- home
- Search
- Energy Research
- 7. Clean energy
- 13. Climate action
- 8. Economic growth
- SDSN Greece
- Energy Research
- 7. Clean energy
- 13. Climate action
- 8. Economic growth
- SDSN Greece
Research data keyboard_double_arrow_right Dataset 2018 United StatesPublisher:U.S. Geological Survey Authors: Debra Higley-Feldman;doi: 10.5066/p9blvvq2
The Assessment Unit is the fundamental unit used in the National Assessment Project for the assessment of undiscovered oil and gas resources. The Assessment Unit is defined within the context of the higher-level Total Petroleum System. The Assessment Unit is shown herein as a geographic boundary interpreted, defined, and mapped by the geologist responsible for the province and incorporates a set of known or postulated oil and (or) gas accumulations sharing similar geologic, geographic, and temporal properties within the Total Petroleum System, such as source rock, timing, migration pathways, trapping mechanism, and hydrocarbon type. The Assessment Unit boundary is defined geologically as the limits of the geologic elements that define the Assessment Unit, such as limits of reservoir rock, geologic structures, source rock, and seal lithologies. The only exceptions to this are Assessment Units that border the Federal-State water boundary. In these cases, the Federal-State water boundary forms part of the Assessment Unit boundary.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p9blvvq2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p9blvvq2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 06 Jan 2022Publisher:Dryad Jarvie, Scott; Ingram, Travis; Chapple, David; Hitchmough, Rodney; Nielsen, Stuart; Monks, Joanne M.;Although GPS coordinates for current populations are not included due to the potential threat of poaching, the climate variables for each species are provided. The records for extant gecko and skinks mainly came from the New Zealand's Department of Conervation Herpetofauna Database. After updating the taxonomy and cleaning the data to reflect the taxonomy as at 2019 of 43 geckos speceis recognised across seven genera and 61 species in genus, we then thinned the occurrence records at a 1 km resolution for all species then predicted distributions for those with > 15 records using species distribution models. The climate variables for each species were selected among annual mean temperature (bio1), maximum temperature of the warmest month (bio5), minimum temperature of the coldest month (bio6), mean temperature of driest quarter (bio9), mean temperature of wettest quarter (bio10), and precipitation of the driest quarter (bio17). To reduce multicollinearity in species distribution models for each species, we only retained climate variables with a variable inflation factor < 10. The climate variables were from the CHELSA database (https://chelsa-climate.org/), which can be freely downloaded for current and future scenarios. We also provide MCC tree files for the geckos and skinks. The phylogenetic trees have been constructed for NZ geckos by (Nielsen et al., 2011) and for NZ skinks by (Chapple et al., 2009). For geckos we used a subset of the sequences used by Nielsen et al. (2011) for four genes, two nuclear (RAG 1, PDC) and two mitochondrial (16S, ND2 along with flanking tRNA sequences). For skinks, we used sequences from Chapple et al. (2009) for one nuclear (RAG 1) and five mitochondrial (ND2, ND4, Cyt b, 12S and 16S) genes, and additional ND2 sequences for taxa not included in the original phylogeny (Chapple et al., 2011, p. 201). In total we used sequences for all recognised extant taxa (Hitchmough et al., 2016) as at 2019 except for three species of skink (O. aff. inconspicuum “Okuru”, O. robinsoni, and O. aff. inconspicuum “North Otago”) and two species of gecko (M. “Cupola” and W. “Kaikouras”) for which genetic data were not available. Aim: The primary drivers of species and population extirpations have been habitat loss, overexploitation, and invasive species, but human-mediated climate change is expected to be a major driver in future. To minimise biodiversity loss, conservation managers should identify species vulnerable to climate change and prioritise their protection. Here, we estimate climatic suitability for two speciose taxonomic groups, then use phylogenetic analyses to assess vulnerability to climate change. Location: Aotearoa New Zealand (NZ) Taxa: NZ lizards: diplodactylid geckos and eugongylinae skinks Methods: We built correlative species distribution models (SDMs) for NZ geckos and skinks to estimate climatic suitability under current climate and 2070 future-climate scenarios. We then used Bayesian phylogenetic mixed models (BPMMs) to assess vulnerability for both groups with predictor variables for life history traits (body size and activity phase) and current distribution (elevation and latitude). We explored two scenarios: an unlimited dispersal scenario, where projections track climate, and a no-dispersal scenario, where projections are restricted to areas currently identified as suitable. Results: SDMs projected vulnerability to climate change for most modelled lizards. For species’ ranges projected to decline in climatically suitable areas, average decreases were between 42–45% for geckos and 33–91% for skinks, although area did increase or remain stable for a minority of species. For the no-dispersal scenario, the average decrease for geckos was 37–52% and for skinks was 33–52%. Our BPMMs showed phylogenetic signal in climate change vulnerability for both groups, with elevation increasing vulnerability for geckos, and body size reducing vulnerability for skinks. Main conclusions: NZ lizards showed variable vulnerability to climate change, with most species’ ranges predicted to decrease. For species whose suitable climatic space is projected to disappear from within their current range, managed relocation could be considered to establish populations in regions that will be suitable under future climates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 53visibility views 53 download downloads 15 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 14 Sep 2018Publisher:Mendeley Authors: Britsch, K;Operating measurements from three multi-week test campaigns of the natural circulation FLiBe loop. This system is investigating thermal hydraulic behavior of the molten salt BeF_2 -LiF (33 - 67 mol %). The system behaves in a stable fashion, but shows unusual local transients, such as flow break-down in the riser and thermal jumps at the cooler exit. Heat transfer shows promising trends that FLiBe will behave as a normal heat transfer fluid, as long as salt purity can be maintained. The most recent test shows heat transfer degradation that is likely a result of oxides and impurities. The data archive contains as-built dimensions, Matlab analysis codes, and the raw data files.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/mkbbwtztzy&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/mkbbwtztzy&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Jiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); +3 AuthorsJiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); Guang Shi (5048222); Chengyu Hu (6520775); Shuxiao Wang (1406992);It show point estimates of GHG emissions from pesticide production from 1990 to 2016 at provincial level in China.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Publisher:International Institute of Refrigeration (IIR) Authors: FRANCIS, C.; DAVIES, G.; EVANS, J.; Et Al.;Refrigerated road transport (RRT) vehicles are large users of energy, and reportedly have relatively high leakage of hydrofluorocarbon refrigerant gases, both of which contribute to global warming. The experience obtained from widespread research in leak reduction in stationary refrigeration systems can be instructive in combatting leakage in RRT systems, which has received less focus to date. This paper will take an integrated approach to develop and describe a preliminary model for sustainable RRT systems. It will first review lessons learned about refrigerant leakage in stationary systems in an effort to identify problematic/leak prone components common to transport refrigeration systems. This will then be followed by a survey of recent studies conducted in modelling transport refrigeration systems to advance energy efficiency. Initial results from the model illustrate the need to improve the efficiency of the refrigeration system, together with preventative maintenance of the box structure and refrigeration system as a whole.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Laboratoire des Physique des Oceans Authors: Pierrick Penven;This realistic ocean simulation was run using the Coastal and Regional Ocean COmmunity model (CROCO), based on the Regional Ocean Modelling System (ROMS), which has 60 terrain-following vertical levels. This output (WOES 0.25) is the largest grid of a triply nested configuration: WOES I, WOES II and WOES III, with horizontal resolutions of ~22.5, 7.5 and 2.5 km respectively. Monthly ouputs of the 0.25 degree GLORYS ocean reanalysis is used to force the boundaries of WOES I. The surface forcing for this model is provided by a bulk formulation using daily ERA-Interim atmospheric reanalysis (with a resolution of ~80 km) and using a relative wind approach. The output is saved as daily averages, in monthly netcdf files spanning January 1993 - December 2014. WOES 0.25 spans 55.7degS to 3.18388 degS and 10degW to 102.25degE and covers most of the Southern Subtropical Indian Ocean and a part of the Southern Atlantic Ocean. Model output includes: averaged free-surface (zeta), averaged vertically integrated u-momentum component (ubar), averaged vertically integrated v-momentum component (vbar), averaged u-momentum component (u), averaged v-momentum component (v), averaged potential temperature (temp), averaged salinity (salt), averaged vertical momentum component (w). Numerical computations were performed on the IDRIS (Institut du Developpement et des Ressources en Informatique Scientifique) IBM "ADA" computer facility (under grant A0020107630)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/saeon.egagasini.10000106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/saeon.egagasini.10000106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:GFZ Data Services Authors: Hofmann, Matthias; Liebermann, Ralf;doi: 10.5880/pik.2023.003
The data comprise Climber3alpha+C simulations created by Matthias Hofmann (PIK) as part of the Work Package 2.1 of the COMFORT project as well as the PyFerret scripts (written by Ralf Liebermann and Matthias Hofmann) used for their evaluation. The simulation data consist of snap_*.nc files and history.nc files for ocean, atmosphere and mixed layer depth (hmxl) performed for different idealized scenarios: CONTROL, double and fourfold atmospheric CO2 (CO2X2 and CO2X4), also with additional Greenland freshwater influx (CO2X2_HOSING and CO2X4_HOSING). Furthermore, tracer simulations (CONTROL, CO2X4, CO2X4_HOSING) and simulations with constant scavenging (CO2X4) are also included. The aim was to analyse the simulations regarding climate change-induced changes in marine biogeochemistry and primary production, which will be published under the title "Shutdown of Atlantic overturning circulation could cause persistent increase of primary production in the Pacific" (see Related Work). Simulation data were generated with Climber3alpha+C (Earth system model of intermediate complexity) and evaluated with PyFerret v7.41. CDO was used to aggregate monthly simulation data into annual means.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Publisher:Chalmers University of Technology Authors: Englund, Oskar;Brazil is home to the largest tracts of tropical vegetation in the world, harbouring high levels of biodiversity and carbon. Several biomass maps have been produced for Brazil, using different approaches and methods, and for different purposes. These maps have been used to estimate historic, recent, and future carbon emissions from land use change (LUC). It can be difficult to determine which map to use for what purpose. The implications of using an unsuitable map can be significant, since the maps have large differences—both in terms of total carbon storage and its spatial distribution. This dataset of aboveground carbon was created based on data from existing maps and an up-to-date LULC map. The map reflects current LULC, has high accuracy and resolution (50 m), and a national coverage. It can be a useful alternative for scientific studies and policy initiatives concerned with existing LULC and LUC outside of existing forests, especially at local scales when high resolution is necessary, and/or outside the Amazon biome. Map unit: tonnes of aboveground carbon per hectare. This dataset of aboveground carbon was created based on data from existing maps and an up-to-date LULC map. The map reflects current LULC, has high accuracy and resolution (50 m), and a national coverage. It can be a useful alternative for scientific studies and policy initiatives concerned with existing LULC and LUC outside of existing forests, especially at local scales when high resolution is necessary, and/or outside the Amazon biome. Map unit: tonnes of aboveground carbon per hectare. Data är baserade på befintliga kartor och en aktuell LULC-karta (änding av markanvändning) för bildandet av ovanjordiskt kol i Brasilien. Kartan speglar nuvarande LULC, har hög noggrannhet och upplösning (50 m) och en nationell täckning. Mer information på den engelska katalogsidan: https://snd.gu.se/en/catalogue/study/ecds0244 This dataset of aboveground carbon was created based on data from existing maps and an up-to-date LULC map. The map reflects current LULC, has high accuracy and resolution (50 m), and a national coverage. It can be a useful alternative for scientific studies and policy initiatives concerned with existing LULC and LUC outside of existing forests, especially at local scales when high resolution is necessary, and/or outside the Amazon biome. Map unit: tonnes of aboveground carbon per hectare.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5879/ecds/2017-09-12.1/1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5879/ecds/2017-09-12.1/1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Eurac Research - Institute for Renewable Energy Authors: Pezzutto, Simon;The HEU MODERATE Building Stock Data provides information regarding the building stock for all EU27 member states at the national level (i.e., NUTS 0) considering 2020 as the reference year. Regarding the Service Sector, the data distinguishes the following subsectors: single-family houses, multifamily houses, and apartment blocks. Regarding the Service Sector, the data distinguishes the following subsectors: offices, trade, education, health, hotels and restaurants, and other non-residential buildings. Moreover, for each subsector, the data distinguishes the following construction periods: before 1945, 1945-1969, 1970-1979, 1980-1989, 1990-1999, 2000-2010, and 2011-2020. For each building stock subsector and construction period, the data provide information regarding total values at the national level for: - Number of buildings - Number of dwellings - Number of dwellings according to ownership (i.e., owner occupied, rented, social housing) - Number of dwellings according to occupation (i.e., occupied, vacant, secondary houses) - Total constructed area - Total heated area - Total cooled area - Total final energy consumption for space heating and domestic hot water - Total final energy consumption for space cooling Moreover, the following average values for single building characteristics are provided: - Number of floors - Volume-to-surface ratio - Vertical area - Ground area - Window surface - U-values for the different building elements (roof, walls, windows, and floors) - Useful energy demand (ued) differentiating between space heating, domestic hot water, and space cooling - Final energy consumption (fed) differentiating between space heating, domestic hot water, and space cooling Finally, the data provide information about the prevalence of: - Building materials and methodology for the different building elements (roof, walls, windows, and floors) - Different systems used for space heating, domestic hot water, and space cooling The data is provided as a `csv` file (long format with all details and data source) and as an excel file (wide format with separate sheets for each country). Data and a complete description of the available fields can be found at https://github.com/MODERATE-Project/building-stock-analysis/tree/main/T3.2-static-analysis The dataset was obtained by combining information from European and national resources and the review of scientific literature. Data gaps were subsequently filled via statistical modeling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48784/eb21f179-5e4b-42c2-8b53-2e3b14ee4551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48784/eb21f179-5e4b-42c2-8b53-2e3b14ee4551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Publisher:International Institute of Refrigeration (IIR) Authors: JAVERSCHEK, O.; CRAIG, J.; XIAO, A.;This publication highlights important aspects for commercial refrigeration systems, which comprise parallel compression like for example part load conditions and the reverse operation between flash gas bypass and parallel compression. A case study offers and explains possible solutions on basis of a new system design. The system, which comprises novelties with respect to the design, is installed by BITZER at its St. Marys site in Australia. The potential for an improved energy efficiency with parallel compression is shown for a state-of-the-art transcritical CO2 booster system with flash gas bypass, which is installed by BITZER at its Rottenburg site for practical training seminars since autumn 2010.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2018 United StatesPublisher:U.S. Geological Survey Authors: Debra Higley-Feldman;doi: 10.5066/p9blvvq2
The Assessment Unit is the fundamental unit used in the National Assessment Project for the assessment of undiscovered oil and gas resources. The Assessment Unit is defined within the context of the higher-level Total Petroleum System. The Assessment Unit is shown herein as a geographic boundary interpreted, defined, and mapped by the geologist responsible for the province and incorporates a set of known or postulated oil and (or) gas accumulations sharing similar geologic, geographic, and temporal properties within the Total Petroleum System, such as source rock, timing, migration pathways, trapping mechanism, and hydrocarbon type. The Assessment Unit boundary is defined geologically as the limits of the geologic elements that define the Assessment Unit, such as limits of reservoir rock, geologic structures, source rock, and seal lithologies. The only exceptions to this are Assessment Units that border the Federal-State water boundary. In these cases, the Federal-State water boundary forms part of the Assessment Unit boundary.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p9blvvq2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p9blvvq2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 06 Jan 2022Publisher:Dryad Jarvie, Scott; Ingram, Travis; Chapple, David; Hitchmough, Rodney; Nielsen, Stuart; Monks, Joanne M.;Although GPS coordinates for current populations are not included due to the potential threat of poaching, the climate variables for each species are provided. The records for extant gecko and skinks mainly came from the New Zealand's Department of Conervation Herpetofauna Database. After updating the taxonomy and cleaning the data to reflect the taxonomy as at 2019 of 43 geckos speceis recognised across seven genera and 61 species in genus, we then thinned the occurrence records at a 1 km resolution for all species then predicted distributions for those with > 15 records using species distribution models. The climate variables for each species were selected among annual mean temperature (bio1), maximum temperature of the warmest month (bio5), minimum temperature of the coldest month (bio6), mean temperature of driest quarter (bio9), mean temperature of wettest quarter (bio10), and precipitation of the driest quarter (bio17). To reduce multicollinearity in species distribution models for each species, we only retained climate variables with a variable inflation factor < 10. The climate variables were from the CHELSA database (https://chelsa-climate.org/), which can be freely downloaded for current and future scenarios. We also provide MCC tree files for the geckos and skinks. The phylogenetic trees have been constructed for NZ geckos by (Nielsen et al., 2011) and for NZ skinks by (Chapple et al., 2009). For geckos we used a subset of the sequences used by Nielsen et al. (2011) for four genes, two nuclear (RAG 1, PDC) and two mitochondrial (16S, ND2 along with flanking tRNA sequences). For skinks, we used sequences from Chapple et al. (2009) for one nuclear (RAG 1) and five mitochondrial (ND2, ND4, Cyt b, 12S and 16S) genes, and additional ND2 sequences for taxa not included in the original phylogeny (Chapple et al., 2011, p. 201). In total we used sequences for all recognised extant taxa (Hitchmough et al., 2016) as at 2019 except for three species of skink (O. aff. inconspicuum “Okuru”, O. robinsoni, and O. aff. inconspicuum “North Otago”) and two species of gecko (M. “Cupola” and W. “Kaikouras”) for which genetic data were not available. Aim: The primary drivers of species and population extirpations have been habitat loss, overexploitation, and invasive species, but human-mediated climate change is expected to be a major driver in future. To minimise biodiversity loss, conservation managers should identify species vulnerable to climate change and prioritise their protection. Here, we estimate climatic suitability for two speciose taxonomic groups, then use phylogenetic analyses to assess vulnerability to climate change. Location: Aotearoa New Zealand (NZ) Taxa: NZ lizards: diplodactylid geckos and eugongylinae skinks Methods: We built correlative species distribution models (SDMs) for NZ geckos and skinks to estimate climatic suitability under current climate and 2070 future-climate scenarios. We then used Bayesian phylogenetic mixed models (BPMMs) to assess vulnerability for both groups with predictor variables for life history traits (body size and activity phase) and current distribution (elevation and latitude). We explored two scenarios: an unlimited dispersal scenario, where projections track climate, and a no-dispersal scenario, where projections are restricted to areas currently identified as suitable. Results: SDMs projected vulnerability to climate change for most modelled lizards. For species’ ranges projected to decline in climatically suitable areas, average decreases were between 42–45% for geckos and 33–91% for skinks, although area did increase or remain stable for a minority of species. For the no-dispersal scenario, the average decrease for geckos was 37–52% and for skinks was 33–52%. Our BPMMs showed phylogenetic signal in climate change vulnerability for both groups, with elevation increasing vulnerability for geckos, and body size reducing vulnerability for skinks. Main conclusions: NZ lizards showed variable vulnerability to climate change, with most species’ ranges predicted to decrease. For species whose suitable climatic space is projected to disappear from within their current range, managed relocation could be considered to establish populations in regions that will be suitable under future climates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 53visibility views 53 download downloads 15 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 14 Sep 2018Publisher:Mendeley Authors: Britsch, K;Operating measurements from three multi-week test campaigns of the natural circulation FLiBe loop. This system is investigating thermal hydraulic behavior of the molten salt BeF_2 -LiF (33 - 67 mol %). The system behaves in a stable fashion, but shows unusual local transients, such as flow break-down in the riser and thermal jumps at the cooler exit. Heat transfer shows promising trends that FLiBe will behave as a normal heat transfer fluid, as long as salt purity can be maintained. The most recent test shows heat transfer degradation that is likely a result of oxides and impurities. The data archive contains as-built dimensions, Matlab analysis codes, and the raw data files.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/mkbbwtztzy&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/mkbbwtztzy&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Jiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); +3 AuthorsJiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); Guang Shi (5048222); Chengyu Hu (6520775); Shuxiao Wang (1406992);It show point estimates of GHG emissions from pesticide production from 1990 to 2016 at provincial level in China.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Publisher:International Institute of Refrigeration (IIR) Authors: FRANCIS, C.; DAVIES, G.; EVANS, J.; Et Al.;Refrigerated road transport (RRT) vehicles are large users of energy, and reportedly have relatively high leakage of hydrofluorocarbon refrigerant gases, both of which contribute to global warming. The experience obtained from widespread research in leak reduction in stationary refrigeration systems can be instructive in combatting leakage in RRT systems, which has received less focus to date. This paper will take an integrated approach to develop and describe a preliminary model for sustainable RRT systems. It will first review lessons learned about refrigerant leakage in stationary systems in an effort to identify problematic/leak prone components common to transport refrigeration systems. This will then be followed by a survey of recent studies conducted in modelling transport refrigeration systems to advance energy efficiency. Initial results from the model illustrate the need to improve the efficiency of the refrigeration system, together with preventative maintenance of the box structure and refrigeration system as a whole.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Laboratoire des Physique des Oceans Authors: Pierrick Penven;This realistic ocean simulation was run using the Coastal and Regional Ocean COmmunity model (CROCO), based on the Regional Ocean Modelling System (ROMS), which has 60 terrain-following vertical levels. This output (WOES 0.25) is the largest grid of a triply nested configuration: WOES I, WOES II and WOES III, with horizontal resolutions of ~22.5, 7.5 and 2.5 km respectively. Monthly ouputs of the 0.25 degree GLORYS ocean reanalysis is used to force the boundaries of WOES I. The surface forcing for this model is provided by a bulk formulation using daily ERA-Interim atmospheric reanalysis (with a resolution of ~80 km) and using a relative wind approach. The output is saved as daily averages, in monthly netcdf files spanning January 1993 - December 2014. WOES 0.25 spans 55.7degS to 3.18388 degS and 10degW to 102.25degE and covers most of the Southern Subtropical Indian Ocean and a part of the Southern Atlantic Ocean. Model output includes: averaged free-surface (zeta), averaged vertically integrated u-momentum component (ubar), averaged vertically integrated v-momentum component (vbar), averaged u-momentum component (u), averaged v-momentum component (v), averaged potential temperature (temp), averaged salinity (salt), averaged vertical momentum component (w). Numerical computations were performed on the IDRIS (Institut du Developpement et des Ressources en Informatique Scientifique) IBM "ADA" computer facility (under grant A0020107630)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/saeon.egagasini.10000106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/saeon.egagasini.10000106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:GFZ Data Services Authors: Hofmann, Matthias; Liebermann, Ralf;doi: 10.5880/pik.2023.003
The data comprise Climber3alpha+C simulations created by Matthias Hofmann (PIK) as part of the Work Package 2.1 of the COMFORT project as well as the PyFerret scripts (written by Ralf Liebermann and Matthias Hofmann) used for their evaluation. The simulation data consist of snap_*.nc files and history.nc files for ocean, atmosphere and mixed layer depth (hmxl) performed for different idealized scenarios: CONTROL, double and fourfold atmospheric CO2 (CO2X2 and CO2X4), also with additional Greenland freshwater influx (CO2X2_HOSING and CO2X4_HOSING). Furthermore, tracer simulations (CONTROL, CO2X4, CO2X4_HOSING) and simulations with constant scavenging (CO2X4) are also included. The aim was to analyse the simulations regarding climate change-induced changes in marine biogeochemistry and primary production, which will be published under the title "Shutdown of Atlantic overturning circulation could cause persistent increase of primary production in the Pacific" (see Related Work). Simulation data were generated with Climber3alpha+C (Earth system model of intermediate complexity) and evaluated with PyFerret v7.41. CDO was used to aggregate monthly simulation data into annual means.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Publisher:Chalmers University of Technology Authors: Englund, Oskar;Brazil is home to the largest tracts of tropical vegetation in the world, harbouring high levels of biodiversity and carbon. Several biomass maps have been produced for Brazil, using different approaches and methods, and for different purposes. These maps have been used to estimate historic, recent, and future carbon emissions from land use change (LUC). It can be difficult to determine which map to use for what purpose. The implications of using an unsuitable map can be significant, since the maps have large differences—both in terms of total carbon storage and its spatial distribution. This dataset of aboveground carbon was created based on data from existing maps and an up-to-date LULC map. The map reflects current LULC, has high accuracy and resolution (50 m), and a national coverage. It can be a useful alternative for scientific studies and policy initiatives concerned with existing LULC and LUC outside of existing forests, especially at local scales when high resolution is necessary, and/or outside the Amazon biome. Map unit: tonnes of aboveground carbon per hectare. This dataset of aboveground carbon was created based on data from existing maps and an up-to-date LULC map. The map reflects current LULC, has high accuracy and resolution (50 m), and a national coverage. It can be a useful alternative for scientific studies and policy initiatives concerned with existing LULC and LUC outside of existing forests, especially at local scales when high resolution is necessary, and/or outside the Amazon biome. Map unit: tonnes of aboveground carbon per hectare. Data är baserade på befintliga kartor och en aktuell LULC-karta (änding av markanvändning) för bildandet av ovanjordiskt kol i Brasilien. Kartan speglar nuvarande LULC, har hög noggrannhet och upplösning (50 m) och en nationell täckning. Mer information på den engelska katalogsidan: https://snd.gu.se/en/catalogue/study/ecds0244 This dataset of aboveground carbon was created based on data from existing maps and an up-to-date LULC map. The map reflects current LULC, has high accuracy and resolution (50 m), and a national coverage. It can be a useful alternative for scientific studies and policy initiatives concerned with existing LULC and LUC outside of existing forests, especially at local scales when high resolution is necessary, and/or outside the Amazon biome. Map unit: tonnes of aboveground carbon per hectare.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5879/ecds/2017-09-12.1/1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5879/ecds/2017-09-12.1/1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Eurac Research - Institute for Renewable Energy Authors: Pezzutto, Simon;The HEU MODERATE Building Stock Data provides information regarding the building stock for all EU27 member states at the national level (i.e., NUTS 0) considering 2020 as the reference year. Regarding the Service Sector, the data distinguishes the following subsectors: single-family houses, multifamily houses, and apartment blocks. Regarding the Service Sector, the data distinguishes the following subsectors: offices, trade, education, health, hotels and restaurants, and other non-residential buildings. Moreover, for each subsector, the data distinguishes the following construction periods: before 1945, 1945-1969, 1970-1979, 1980-1989, 1990-1999, 2000-2010, and 2011-2020. For each building stock subsector and construction period, the data provide information regarding total values at the national level for: - Number of buildings - Number of dwellings - Number of dwellings according to ownership (i.e., owner occupied, rented, social housing) - Number of dwellings according to occupation (i.e., occupied, vacant, secondary houses) - Total constructed area - Total heated area - Total cooled area - Total final energy consumption for space heating and domestic hot water - Total final energy consumption for space cooling Moreover, the following average values for single building characteristics are provided: - Number of floors - Volume-to-surface ratio - Vertical area - Ground area - Window surface - U-values for the different building elements (roof, walls, windows, and floors) - Useful energy demand (ued) differentiating between space heating, domestic hot water, and space cooling - Final energy consumption (fed) differentiating between space heating, domestic hot water, and space cooling Finally, the data provide information about the prevalence of: - Building materials and methodology for the different building elements (roof, walls, windows, and floors) - Different systems used for space heating, domestic hot water, and space cooling The data is provided as a `csv` file (long format with all details and data source) and as an excel file (wide format with separate sheets for each country). Data and a complete description of the available fields can be found at https://github.com/MODERATE-Project/building-stock-analysis/tree/main/T3.2-static-analysis The dataset was obtained by combining information from European and national resources and the review of scientific literature. Data gaps were subsequently filled via statistical modeling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48784/eb21f179-5e4b-42c2-8b53-2e3b14ee4551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48784/eb21f179-5e4b-42c2-8b53-2e3b14ee4551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Publisher:International Institute of Refrigeration (IIR) Authors: JAVERSCHEK, O.; CRAIG, J.; XIAO, A.;This publication highlights important aspects for commercial refrigeration systems, which comprise parallel compression like for example part load conditions and the reverse operation between flash gas bypass and parallel compression. A case study offers and explains possible solutions on basis of a new system design. The system, which comprises novelties with respect to the design, is installed by BITZER at its St. Marys site in Australia. The potential for an improved energy efficiency with parallel compression is shown for a state-of-the-art transcritical CO2 booster system with flash gas bypass, which is installed by BITZER at its Rottenburg site for practical training seminars since autumn 2010.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu