- home
- Search
Filters
Clear All- Energy Research
- 2025-2025
- EG
- NL
- SDSN Greece
- Energy Research
- 2025-2025
- EG
- NL
- SDSN Greece
description Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Elsevier BV Funded by:NWO | New Energy and mobility O...NWO| New Energy and mobility Outlook for the Netherlands (NEON)Authors: Maurizio Clemente; Mauro Salazar; Theo Hofman;We present a modeling and optimization framework to design powertrains for a family of electric vehicles, focusing on the concurrent sizing of their motors and batteries. Whilst tailoring these component modules to each individual vehicle type can minimize energy consumption, it can result in high production costs due to the variety of component modules to be realized for the family of vehicles, driving the Total Costs of Ownership (TCO) high. Against this backdrop, we explore modularity and standardization strategies whereby we jointly design unique motor and battery modules to be installed in all the vehicles in the family, using a different number of these modules when needed. Such an approach results in higher production volumes of the same component module, entailing significantly lower manufacturing costs due to Economy-of-Scale (EoS) effects, and hence a potentially lower TCO for the family of vehicles. To solve the resulting one-size-fits-all problem, we instantiate a nested framework consisting of an inner convex optimization routine which jointly optimizes the modules' sizes and the powertrain operation of the entire family, for given driving cycles and modules' multiplicities. Likewise, we devise an outer loop comparing each configuration to identify the minimum-TCO solution with global optimality guarantees. Finally, we showcase our framework on a case study for the Tesla vehicle family in a benchmark design problem, considering the Model S, Model 3, Model X, and Model Y. Our results show that, compared to an individually tailored design, the application of our concurrent design optimization framework achieves a significant reduction of the production costs for a minimal increase in operational costs, ultimately lowering the family TCO in the benchmark design problem by 3.5\%. 17 pages, 17 figures, 7 tables
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Elsevier BV Guilong Peng; Senshan Sun; Zhenwei Xu; Juxin Du; Yangjun Qin; Swellam W. Sharshir; A.W. Kandeal; A.E. Kabeel; Nuo Yang;Machine learning's application in solar-thermal desalination is limited by data shortage and inconsistent analysis. This study develops an optimized dataset collection and analysis process for the representative solar still. By ultra-hydrophilic treatment on the condensation cover, the dataset collection process reduces the collection time by 83.3%. Over 1,000 datasets are collected, which is nearly one order of magnitude larger than up-to-date works. Then, a new interdisciplinary process flow is proposed. Some meaningful results are obtained that were not addressed by previous studies. It is found that Radom Forest might be a better choice for datasets larger than 1,000 due to both high accuracy and fast speed. Besides, the dataset range affects the quantified importance (weighted value) of factors significantly, with up to a 115% increment. Moreover, the results show that machine learning has a high accuracy on the extrapolation prediction of productivity, where the minimum mean relative prediction error is just around 4%. The results of this work not only show the necessity of the dataset characteristics' effect but also provide a standard process for studying solar-thermal desalination by machine learning, which would pave the way for interdisciplinary study.
arXiv.org e-Print Ar... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2024.126365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2024.126365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Elsevier BV Funded by:NWO | New Energy and mobility O...NWO| New Energy and mobility Outlook for the Netherlands (NEON)Authors: Maurizio Clemente; Mauro Salazar; Theo Hofman;We present a modeling and optimization framework to design powertrains for a family of electric vehicles, focusing on the concurrent sizing of their motors and batteries. Whilst tailoring these component modules to each individual vehicle type can minimize energy consumption, it can result in high production costs due to the variety of component modules to be realized for the family of vehicles, driving the Total Costs of Ownership (TCO) high. Against this backdrop, we explore modularity and standardization strategies whereby we jointly design unique motor and battery modules to be installed in all the vehicles in the family, using a different number of these modules when needed. Such an approach results in higher production volumes of the same component module, entailing significantly lower manufacturing costs due to Economy-of-Scale (EoS) effects, and hence a potentially lower TCO for the family of vehicles. To solve the resulting one-size-fits-all problem, we instantiate a nested framework consisting of an inner convex optimization routine which jointly optimizes the modules' sizes and the powertrain operation of the entire family, for given driving cycles and modules' multiplicities. Likewise, we devise an outer loop comparing each configuration to identify the minimum-TCO solution with global optimality guarantees. Finally, we showcase our framework on a case study for the Tesla vehicle family in a benchmark design problem, considering the Model S, Model 3, Model X, and Model Y. Our results show that, compared to an individually tailored design, the application of our concurrent design optimization framework achieves a significant reduction of the production costs for a minimal increase in operational costs, ultimately lowering the family TCO in the benchmark design problem by 3.5\%. 17 pages, 17 figures, 7 tables
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Elsevier BV Guilong Peng; Senshan Sun; Zhenwei Xu; Juxin Du; Yangjun Qin; Swellam W. Sharshir; A.W. Kandeal; A.E. Kabeel; Nuo Yang;Machine learning's application in solar-thermal desalination is limited by data shortage and inconsistent analysis. This study develops an optimized dataset collection and analysis process for the representative solar still. By ultra-hydrophilic treatment on the condensation cover, the dataset collection process reduces the collection time by 83.3%. Over 1,000 datasets are collected, which is nearly one order of magnitude larger than up-to-date works. Then, a new interdisciplinary process flow is proposed. Some meaningful results are obtained that were not addressed by previous studies. It is found that Radom Forest might be a better choice for datasets larger than 1,000 due to both high accuracy and fast speed. Besides, the dataset range affects the quantified importance (weighted value) of factors significantly, with up to a 115% increment. Moreover, the results show that machine learning has a high accuracy on the extrapolation prediction of productivity, where the minimum mean relative prediction error is just around 4%. The results of this work not only show the necessity of the dataset characteristics' effect but also provide a standard process for studying solar-thermal desalination by machine learning, which would pave the way for interdisciplinary study.
arXiv.org e-Print Ar... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2024.126365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2024.126365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu