HU, NL). Aboveground net primary productivity was calculated from measurements of standing aboveground plant biomass estimates and litterfall measurements. Soil respiration was measured in pre-installed opaque soil collars bi-weekly, monthly, or in measurement campaigns (SP only). The datasets provided are the basis for the data analysis presented in Reinsch et al. (2017) Shrubland primary production and soil respiration diverge along European climate gradient. Scientific Reports 7:43952 https://doi.org/10.1038/srep43952 Standing biomass was measured using the non-destructive pin-point method to assess aboveground biomass. Measurements were conducted at the state of peak biomass specific for each site. Litterfall was measured annually using litterfall traps. Litter collected in the traps was dried and the weight was measured. Aboveground biomass productivity was estimated as the difference between the measured standing biomass in year x minus the standing biomass measured the previous year. Soil respiration was measured bi-weekly or monthly, or in campaigns (Spain only). It was measured on permanently installed soil collars in treatment plots. The Gaussen Index of Aridity (an index that combines information on rainfall and temperature) was calculated using mean annual precipitation, mean annual temperature. The reduction in precipitation and increase in temperature for each site was used to calculate the Gaussen Index for the climate treatments for each site. Data of standing biomass and soil respiration was provided by the site responsible. Data from all sites were collated into one data file for data analysis. A summary data set was combined with information on the Gaussen Index of Aridity Data were then exported from these Excel spreadsheet to .csv files for ingestion into the EIDC.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hussain, Mir Zaman; Robertson, G.Philip; Basso, Bruno; Hamilton, Stephen K.;

    Leaching dataset of dissolved organic carbon (DOC) and nitrogen (DON), nitrate (NO3+) and ammonium (NH4+) were collected from 6 cropping treatments (corn, switchgrass, miscanthus, native grass mix, restored prairie and poplar) established in the Bioenergy Cropping System Experiment (BCSE) which is a part of Great Lakes Bioenergy Research Center (www.glbrc.org) and Long Termn Ecological Research (LTER) program (www.lter.kbs.msu.edu). The site is located at the W.K. Kellogg Biological Station (42.3956° N, 85.3749° W and 288 m above sea level), 25 km from Kalamazoo in southwestern Michigan, USA. Prenart soil water samplers made of Teflon and silica (http://www.prenart.dk/soil-water-samplers/) were installed in blocks 1 and 2 of the BCSE (Fig. S1), and Eijkelkamp soil water samplers made of ceramic (http://www.eijkelkamp.com) were installed in blocks 3 and 4 (there were no soil water samplers in block 5). All samplers were installed at 1.2 m depth at a 45° angle from the soil surface, approximately 20 cm into the unconsolidated sand of the 2Bt2 and 2E/Bt horizons. Beginning in 2009, soil water was sampled at weekly to biweekly intervals during non-frozen periods (April to November) by applying 50 kPa of vacuum for 24 hours, during which water was collected in glass bottles. During the 2009 and 2010 sampling periods we obtained fewer soil water samples from blocks 1 and 2 where Prenart lysimeters were installed. We observed no consistent differences between the two sampler types in concentrations of the analytes reported here. Depending on the volume of leachate collected, water samples were filtered using either 0.45 µm pore size, 33-mm-dia. cellulose acetate membrane filters when volumes were <50 ml, or 0.45 µm, 47-mm-dia. Supor 450 membrane filters for larger volumes. Samples were analyzed for NO3-, NH4+, total dissolved nitrogen (TDN), and DOC. The NO3- concentration was determined using a Dionex ICS1000 ion chromatograph system with membrane suppression and conductivity detection; the detection limit of the system was 0.006 mg NO3--N L-1. The NH4+ concentration in the samples was determined using a Thermo Scientific (formerly Dionex) ICS1100 ion chromatograph system with membrane suppression and conductivity detection; the detection limit of the system was similar. The DOC and TDN concentrations were determined using a Shimadzu TOC-Vcph carbon analyzer with a total nitrogen module (TNM-1); the detection limit of the system was ~0.08 mg C L-1 and ~0.04 mg N L-1. DON concentrations were estimated as the difference between TDN and dissolved inorganic N (NO3- + NH4+) concentrations. The NH4+ concentrations were only measured in the 2013-2015 crop-years, but they were always small relative to NO3- and thus their inclusion or lack of it was inconsequential to the DON estimation. Leaching rates were estimated on a crop-year basis, defined as the period from planting or emergence of the crop in the year indicated through the ensuing year until the next year’s planting or emergence. For each sampling point, the concentration was linearly interpolated between sampling dates during non-freezing periods (April through November). The concentrations in the unsampled winter period (December through March) were also linearly interpolated based on the preceding November and subsequent April samples. Solute leaching (kg ha-1) was calculated by multiplying the daily solute concentration in pore-water (mg L -1) by the modeled daily drainage rates (m3 ha-1) from the overlying soil. The drainage rates were obtained using the SALUS (Systems Approach for Land Use Sustainability) model (Basso and Ritchie, 2015). SALUS simulates yield and environmental outcomes in response to weather, soil, management (planting dates, plant population, irrigation, nitrogen fertilizer application, tillage), and crop genetics. The SALUS water balance sub-model simulates surface run-off, saturated and unsaturated water flow, drainage, root water uptake, and evapotranspiration during growing and non-growing seasons (Basso and Ritchie, 2015). Drainage amounts and rates simulated by SALUS have been validated with measurements using large monolith lysimeters at a nearby site at KBS (Basso and Ritchie, 2005). On days when SALUS predicted no drainage, the leaching was assumed to be zero. The volume-weighted mean concentration for an entire crop-year was calculated as the sum of daily leaching (kg ha-1) divided by the sum of daily drainage rates (m3 ha-1). Weather data for the model were collected at the nearby KBS LTER meteorological station (lter.kbs.msu.edu). Leaching losses of dissolved organic carbon (DOC) and nitrogen (DON) from agricultural systems are important to water quality and carbon and nutrient balances but are rarely reported; the few available studies suggest linkages to litter production (DOC) and nitrogen fertilization (DON). In this study we examine the leaching of DOC, DON, NO3-, and NH4+ from no-till corn (maize) and perennial bioenergy crops (switchgrass, miscanthus, native grasses, restored prairie, and poplar) grown between 2009 and 2016 in a replicated field experiment in the upper Midwest U.S. Leaching was estimated from concentrations in soil water and modeled drainage (percolation) rates. DOC leaching rates (kg ha-1 yr-1) and volume-weighted mean concentrations (mg L-1) among cropping systems averaged 15.4 and 4.6, respectively; N fertilization had no effect and poplar lost the most DOC (21.8 and 6.9, respectively). DON leaching rates (kg ha-1 yr-1) and volume-weighted mean concentrations (mg L-1) under corn (the most heavily N-fertilized crop) averaged 4.5 and 1.0, respectively, which was higher than perennial grasses (mean: 1.5 and 0.5, respectively) and poplar (1.6 and 0.5, respectively). NO3- comprised the majority of total N leaching in all systems (59-92%). Average NO3- leaching (kg N ha-1 yr-1) under corn (35.3) was higher than perennial grasses (5.9) and poplar (7.2). NH4+ concentrations in soil water from all cropping systems were relatively low (<0.07 mg N L-1). Perennial crops leached more NO3- in the first few years after planting, and markedly less after. Among the fertilized crops, the leached N represented 14-38% of the added N over the study period; poplar lost the greatest proportion (38%) and corn was intermediate (23%). Requiring only one third or less of the N fertilization compared to corn, perennial bioenergy crops can substantially reduce N leaching and consequent movement into aquifers and surface waters. readme files are given that describe the data table

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2020
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2020
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility33
    visibilityviews33
    downloaddownloads7
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2020
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2020
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Roth, Jamila; Osborne, Todd; Reynolds, Laura;

    The ecological impacts of multiple stressors are hard to predict but important to understand. When multiple stressors influence foundation species, the effects can cascade throughout the ecosystem. Gulf of Mexico seagrass ecosystems are currently experiencing a suite of novel stressors, including warmer water temperatures and increased herbivory due to tropicalization and conservation efforts. We investigated the impact of warming temperatures and grazing history on plant performance, morphology, and palatability by integrating a mesocosm study using the seagrass Thalassia testudinum with feeding trials using the sea urchin Lytechinus variegatus. Warming temperatures negatively impacted T. testudinum tolerance traits, reducing belowground biomass by 34%, productivity by 74%, shoot density by 10%, and the number of leaves per plant by 24%, and negatively impacted resistance traits through 13% lower toughness of young leaves and a trend for reduced leaf carbon:nitrogen. Lytechinus variegatus individuals preferred to consume plants grown under heated conditions, which supports findings of enhanced palatability. Simulated turtle grazing impacted more plant traits than grazing by other herbivores, potentially diminishing plant resilience to future disturbances through reduced rhizome non-structural carbohydrate concentrations and increasing palatability through reduced fiber content and 23% lower leaf carbon:phosphorus. Simulated turtle, simulated parrotfish, and urchin grazing reduced leaf carbon:nitrogen by 11%, also potentially increasing nutritive value. Interactions between warming temperatures and grazers on plant traits were additive for 16 out of 19 response variables. However, the stressors non-additively impacted the number of leaves per plant, fiber content, and epiphyte load. We suggest that the impacts of grazers on leaf turnover rate and leaf age may vary based on water temperature, potentially driving these interactions. Overall, increased temperatures and grazing pressure will likely reduce seagrass resilience, structure, and biomass, potentially impacting feedback systems and producing negative consequences for seagrass cover, associated species, and ecosystem services.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility2
    visibilityviews2
    downloaddownloads39
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Shao, Junjiong; Zhou, Xuhui; van Groenigen, Kees; Zhou, Guiyao; +9 Authors

    Aim: Climate warming and biodiversity loss both alter plant productivity, yet we lack an understanding of how biodiversity regulates the responses of ecosystems to warming. In this study, we examine how plant diversity regulates the responses of grassland productivity to experimental warming using meta-analytic techniques. Location: Global Major taxa studied: Grassland ecosystems Methods: Our meta-analysis is based on warming responses of 40 different plant communities obtained from 20 independent studies on grasslands across five continents. Results: Our results show that plant diversity and its responses to warming were the most important factors regulating the warming effects on plant productivity, among all the factors considered (plant diversity, climate and experimental settings). Specifically, warming increased plant productivity when plant diversity (indicated by effective number of species) in grasslands was lesser than 10, whereas warming decreased plant productivity when plant diversity was greater than 10. Moreover, the structural equation modelling showed that the magnitude of warming enhanced plant productivity by increasing the performance of dominant plant species in grasslands of diversity lesser than 10. The negative effects of warming on productivity in grasslands with plant diversity greater than 10 were partly explained by diversity-induced decline in plant dominance. Main Conclusions: Our findings suggest that the positive or negative effect of warming on grassland productivity depends on how biodiverse a grassland is. This could mainly owe to differences in how warming may affect plant dominance and subsequent shifts in interspecific interactions in grasslands of different plant diversity levels.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility14
    visibilityviews14
    downloaddownloads1
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: María C. Estévez; José O. Bonilla; Liliana Beatriz Villegas; Liliana Beatriz Villegas; +2 Authors

    The purpose of this study was to investigate the influence of increasing sulfate concentrations on chromium removal, to evaluate the effect of the presence of Cr(VI) on sulfate removal by Streptomyces sp. MC1 and to analyze the differential protein expression profile in the presence of this metal for the identification of proteins repressed or overexpressed. In the presence of Cr(VI) but in the absence of sulfate ions, bacterial growth was negligible, showing the Cr(VI) toxicity for this bacterium. However, the sulfate presence stimulated bacterium growth and Cr(VI) removal, regardless of its concentrations. Streptomyces sp. MC1 showed ability to remove chromium and sulfate simultaneously. Also, the sulfate presence favored the decrease of total chromium concentration from supernatants reaching a decrease of 50% at 48 h. In presence of chromium, seven proteins were down‐expressed and showed homology to proteins involved in protein biosynthesis, energy production and free radicals detoxification while two proteins involved in oxidation‐reduction processes identified as dihydrolipoamide dehydrogenase and S‐adenosyl‐l‐methionine synthase were overexpressed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Basic Mic...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Basic Microbiology
    Article . 2016 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility5
    visibilityviews5
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Basic Mic...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Basic Microbiology
      Article . 2016 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Christopher W. Loomis; J. F. Brien; J. E. Peachey;

    Each of 4 male alcoholic subjects received 0.7 mg/kg calcium carbimide (CC) orally 12 hr before ingestion of 0.25 gm/kg ethanol on 3 separate occasions. The CC-ethanol interaction consisted of increased blood acetaldehyde level and elevated heart rate. For each individual there was small variability in the area under the curve (AUC) values of the blood ethanol level--time course profiles for the 3 experiments, indicating a consistent extent of ethanol absorption. For subjects 1, 2, and 3 there was appreciable intraindividual variability in the AUC and the peak blood acetaldehyde levels of the blood acetaldehyde level--time course curves; the variation in these parameters was small for subjects 4. The intraindividual variability in the peak heart rate response was small for subjects 1 and 2 and appreciable for subjects 3 and 4. Regression analysis of the blood acetaldehyde level--heart rate data for each of the 3 experiments conducted on the 4 subjects revealed that there were positive, linear correlations. There was appreciable intraindividual variability in the slope values for the 3 experiments. The results of this study, conducted on 4 male alcoholics, suggest that for other alcoholic subjects there could be appreciable intraindividual variability in the intensity of the CC-ethanol interaction.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    22
    citations22
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Meredith T. Niles; Meredith T. Niles; Jessica Rudnick; Mark Lubell; +1 Authors

    Agricultural adaptation to climate change is critical for ensuring future food security. Social capital is important for climate change adaptation, but institutions and social networks at multiple scales (e.g., household, community, and institution) have been overlooked in studying agricultural climate change adaptation. We combine data from 13 sites in 11 low-income countries in East Africa, West Africa, and South Asia to explore how multiple scales of social capital relate to household food security outcomes among smallholder farmers. Using social network theory, we define three community organizational social network types (fragmented defined by lack of coordination, brokered defined as having a strong central actor, or shared defined by high coordination) and examine household social capital through group memberships. We find community and household social capital are positively related, with higher household group membership more likely in brokered and shared networks. Household group membership is associated with more than a 10% reduction in average months of food insecurity, an effect moderated by community social network type. In communities with fragmented and shared organizational networks, additional household group memberships is associated with consistent decreases in food insecurity, in some cases up to two months; whereas in brokered networks, reductions in food insecurity are only associated with membership in credit groups. These effects are confirmed by hierarchical random effects models, which control for demographic factors. This suggests that multiple scales of social capital—both within and outside the household—are correlated with household food security. This social capital may both be bridging (across groups) and bonding (within groups) with different implications for how social capital structure affects food security. Efforts to improve food security could recognize the potential for both household and community level social networks and collaboration, which further research can capture by analyzing multiple scales of social capital data.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Sustain...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Sustainable Food Systems
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Sustainable Food Systems
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/a9...
    Other literature type . 2021
    Data sources: Datacite
    https://dx.doi.org/10.60692/sx...
    Other literature type . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Sustain...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Sustainable Food Systems
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Sustainable Food Systems
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/a9...
      Other literature type . 2021
      Data sources: Datacite
      https://dx.doi.org/10.60692/sx...
      Other literature type . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Fouad M.F. Elshaghabee; Fouad M.F. Elshaghabee; Wilhelm eBockelmann; Diana eMeske; +4 Authors

    Pour obtenir un aperçu spécifique des rôles que les micro-organismes pourraient jouer dans la stéatose hépatique non alcoolique (NAFLD), certaines bactéries intestinales et lactiques et une levure (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) ont été caractérisées par une chromatographie liquide haute performance pour la production d'éthanol lorsqu'elles sont cultivées sur différents glucides : hexoses (glucose et fructose), pentoses (arabinose et ribose), disaccharides (lactose et lactulose) et inuline. Les quantités les plus élevées d'éthanol ont été produites par S. cerevisiae, L. fermentum et W. confusa sur le glucose et par S. cerevisiae et W. confusa sur le fructose. En raison de la mannitol-déshydrogénase exprimée dans L. fermentum, la production d'éthanol sur le fructose a été significativement réduite (P < 0,05). Le pyruvate et le citrate, deux accepteurs d'électrons potentiels pour la régénération du NAD+/NADP+, ont considérablement réduit la production d'éthanol avec de l'acétate produit à la place dans L. fermentum cultivé sur glucose et W. confusa cultivé sur glucose et fructose, respectivement. Dans les boues fécales préparées à partir des matières fécales de quatre volontaires en surpoids, on a constaté que l'éthanol était produit lors de l'ajout de fructose. L'ajout d'A. caccae, L. acidophilus, L. fermentum, ainsi que de citrate et de pyruvate, respectivement, a aboli la production d'éthanol. Cependant, l'ajout de W. confusa a entraîné une augmentation significative (P < 0,05) de la production d'éthanol. Ces résultats indiquent que des micro-organismes comme W. confusa, une bactérie lactique hétéro-fermentaire, négative à la mannitol-déshydrogénase, peuvent favoriser la NAFLD par l'éthanol produit à partir de la fermentation du sucre, tandis que d'autres bactéries intestinales et des bactéries lactiques homo- et hétéro-fermentaires mais positives à la mannitol-déshydrogénase peuvent ne pas favoriser la NAFLD. En outre, nos études indiquent que les facteurs alimentaires interférant avec le microbiote gastro-intestinal et le métabolisme microbien peuvent être importants dans la prévention ou la promotion de la NAFLD. Para obtener información específica sobre los roles que podrían desempeñar los microorganismos en la enfermedad del hígado graso no alcohólico (NAFLD, por sus siglas en inglés), algunas bacterias intestinales y del ácido láctico y una levadura (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) se caracterizaron por cromatografía líquida de alto rendimiento para la producción de etanol cuando se cultivaron en diferentes carbohidratos: hexosas (glucosa y fructosa), pentosas (arabinosa y ribosa), disacáridos (lactosa y lactulosa) e inulina. Las cantidades más altas de etanol fueron producidas por S. cerevisiae, L. fermentum y W. confusa en glucosa y por S. cerevisiae y W. confusa en fructosa. Debido a la manitol-deshidrogenasa expresada en L. fermentum, la producción de etanol en fructosa se redujo significativamente (P < 0.05). El piruvato y el citrato, dos aceptores de electrones potenciales para la regeneración de NAD+/NADP+, redujeron drásticamente la producción de etanol con acetato producido en su lugar en L. fermentum cultivado en glucosa y W. confusa cultivado en glucosa y fructosa, respectivamente. En suspensiones fecales preparadas a partir de heces de cuatro voluntarios con sobrepeso, se encontró que el etanol se producía tras la adición de fructosa. La adición de A. caccae, L. acidophilus, L. fermentum, así como citrato y piruvato, respectivamente, abolió la producción de etanol. Sin embargo, la adición de W. confusa resultó en un aumento significativo (P < 0.05) de la producción de etanol. Estos resultados indican que microorganismos como W. confusa, una bacteria de ácido láctico hetero-fermentativa, negativa para manitol-deshidrogenasa, pueden promover NAFLD a través del etanol producido a partir de la fermentación de azúcar, mientras que otras bacterias intestinales y bacterias de ácido láctico homo- y hetero-fermentativas pero positivas para manitol-deshidrogenasa pueden no promover NAFLD. Además, nuestros estudios indican que los factores dietéticos que interfieren con la microbiota gastrointestinal y el metabolismo microbiano pueden ser importantes para prevenir o promover la EHGNA. To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD+/NADP+, drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial metabolism may be important in preventing or promoting NAFLD. لاكتساب بعض الأفكار المحددة حول الأدوار التي قد تلعبها الكائنات الحية الدقيقة في مرض الكبد الدهني غير الكحولي (NAFLD)، تميزت بعض بكتيريا حمض الأمعاء واللاكتيك وخميرة واحدة (Anaerostipes caccae، Bacteroides thetaiotaomicron، Bifidobacterium longum، Enterococcus fecalis، Escherichia coli، Lactobacillus acidophilus، Lactobacillus fermentum، Lactobacillus plantarum، Weissella confusa، Saccharomyces cerevisiae) بتصوير سائل عالي الأداء لإنتاج الإيثانول عند زراعته على كربوهيدرات مختلفة: hexoses (الجلوكوز والفركتوز)، pentoses (الأرابينوز والريبوز)، disaccharides (اللاكتوز واللاكتولوز)، و inulin. تم إنتاج أعلى كميات من الإيثانول بواسطة S. cerevisiae و L. fermentum و W. confusa على الجلوكوز و S. cerevisiae و W. confusa على الفركتوز. بسبب نازعة هيدروجين المانيتول المعبر عنها في L. fermentum، انخفض إنتاج الإيثانول على الفركتوز بشكل كبير (P < 0.05). قلل البيروفات والسيترات، وهما مستقبلان محتملان للإلكترون لتجديد NAD +/NADP+، بشكل كبير من إنتاج الإيثانول مع الأسيتات المنتجة بدلاً من ذلك في L. fermentum المزروع على الجلوكوز و W. confusa المزروع على الجلوكوز والفركتوز، على التوالي. في الملاط البرازي الذي تم تحضيره من براز أربعة متطوعين يعانون من زيادة الوزن، وجد أن الإيثانول يتم إنتاجه عند إضافة الفركتوز. إضافة A. caccae، L. acidophilus، L. fermentum، وكذلك السترات والبيروفات، على التوالي، ألغت إنتاج الإيثانول. ومع ذلك، أدت إضافة W. confusa إلى زيادة كبيرة في إنتاج الإيثانول (P < 0.05). تشير هذه النتائج إلى أن الكائنات الحية الدقيقة مثل W. confusa، وهي بكتيريا حمض اللاكتيك السلبية غير المتجانسة، قد تعزز NAFLD من خلال الإيثانول المنتج من تخمير السكر، في حين أن البكتيريا المعوية الأخرى وبكتيريا حمض اللاكتيك الإيجابية غير المتجانسة ولكن غير المتجانسة قد لا تعزز NAFLD. أيضًا، تشير دراساتنا إلى أن العوامل الغذائية التي تتداخل مع الكائنات الحية الدقيقة في الجهاز الهضمي والتمثيل الغذائي الميكروبي قد تكون مهمة في منع أو تعزيز NAFLD.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Microbi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Microbiology
    Article . 2016 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Microbiology
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Microbiology
    Article . 2016
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/fk...
    Other literature type . 2016
    Data sources: Datacite
    https://dx.doi.org/10.60692/z0...
    Other literature type . 2016
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    101
    citations101
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Microbi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Microbiology
      Article . 2016 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Microbiology
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Microbiology
      Article . 2016
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/fk...
      Other literature type . 2016
      Data sources: Datacite
      https://dx.doi.org/10.60692/z0...
      Other literature type . 2016
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jürgens, Hella; Haass, Wiltrud; Castañeda, Tamara R; Schürmann, Annette; +10 Authors

    AbstractObjective: The marked increase in the prevalence of obesity in the United States has recently been attributed to the increased fructose consumption. To determine if and how fructose might promote obesity in an animal model, we measured body composition, energy intake, energy expenditure, substrate oxidation, and several endocrine parameters related to energy homeostasis in mice consuming fructose.Research Methods and Procedures: We compared the effects of ad libitum access to fructose (15% solution in water), sucrose (10%, popular soft drink), and artificial sweetener (0% calories, popular diet soft drink) on adipogenesis and energy metabolism in mice.Results: Exposure to fructose water increased adiposity, whereas increased fat mass after consumption of soft drinks or diet soft drinks did not reach statistical significance (n = 9 each group). Total intake of energy was unaltered, because mice proportionally reduced their caloric intake from chow. There was a trend toward reduced energy expenditure and increased respiratory quotient, albeit not significant, in the fructose group. Furthermore, fructose produced a hepatic lipid accumulation with a characteristic pericentral pattern.Discussion: These data are compatible with the conclusion that a high intake of fructose selectively enhances adipogenesis, possibly through a shift of substrate use to lipogenesis.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Obesity Researcharrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Obesity Research
    Article
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Obesity Research
    Article . 2005 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    Obesity Research
    Article . 2006
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    264
    citations264
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Obesity Researcharrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Obesity Research
      Article
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Obesity Research
      Article . 2005 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      Obesity Research
      Article . 2006
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Haiyan Liu; Jaeyoung Lee;

    The COVID-19 pandemic has tremendously affected the whole of human society worldwide. Travel patterns have greatly changed due to the increased risk perception and the governmental interventions regarding COVID-19. This study aimed to identify contributing factors to the changes in public and private transportation mode choice behavior in China after COVID-19 based on an online questionnaire survey. In the survey, travel behaviors in three periods were studied: before the outbreak (before 27 December 2019), the peak (from 20 January to 17 March 2020), and after the peak (from 18 March to the date of the survey). A series of random-parameter bivariate Probit models was developed to quantify the relationship between individual characteristics and the changes in travel mode choice. The key findings indicated that individual sociodemographic characteristics (e.g., gender, age, ownership, occupation, residence) have significant effects on the changes in mode choice behavior. Other key findings included (1) a higher propensity to use a taxi after the peak compared to urban public transportation (i.e., bus and subway); (2) a significant impact of age on the switch from public transit to private car and two-wheelers; (3) more obvious changes in private car and public transportation modes in more developed cities. The findings from this study are expected to be useful for establishing partial and resilient policies and ensuring sustainable mobility and travel equality in the post-pandemic era.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
45,609 Research products
  • Authors: Reinsch, S.; Koller, E.; Sowerby, A.; De Dato, G.; +17 Authors

    The data consists of annual measurements of standing aboveground plant biomass, annual aboveground net primary productivity and annual soil respiration between 1998 and 2012. Data were collected from seven European shrublands that were subject to the climate manipulations drought and warming. Sites were located in the United Kingdom (UK), the Netherlands (NL), Denmark ( two sites, DK-B and DK-M), Hungary (HU), Spain (SP) and Italy (IT). All field sites consisted of untreated control plots, plots where the plant canopy air is artificially warmed during night time hours, and plots where rainfall is excluded from the plots at least during the plants growing season. Standing aboveground plant biomass (grams biomass per square metre) was measured in two undisturbed areas within the plots using the pin-point method (UK, DK-M, DK-B), or along a transect (IT, SP, HU, NL). Aboveground net primary productivity was calculated from measurements of standing aboveground plant biomass estimates and litterfall measurements. Soil respiration was measured in pre-installed opaque soil collars bi-weekly, monthly, or in measurement campaigns (SP only). The datasets provided are the basis for the data analysis presented in Reinsch et al. (2017) Shrubland primary production and soil respiration diverge along European climate gradient. Scientific Reports 7:43952 https://doi.org/10.1038/srep43952 Standing biomass was measured using the non-destructive pin-point method to assess aboveground biomass. Measurements were conducted at the state of peak biomass specific for each site. Litterfall was measured annually using litterfall traps. Litter collected in the traps was dried and the weight was measured. Aboveground biomass productivity was estimated as the difference between the measured standing biomass in year x minus the standing biomass measured the previous year. Soil respiration was measured bi-weekly or monthly, or in campaigns (Spain only). It was measured on permanently installed soil collars in treatment plots. The Gaussen Index of Aridity (an index that combines information on rainfall and temperature) was calculated using mean annual precipitation, mean annual temperature. The reduction in precipitation and increase in temperature for each site was used to calculate the Gaussen Index for the climate treatments for each site. Data of standing biomass and soil respiration was provided by the site responsible. Data from all sites were collated into one data file for data analysis. A summary data set was combined with information on the Gaussen Index of Aridity Data were then exported from these Excel spreadsheet to .csv files for ingestion into the EIDC.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hussain, Mir Zaman; Robertson, G.Philip; Basso, Bruno; Hamilton, Stephen K.;

    Leaching dataset of dissolved organic carbon (DOC) and nitrogen (DON), nitrate (NO3+) and ammonium (NH4+) were collected from 6 cropping treatments (corn, switchgrass, miscanthus, native grass mix, restored prairie and poplar) established in the Bioenergy Cropping System Experiment (BCSE) which is a part of Great Lakes Bioenergy Research Center (www.glbrc.org) and Long Termn Ecological Research (LTER) program (www.lter.kbs.msu.edu). The site is located at the W.K. Kellogg Biological Station (42.3956° N, 85.3749° W and 288 m above sea level), 25 km from Kalamazoo in southwestern Michigan, USA. Prenart soil water samplers made of Teflon and silica (http://www.prenart.dk/soil-water-samplers/) were installed in blocks 1 and 2 of the BCSE (Fig. S1), and Eijkelkamp soil water samplers made of ceramic (http://www.eijkelkamp.com) were installed in blocks 3 and 4 (there were no soil water samplers in block 5). All samplers were installed at 1.2 m depth at a 45° angle from the soil surface, approximately 20 cm into the unconsolidated sand of the 2Bt2 and 2E/Bt horizons. Beginning in 2009, soil water was sampled at weekly to biweekly intervals during non-frozen periods (April to November) by applying 50 kPa of vacuum for 24 hours, during which water was collected in glass bottles. During the 2009 and 2010 sampling periods we obtained fewer soil water samples from blocks 1 and 2 where Prenart lysimeters were installed. We observed no consistent differences between the two sampler types in concentrations of the analytes reported here. Depending on the volume of leachate collected, water samples were filtered using either 0.45 µm pore size, 33-mm-dia. cellulose acetate membrane filters when volumes were <50 ml, or 0.45 µm, 47-mm-dia. Supor 450 membrane filters for larger volumes. Samples were analyzed for NO3-, NH4+, total dissolved nitrogen (TDN), and DOC. The NO3- concentration was determined using a Dionex ICS1000 ion chromatograph system with membrane suppression and conductivity detection; the detection limit of the system was 0.006 mg NO3--N L-1. The NH4+ concentration in the samples was determined using a Thermo Scientific (formerly Dionex) ICS1100 ion chromatograph system with membrane suppression and conductivity detection; the detection limit of the system was similar. The DOC and TDN concentrations were determined using a Shimadzu TOC-Vcph carbon analyzer with a total nitrogen module (TNM-1); the detection limit of the system was ~0.08 mg C L-1 and ~0.04 mg N L-1. DON concentrations were estimated as the difference between TDN and dissolved inorganic N (NO3- + NH4+) concentrations. The NH4+ concentrations were only measured in the 2013-2015 crop-years, but they were always small relative to NO3- and thus their inclusion or lack of it was inconsequential to the DON estimation. Leaching rates were estimated on a crop-year basis, defined as the period from planting or emergence of the crop in the year indicated through the ensuing year until the next year’s planting or emergence. For each sampling point, the concentration was linearly interpolated between sampling dates during non-freezing periods (April through November). The concentrations in the unsampled winter period (December through March) were also linearly interpolated based on the preceding November and subsequent April samples. Solute leaching (kg ha-1) was calculated by multiplying the daily solute concentration in pore-water (mg L -1) by the modeled daily drainage rates (m3 ha-1) from the overlying soil. The drainage rates were obtained using the SALUS (Systems Approach for Land Use Sustainability) model (Basso and Ritchie, 2015). SALUS simulates yield and environmental outcomes in response to weather, soil, management (planting dates, plant population, irrigation, nitrogen fertilizer application, tillage), and crop genetics. The SALUS water balance sub-model simulates surface run-off, saturated and unsaturated water flow, drainage, root water uptake, and evapotranspiration during growing and non-growing seasons (Basso and Ritchie, 2015). Drainage amounts and rates simulated by SALUS have been validated with measurements using large monolith lysimeters at a nearby site at KBS (Basso and Ritchie, 2005). On days when SALUS predicted no drainage, the leaching was assumed to be zero. The volume-weighted mean concentration for an entire crop-year was calculated as the sum of daily leaching (kg ha-1) divided by the sum of daily drainage rates (m3 ha-1). Weather data for the model were collected at the nearby KBS LTER meteorological station (lter.kbs.msu.edu). Leaching losses of dissolved organic carbon (DOC) and nitrogen (DON) from agricultural systems are important to water quality and carbon and nutrient balances but are rarely reported; the few available studies suggest linkages to litter production (DOC) and nitrogen fertilization (DON). In this study we examine the leaching of DOC, DON, NO3-, and NH4+ from no-till corn (maize) and perennial bioenergy crops (switchgrass, miscanthus, native grasses, restored prairie, and poplar) grown between 2009 and 2016 in a replicated field experiment in the upper Midwest U.S. Leaching was estimated from concentrations in soil water and modeled drainage (percolation) rates. DOC leaching rates (kg ha-1 yr-1) and volume-weighted mean concentrations (mg L-1) among cropping systems averaged 15.4 and 4.6, respectively; N fertilization had no effect and poplar lost the most DOC (21.8 and 6.9, respectively). DON leaching rates (kg ha-1 yr-1) and volume-weighted mean concentrations (mg L-1) under corn (the most heavily N-fertilized crop) averaged 4.5 and 1.0, respectively, which was higher than perennial grasses (mean: 1.5 and 0.5, respectively) and poplar (1.6 and 0.5, respectively). NO3- comprised the majority of total N leaching in all systems (59-92%). Average NO3- leaching (kg N ha-1 yr-1) under corn (35.3) was higher than perennial grasses (5.9) and poplar (7.2). NH4+ concentrations in soil water from all cropping systems were relatively low (<0.07 mg N L-1). Perennial crops leached more NO3- in the first few years after planting, and markedly less after. Among the fertilized crops, the leached N represented 14-38% of the added N over the study period; poplar lost the greatest proportion (38%) and corn was intermediate (23%). Requiring only one third or less of the N fertilization compared to corn, perennial bioenergy crops can substantially reduce N leaching and consequent movement into aquifers and surface waters. readme files are given that describe the data table

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2020
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2020
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility33
    visibilityviews33
    downloaddownloads7
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2020
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2020
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Roth, Jamila; Osborne, Todd; Reynolds, Laura;

    The ecological impacts of multiple stressors are hard to predict but important to understand. When multiple stressors influence foundation species, the effects can cascade throughout the ecosystem. Gulf of Mexico seagrass ecosystems are currently experiencing a suite of novel stressors, including warmer water temperatures and increased herbivory due to tropicalization and conservation efforts. We investigated the impact of warming temperatures and grazing history on plant performance, morphology, and palatability by integrating a mesocosm study using the seagrass Thalassia testudinum with feeding trials using the sea urchin Lytechinus variegatus. Warming temperatures negatively impacted T. testudinum tolerance traits, reducing belowground biomass by 34%, productivity by 74%, shoot density by 10%, and the number of leaves per plant by 24%, and negatively impacted resistance traits through 13% lower toughness of young leaves and a trend for reduced leaf carbon:nitrogen. Lytechinus variegatus individuals preferred to consume plants grown under heated conditions, which supports findings of enhanced palatability. Simulated turtle grazing impacted more plant traits than grazing by other herbivores, potentially diminishing plant resilience to future disturbances through reduced rhizome non-structural carbohydrate concentrations and increasing palatability through reduced fiber content and 23% lower leaf carbon:phosphorus. Simulated turtle, simulated parrotfish, and urchin grazing reduced leaf carbon:nitrogen by 11%, also potentially increasing nutritive value. Interactions between warming temperatures and grazers on plant traits were additive for 16 out of 19 response variables. However, the stressors non-additively impacted the number of leaves per plant, fiber content, and epiphyte load. We suggest that the impacts of grazers on leaf turnover rate and leaf age may vary based on water temperature, potentially driving these interactions. Overall, increased temperatures and grazing pressure will likely reduce seagrass resilience, structure, and biomass, potentially impacting feedback systems and producing negative consequences for seagrass cover, associated species, and ecosystem services.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility2
    visibilityviews2
    downloaddownloads39
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Shao, Junjiong; Zhou, Xuhui; van Groenigen, Kees; Zhou, Guiyao; +9 Authors

    Aim: Climate warming and biodiversity loss both alter plant productivity, yet we lack an understanding of how biodiversity regulates the responses of ecosystems to warming. In this study, we examine how plant diversity regulates the responses of grassland productivity to experimental warming using meta-analytic techniques. Location: Global Major taxa studied: Grassland ecosystems Methods: Our meta-analysis is based on warming responses of 40 different plant communities obtained from 20 independent studies on grasslands across five continents. Results: Our results show that plant diversity and its responses to warming were the most important factors regulating the warming effects on plant productivity, among all the factors considered (plant diversity, climate and experimental settings). Specifically, warming increased plant productivity when plant diversity (indicated by effective number of species) in grasslands was lesser than 10, whereas warming decreased plant productivity when plant diversity was greater than 10. Moreover, the structural equation modelling showed that the magnitude of warming enhanced plant productivity by increasing the performance of dominant plant species in grasslands of diversity lesser than 10. The negative effects of warming on productivity in grasslands with plant diversity greater than 10 were partly explained by diversity-induced decline in plant dominance. Main Conclusions: Our findings suggest that the positive or negative effect of warming on grassland productivity depends on how biodiverse a grassland is. This could mainly owe to differences in how warming may affect plant dominance and subsequent shifts in interspecific interactions in grasslands of different plant diversity levels.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility14
    visibilityviews14
    downloaddownloads1
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: María C. Estévez; José O. Bonilla; Liliana Beatriz Villegas; Liliana Beatriz Villegas; +2 Authors

    The purpose of this study was to investigate the influence of increasing sulfate concentrations on chromium removal, to evaluate the effect of the presence of Cr(VI) on sulfate removal by Streptomyces sp. MC1 and to analyze the differential protein expression profile in the presence of this metal for the identification of proteins repressed or overexpressed. In the presence of Cr(VI) but in the absence of sulfate ions, bacterial growth was negligible, showing the Cr(VI) toxicity for this bacterium. However, the sulfate presence stimulated bacterium growth and Cr(VI) removal, regardless of its concentrations. Streptomyces sp. MC1 showed ability to remove chromium and sulfate simultaneously. Also, the sulfate presence favored the decrease of total chromium concentration from supernatants reaching a decrease of 50% at 48 h. In presence of chromium, seven proteins were down‐expressed and showed homology to proteins involved in protein biosynthesis, energy production and free radicals detoxification while two proteins involved in oxidation‐reduction processes identified as dihydrolipoamide dehydrogenase and S‐adenosyl‐l‐methionine synthase were overexpressed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Basic Mic...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Basic Microbiology
    Article . 2016 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility5
    visibilityviews5
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Basic Mic...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Basic Microbiology
      Article . 2016 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Christopher W. Loomis; J. F. Brien; J. E. Peachey;

    Each of 4 male alcoholic subjects received 0.7 mg/kg calcium carbimide (CC) orally 12 hr before ingestion of 0.25 gm/kg ethanol on 3 separate occasions. The CC-ethanol interaction consisted of increased blood acetaldehyde level and elevated heart rate. For each individual there was small variability in the area under the curve (AUC) values of the blood ethanol level--time course profiles for the 3 experiments, indicating a consistent extent of ethanol absorption. For subjects 1, 2, and 3 there was appreciable intraindividual variability in the AUC and the peak blood acetaldehyde levels of the blood acetaldehyde level--time course curves; the variation in these parameters was small for subjects 4. The intraindividual variability in the peak heart rate response was small for subjects 1 and 2 and appreciable for subjects 3 and 4. Regression analysis of the blood acetaldehyde level--heart rate data for each of the 3 experiments conducted on the 4 subjects revealed that there were positive, linear correlations. There was appreciable intraindividual variability in the slope values for the 3 experiments. The results of this study, conducted on 4 male alcoholics, suggest that for other alcoholic subjects there could be appreciable intraindividual variability in the intensity of the CC-ethanol interaction.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    22
    citations22
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Meredith T. Niles; Meredith T. Niles; Jessica Rudnick; Mark Lubell; +1 Authors

    Agricultural adaptation to climate change is critical for ensuring future food security. Social capital is important for climate change adaptation, but institutions and social networks at multiple scales (e.g., household, community, and institution) have been overlooked in studying agricultural climate change adaptation. We combine data from 13 sites in 11 low-income countries in East Africa, West Africa, and South Asia to explore how multiple scales of social capital relate to household food security outcomes among smallholder farmers. Using social network theory, we define three community organizational social network types (fragmented defined by lack of coordination, brokered defined as having a strong central actor, or shared defined by high coordination) and examine household social capital through group memberships. We find community and household social capital are positively related, with higher household group membership more likely in brokered and shared networks. Household group membership is associated with more than a 10% reduction in average months of food insecurity, an effect moderated by community social network type. In communities with fragmented and shared organizational networks, additional household group memberships is associated with consistent decreases in food insecurity, in some cases up to two months; whereas in brokered networks, reductions in food insecurity are only associated with membership in credit groups. These effects are confirmed by hierarchical random effects models, which control for demographic factors. This suggests that multiple scales of social capital—both within and outside the household—are correlated with household food security. This social capital may both be bridging (across groups) and bonding (within groups) with different implications for how social capital structure affects food security. Efforts to improve food security could recognize the potential for both household and community level social networks and collaboration, which further research can capture by analyzing multiple scales of social capital data.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Sustain...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Sustainable Food Systems
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Sustainable Food Systems
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/a9...
    Other literature type . 2021
    Data sources: Datacite
    https://dx.doi.org/10.60692/sx...
    Other literature type . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Sustain...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Sustainable Food Systems
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Sustainable Food Systems
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/a9...
      Other literature type . 2021
      Data sources: Datacite
      https://dx.doi.org/10.60692/sx...
      Other literature type . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Fouad M.F. Elshaghabee; Fouad M.F. Elshaghabee; Wilhelm eBockelmann; Diana eMeske; +4 Authors

    Pour obtenir un aperçu spécifique des rôles que les micro-organismes pourraient jouer dans la stéatose hépatique non alcoolique (NAFLD), certaines bactéries intestinales et lactiques et une levure (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) ont été caractérisées par une chromatographie liquide haute performance pour la production d'éthanol lorsqu'elles sont cultivées sur différents glucides : hexoses (glucose et fructose), pentoses (arabinose et ribose), disaccharides (lactose et lactulose) et inuline. Les quantités les plus élevées d'éthanol ont été produites par S. cerevisiae, L. fermentum et W. confusa sur le glucose et par S. cerevisiae et W. confusa sur le fructose. En raison de la mannitol-déshydrogénase exprimée dans L. fermentum, la production d'éthanol sur le fructose a été significativement réduite (P < 0,05). Le pyruvate et le citrate, deux accepteurs d'électrons potentiels pour la régénération du NAD+/NADP+, ont considérablement réduit la production d'éthanol avec de l'acétate produit à la place dans L. fermentum cultivé sur glucose et W. confusa cultivé sur glucose et fructose, respectivement. Dans les boues fécales préparées à partir des matières fécales de quatre volontaires en surpoids, on a constaté que l'éthanol était produit lors de l'ajout de fructose. L'ajout d'A. caccae, L. acidophilus, L. fermentum, ainsi que de citrate et de pyruvate, respectivement, a aboli la production d'éthanol. Cependant, l'ajout de W. confusa a entraîné une augmentation significative (P < 0,05) de la production d'éthanol. Ces résultats indiquent que des micro-organismes comme W. confusa, une bactérie lactique hétéro-fermentaire, négative à la mannitol-déshydrogénase, peuvent favoriser la NAFLD par l'éthanol produit à partir de la fermentation du sucre, tandis que d'autres bactéries intestinales et des bactéries lactiques homo- et hétéro-fermentaires mais positives à la mannitol-déshydrogénase peuvent ne pas favoriser la NAFLD. En outre, nos études indiquent que les facteurs alimentaires interférant avec le microbiote gastro-intestinal et le métabolisme microbien peuvent être importants dans la prévention ou la promotion de la NAFLD. Para obtener información específica sobre los roles que podrían desempeñar los microorganismos en la enfermedad del hígado graso no alcohólico (NAFLD, por sus siglas en inglés), algunas bacterias intestinales y del ácido láctico y una levadura (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) se caracterizaron por cromatografía líquida de alto rendimiento para la producción de etanol cuando se cultivaron en diferentes carbohidratos: hexosas (glucosa y fructosa), pentosas (arabinosa y ribosa), disacáridos (lactosa y lactulosa) e inulina. Las cantidades más altas de etanol fueron producidas por S. cerevisiae, L. fermentum y W. confusa en glucosa y por S. cerevisiae y W. confusa en fructosa. Debido a la manitol-deshidrogenasa expresada en L. fermentum, la producción de etanol en fructosa se redujo significativamente (P < 0.05). El piruvato y el citrato, dos aceptores de electrones potenciales para la regeneración de NAD+/NADP+, redujeron drásticamente la producción de etanol con acetato producido en su lugar en L. fermentum cultivado en glucosa y W. confusa cultivado en glucosa y fructosa, respectivamente. En suspensiones fecales preparadas a partir de heces de cuatro voluntarios con sobrepeso, se encontró que el etanol se producía tras la adición de fructosa. La adición de A. caccae, L. acidophilus, L. fermentum, así como citrato y piruvato, respectivamente, abolió la producción de etanol. Sin embargo, la adición de W. confusa resultó en un aumento significativo (P < 0.05) de la producción de etanol. Estos resultados indican que microorganismos como W. confusa, una bacteria de ácido láctico hetero-fermentativa, negativa para manitol-deshidrogenasa, pueden promover NAFLD a través del etanol producido a partir de la fermentación de azúcar, mientras que otras bacterias intestinales y bacterias de ácido láctico homo- y hetero-fermentativas pero positivas para manitol-deshidrogenasa pueden no promover NAFLD. Además, nuestros estudios indican que los factores dietéticos que interfieren con la microbiota gastrointestinal y el metabolismo microbiano pueden ser importantes para prevenir o promover la EHGNA. To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD+/NADP+, drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial metabolism may be important in preventing or promoting NAFLD. لاكتساب بعض الأفكار المحددة حول الأدوار التي قد تلعبها الكائنات الحية الدقيقة في مرض الكبد الدهني غير الكحولي (NAFLD)، تميزت بعض بكتيريا حمض الأمعاء واللاكتيك وخميرة واحدة (Anaerostipes caccae، Bacteroides thetaiotaomicron، Bifidobacterium longum، Enterococcus fecalis، Escherichia coli، Lactobacillus acidophilus، Lactobacillus fermentum، Lactobacillus plantarum، Weissella confusa، Saccharomyces cerevisiae) بتصوير سائل عالي الأداء لإنتاج الإيثانول عند زراعته على كربوهيدرات مختلفة: hexoses (الجلوكوز والفركتوز)، pentoses (الأرابينوز والريبوز)، disaccharides (اللاكتوز واللاكتولوز)، و inulin. تم إنتاج أعلى كميات من الإيثانول بواسطة S. cerevisiae و L. fermentum و W. confusa على الجلوكوز و S. cerevisiae و W. confusa على الفركتوز. بسبب نازعة هيدروجين المانيتول المعبر عنها في L. fermentum، انخفض إنتاج الإيثانول على الفركتوز بشكل كبير (P < 0.05). قلل البيروفات والسيترات، وهما مستقبلان محتملان للإلكترون لتجديد NAD +/NADP+، بشكل كبير من إنتاج الإيثانول مع الأسيتات المنتجة بدلاً من ذلك في L. fermentum المزروع على الجلوكوز و W. confusa المزروع على الجلوكوز والفركتوز، على التوالي. في الملاط البرازي الذي تم تحضيره من براز أربعة متطوعين يعانون من زيادة الوزن، وجد أن الإيثانول يتم إنتاجه عند إضافة الفركتوز. إضافة A. caccae، L. acidophilus، L. fermentum، وكذلك السترات والبيروفات، على التوالي، ألغت إنتاج الإيثانول. ومع ذلك، أدت إضافة W. confusa إلى زيادة كبيرة في إنتاج الإيثانول (P < 0.05). تشير هذه النتائج إلى أن الكائنات الحية الدقيقة مثل W. confusa، وهي بكتيريا حمض اللاكتيك السلبية غير المتجانسة، قد تعزز NAFLD من خلال الإيثانول المنتج من تخمير السكر، في حين أن البكتيريا المعوية الأخرى وبكتيريا حمض اللاكتيك الإيجابية غير المتجانسة ولكن غير المتجانسة قد لا تعزز NAFLD. أيضًا، تشير دراساتنا إلى أن العوامل الغذائية التي تتداخل مع الكائنات الحية الدقيقة في الجهاز الهضمي والتمثيل الغذائي الميكروبي قد تكون مهمة في منع أو تعزيز NAFLD.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Microbi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Microbiology
    Article . 2016 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Microbiology
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Microbiology
    Article . 2016
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/fk...
    Other literature type . 2016
    Data sources: Datacite
    https://dx.doi.org/10.60692/z0...
    Other literature type . 2016
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    101
    citations101
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Microbi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Microbiology
      Article . 2016 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Microbiology
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Microbiology
      Article . 2016
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/fk...
      Other literature type . 2016
      Data sources: Datacite
      https://dx.doi.org/10.60692/z0...
      Other literature type . 2016
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jürgens, Hella; Haass, Wiltrud; Castañeda, Tamara R; Schürmann, Annette; +10 Authors

    AbstractObjective: The marked increase in the prevalence of obesity in the United States has recently been attributed to the increased fructose consumption. To determine if and how fructose might promote obesity in an animal model, we measured body composition, energy intake, energy expenditure, substrate oxidation, and several endocrine parameters related to energy homeostasis in mice consuming fructose.Research Methods and Procedures: We compared the effects of ad libitum access to fructose (15% solution in water), sucrose (10%, popular soft drink), and artificial sweetener (0% calories, popular diet soft drink) on adipogenesis and energy metabolism in mice.Results: Exposure to fructose water increased adiposity, whereas increased fat mass after consumption of soft drinks or diet soft drinks did not reach statistical significance (n = 9 each group). Total intake of energy was unaltered, because mice proportionally reduced their caloric intake from chow. There was a trend toward reduced energy expenditure and increased respiratory quotient, albeit not significant, in the fructose group. Furthermore, fructose produced a hepatic lipid accumulation with a characteristic pericentral pattern.Discussion: These data are compatible with the conclusion that a high intake of fructose selectively enhances adipogenesis, possibly through a shift of substrate use to lipogenesis.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Obesity Researcharrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Obesity Research
    Article
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Obesity Research
    Article . 2005 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    Obesity Research
    Article . 2006
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    264
    citations264
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Obesity Researcharrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Obesity Research
      Article
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Obesity Research
      Article . 2005 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      Obesity Research
      Article . 2006
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Haiyan Liu; Jaeyoung Lee;

    The COVID-19 pandemic has tremendously affected the whole of human society worldwide. Travel patterns have greatly changed due to the increased risk perception and the governmental interventions regarding COVID-19. This study aimed to identify contributing factors to the changes in public and private transportation mode choice behavior in China after COVID-19 based on an online questionnaire survey. In the survey, travel behaviors in three periods were studied: before the outbreak (before 27 December 2019), the peak (from 20 January to 17 March 2020), and after the peak (from 18 March to the date of the survey). A series of random-parameter bivariate Probit models was developed to quantify the relationship between individual characteristics and the changes in travel mode choice. The key findings indicated that individual sociodemographic characteristics (e.g., gender, age, ownership, occupation, residence) have significant effects on the changes in mode choice behavior. Other key findings included (1) a higher propensity to use a taxi after the peak compared to urban public transportation (i.e., bus and subway); (2) a significant impact of age on the switch from public transit to private car and two-wheelers; (3) more obvious changes in private car and public transportation modes in more developed cities. The findings from this study are expected to be useful for establishing partial and resilient policies and ensuring sustainable mobility and travel equality in the post-pandemic era.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.