- home
- Search
- Energy Research
- 2021-2025
- Open Access
- Embargo
- SDSN Greece
- Energy Research
- 2021-2025
- Open Access
- Embargo
- SDSN Greece
Research data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Bukoski, Jacob; Cook-Patton, Susan C.; Melikov, Cyril; Ban, Hongyi; Chen, Jessica Liu; Goldman, Elizabeth D.; Harris, Nancy L.; Potts, Matthew D.;This project systematically reviewed the literature for measurements of aboveground carbon stocks in monoculture plantation forests. The data compiled here are for monoculture (single-species) plantation forests, which are a subset of a broader review to identify empirical measurements of carbon stocks across all forest types. The database is structured similarly to that of the ForC (https://forc-db.github.io/) and GROA databases (https://github.com/forc-db/GROA). When using these data, please cite: Bukoski, J.J., Cook-Patton, S.C., Melikov, C., Ban, H., Liu, J.C., Harris, N., Goldman, E., and Potts, M.D. 2022. Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests. Nature Communications 13(4206). doi: 10.1038/s41467-022-31380-7 The code for all analyses in Bukoski et al., 2022 (paper associated with this dataset) is available at https://github.com/jbukoski/GPFC (doi: 10.5281/zenodo.6588710).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6555216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6555216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:SciELO journals Authors: Marcos A. Lins (10383850); Ricardo L. R. Steinmetz (10383853); André C. do Amaral (10383856); Airton Kunz (6097547);ABSTRACT The progression of the organic loading rate (OLR) up to a certain limit increases biogas production. The limit and operation range vary according to the configuration of the reactor and are associated with other variables that generate different results with respect to biogas yield (BY) and biogas productiveness (BP). The aim of this study was to investigate the effect of the OLR on the BY and BP from swine manure in continuous stirred tank reactors (CSTRs) and upflow anaerobic sludge blanket reactors (UASBs). In the assay with the CSTR, the best operational condition was at an OLR of 0.7 gVS add L−1 reactor d−1 and a hydraulic retention time (HRT) of 18 days. At this operational condition, 0.8 LN biogas gVS add−1 of BY and 0.6 LN biogas L−1 reactor d−1 of BP were obtained. In the assay with the UASB, the best operational condition was at an OLR of 2.2 gVS add L−1 reactor d−1 and an HRT of two days, and 0.7 LN biogas gvs add−1 of BY and 1.6 LN biogas L−1 reactor d−1 of BP were obtained. The results demonstrate the effects of OLR changes on the biogas production in the CSTR and UASB, avoiding the underutilization or overloading of such equipment and enabling collaboration in projects for power generation from biogas in swine farms.
figshare arrow_drop_down Smithsonian figshareDataset . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14279752.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14279752.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Pfl��ger, Mika; G��tschow, Johannes;{"references": ["UNSD Demographic Statistics, available at http://data.un.org", "The World Bank GDP data, available at https://data.worldbank.org/", "UNFCCC: Greenhouse Gas Inventory Data, available at https://unfccc.int/process/transparency-and-reporting/greenhouse-gas-data/what-is-greenhouse-gas-data"]} Dataset containing all greenhouse gas emissions data submitted by countries under climate change convention (including CRF data) as published by the UNFCCC secretariat at 2021-12-03. The dataset is also available via datalad. To obtain the dataset with datalad, see the instructions at https://github.com/mikapfl/unfccc_di_data .
ZENODO arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5752337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 215visibility views 215 download downloads 37 Powered bymore_vert ZENODO arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5752337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Funded by:[no funder available]Authors: Paprotny, Dominik;The HANZE dataset covers riverine, pluvial, coastal and compound floods that have occurred in 42 European countries. It contains: 2521 historical floods with impact data (1870-2020); 237 further historical floods with significant impacts, but without precise impact data (1950-2020) Nearly 15,000 modelled floods with a potential to cause significant impacts, classified by actual historical occurrence or non-occurrence impacts (1950-2020). Historical floods and the classification of modelled floods was completed by extensive data-collection from more than 900 sources ranging from news reports through government databases to scientific papers. Impact data collected or modelled include area inundated, fatalities, persons affected or economic loss. Economic losses were inflation- and exchange-rate adjusted to 2020 value of the euro. The historical catalogue (lsit A) also includes losses in the original currencies and price levels. The spatial footprint of affected areas is consistently recorded using more than 1400 subnational units corresponding, with minor exceptions, to the European Union’s Nomenclature of Territorial Units for Statistics (NUTS), level 3. Apart from the possibility to download the data, the database can be viewed, filtered and visualized online: https://naturalhazards.eu. The dataset contains the following files (CSV comma-delimited, UTF8, and ESRI shapefiles in zipped folders): HANZE_historical_floods_catalogue_listA.csv - historical floods with impact data (1870-2020) HANZE_historical_floods_catalogue_listB.csv - historical floods without impact data (1950-2020) HANZE_potential_flood_catalogue_all.csv - modelled potential floods (1950-2020) HANZE_list_of_references.csv - List of all references used in the catalogues HANZE_model_completness_analysis.csv - Comparison between modelled and reported footprints of historical floods Regions_v2010_simplified.zip - Map of subnational regions (v2010) Regions_v2021_simplified.zip - Map of subnational regions (regions v2021) v1.1: errors in two records in "HANZE_historical_floods_catalogue_listB.csv" (wrong country code in event ID 8227 and wrong start date in event ID 8237) were corrected. This work was supported by the German Research Foundation (DFG) through project "Decomposition of flood losses by environmental and economic drivers" (FloodDrivers), project no. 449175973
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10949631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10949631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:SciELO journals Authors: Isabel J. Bejarano-Alva (10435808); Gisele A. M. Hirata (10435811); Klicia A. Sampaio (10435814); Eduardo A. C. Batista (10435817); +1 AuthorsIsabel J. Bejarano-Alva (10435808); Gisele A. M. Hirata (10435811); Klicia A. Sampaio (10435814); Eduardo A. C. Batista (10435817); Antonio J. A. Meirelles (9237983);Biodiesel, known as a mixture of fatty acid ethyl/methyl esters, is seen as an alternative, ecofriendly, biodegradable and renewable non-fossil fuel. The use of heterogeneous catalysts for biodiesel synthesis can solve several problems associated with the homogeneous alkaline catalyzed-transesterification. Therefore, this work reports the evaluation of the commercial resin Amberlyst A26OH, a strong anion exchange resin, as a heterogeneous catalyst for the batch transesterification of refined palm olein with ethanol. It was studied the effects of the main operational parameters, considering the molar ratio of the reaction mixture (MRRM), namely the molar ratio of ethanol to olein taking into account only the ethanol added to the reaction system, and the total molar ratio (TMR), in this case considering also the amount of ethanol carried by the resin after its pretreatment. It was determined an optimal range of operational conditions by response surface methodology, guaranteeing conversion to ethyl esters higher than 96% with a catalyst amount corresponding to a range from 10.4 to 11.4% of the oil quantity, a temperature within the range of 55 to 60 ºC and a MRRM within the range from 3.5:1 to 6.0:1.
figshare arrow_drop_down Smithsonian figshareDataset . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14303897.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14303897.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Shiogama, Hideo; Abe, Manabu; Tatebe, Hiroaki;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.MIROC.MIROC6.ssp119' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MIROC6 climate model, released in 2017, includes the following components: aerosol: SPRINTARS6.0, atmos: CCSR AGCM (T85; 256 x 128 longitude/latitude; 81 levels; top level 0.004 hPa), land: MATSIRO6.0, ocean: COCO4.9 (tripolar primarily 1deg; 360 x 256 longitude/latitude; 63 levels; top grid cell 0-2 m), seaIce: COCO4.9. The model was run by the JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan), NIES (National Institute for Environmental Studies, Ibaraki 305-8506, Japan), and R-CCS (RIKEN Center for Computational Science, Hyogo 650-0047, Japan) (MIROC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spmimis119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spmimis119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Marlis Wullenkord (8659635);These are two sets of data that I collected in 2018 and 2019 in Germany. They assess basic psychological need satisfaction, various indicators of pro-environmentalism, and self-protective strategies people commonly use when facing the threat of climate change. The corresponding study (Wullenkord, submitted) investigated relations between basic psychological need satisfaction and climate-relevant defensive self-protection.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14485155.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14485155.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:SciELO journals Authors: Ana Paula Staben Pruchniak (10423459); Graziella dos Santos Portes Silva (10423462); Liliane Schier de Lima (10423465); Sueli Pércio Quináia (4986440);Abstract Activated carbon is commonly used as a material for contaminant-adsorption processes in aqueous systems. However, its use is more restricted to charcoal than to coal, for the most part, in view of the fact of the higher cost (~ 40%) if the mineral is a fossil fuel which needs to be extracted from the earth by mining. For this reason, the peach stone that comes from alimentary industrial tailings can be a good choice for the separation of pollutants from aqueous suspensions and other soluble substances. The purpose of this research was the development of a low-cost filter, using stones to remove atrazine from water. Appraisal and characterization studies were performed along with batch experiments to investigate dosing effects of the activated carbon, atrazine concentration, contact time, and adsorption pH on removal procedures. From the results of the experiment, an excellent removal of the analyte in question was observed under conditions that can be considered as close as possible to the environment, such as pH = 6.5, room temperature and 10 minutes of agitation time, always choosing the best alternative with the lowest cost of energy and time. Batch system application has been recommended as versatile for utilization in seasonal problems such as pesticide contamination.
figshare arrow_drop_down Smithsonian figshareDataset . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14290432&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14290432&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Zweifel, Roman; Sterck, Frank J; Braun, Sabine; Buchmann, Nina; Eugster, Werner; Gessler, Arthur; Haeni, Matthias; Peters, Richard L; Walthert, Lorenz; Wilhelm, Micah; Ziemínska, Kasia; Etzold, Sophia;The timing of diel stem growth of mature forest trees is still largely unknown, as empirical data with high temporal resolution have not been available so far. Consequently, the effects of day-night conditions on tree growth remained uncertain. Here we present the first comprehensive field study of hourly-resolved radial stem growth of seven temperate tree species, based on 57 million underlying data points over a period of up to 8 years. We show that trees grow mainly at night, with a peak after midnight, when the vapour pressure deficit (VPD) is among the lowest. A high VPD strictly limits radial stem growth and allows little growth during daylight hours, except in the early morning. Surprisingly, trees also grow in moderately dry soil when the VPD is low. Species-specific differences in diel growth dynamics show that species able to grow earlier during the night are associated with the highest number of hours with growth per year and the largest annual growth increment. We conclude that species with the ability to overcome daily water deficits faster have greater growth potential. Furthermore, we conclude that growth is more sensitive than carbon uptake to dry air, as growth stops before stomata are known to close.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Metsaranta, Juha; Mamet, Steven; Maillet, Jay; Barr, Alan;These datasets are associated with the following paper: Metsaranta, J.M., Mamet, S.D., Maillett, J., Barr, A.G. (2021). Comparison of tree-ring and eddy covariance derived annual ecosystem production estimates for jack pine and trembling aspen forests in Saskatchewan, Canada. Agricultural and Forest Meteorology. There are two files: (1) CBMOutput.zip. This contains the hybrid biometric modelled ecosystem C stock and flux estimates. (2) StandReconstructionData.zip. This contains the field measurement data and the tree level biomass and wood volume data for the Stand Reconstruction plots used to develop the hybrid biometric modelled estimates. The data are formatted as .csv files, and an associated Microsoft Excel spreadsheet explains the data columns and provides information on the associated units of measure.
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4716568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 21 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4716568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Bukoski, Jacob; Cook-Patton, Susan C.; Melikov, Cyril; Ban, Hongyi; Chen, Jessica Liu; Goldman, Elizabeth D.; Harris, Nancy L.; Potts, Matthew D.;This project systematically reviewed the literature for measurements of aboveground carbon stocks in monoculture plantation forests. The data compiled here are for monoculture (single-species) plantation forests, which are a subset of a broader review to identify empirical measurements of carbon stocks across all forest types. The database is structured similarly to that of the ForC (https://forc-db.github.io/) and GROA databases (https://github.com/forc-db/GROA). When using these data, please cite: Bukoski, J.J., Cook-Patton, S.C., Melikov, C., Ban, H., Liu, J.C., Harris, N., Goldman, E., and Potts, M.D. 2022. Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests. Nature Communications 13(4206). doi: 10.1038/s41467-022-31380-7 The code for all analyses in Bukoski et al., 2022 (paper associated with this dataset) is available at https://github.com/jbukoski/GPFC (doi: 10.5281/zenodo.6588710).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6555216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6555216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:SciELO journals Authors: Marcos A. Lins (10383850); Ricardo L. R. Steinmetz (10383853); André C. do Amaral (10383856); Airton Kunz (6097547);ABSTRACT The progression of the organic loading rate (OLR) up to a certain limit increases biogas production. The limit and operation range vary according to the configuration of the reactor and are associated with other variables that generate different results with respect to biogas yield (BY) and biogas productiveness (BP). The aim of this study was to investigate the effect of the OLR on the BY and BP from swine manure in continuous stirred tank reactors (CSTRs) and upflow anaerobic sludge blanket reactors (UASBs). In the assay with the CSTR, the best operational condition was at an OLR of 0.7 gVS add L−1 reactor d−1 and a hydraulic retention time (HRT) of 18 days. At this operational condition, 0.8 LN biogas gVS add−1 of BY and 0.6 LN biogas L−1 reactor d−1 of BP were obtained. In the assay with the UASB, the best operational condition was at an OLR of 2.2 gVS add L−1 reactor d−1 and an HRT of two days, and 0.7 LN biogas gvs add−1 of BY and 1.6 LN biogas L−1 reactor d−1 of BP were obtained. The results demonstrate the effects of OLR changes on the biogas production in the CSTR and UASB, avoiding the underutilization or overloading of such equipment and enabling collaboration in projects for power generation from biogas in swine farms.
figshare arrow_drop_down Smithsonian figshareDataset . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14279752.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14279752.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Pfl��ger, Mika; G��tschow, Johannes;{"references": ["UNSD Demographic Statistics, available at http://data.un.org", "The World Bank GDP data, available at https://data.worldbank.org/", "UNFCCC: Greenhouse Gas Inventory Data, available at https://unfccc.int/process/transparency-and-reporting/greenhouse-gas-data/what-is-greenhouse-gas-data"]} Dataset containing all greenhouse gas emissions data submitted by countries under climate change convention (including CRF data) as published by the UNFCCC secretariat at 2021-12-03. The dataset is also available via datalad. To obtain the dataset with datalad, see the instructions at https://github.com/mikapfl/unfccc_di_data .
ZENODO arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5752337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 215visibility views 215 download downloads 37 Powered bymore_vert ZENODO arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5752337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Funded by:[no funder available]Authors: Paprotny, Dominik;The HANZE dataset covers riverine, pluvial, coastal and compound floods that have occurred in 42 European countries. It contains: 2521 historical floods with impact data (1870-2020); 237 further historical floods with significant impacts, but without precise impact data (1950-2020) Nearly 15,000 modelled floods with a potential to cause significant impacts, classified by actual historical occurrence or non-occurrence impacts (1950-2020). Historical floods and the classification of modelled floods was completed by extensive data-collection from more than 900 sources ranging from news reports through government databases to scientific papers. Impact data collected or modelled include area inundated, fatalities, persons affected or economic loss. Economic losses were inflation- and exchange-rate adjusted to 2020 value of the euro. The historical catalogue (lsit A) also includes losses in the original currencies and price levels. The spatial footprint of affected areas is consistently recorded using more than 1400 subnational units corresponding, with minor exceptions, to the European Union’s Nomenclature of Territorial Units for Statistics (NUTS), level 3. Apart from the possibility to download the data, the database can be viewed, filtered and visualized online: https://naturalhazards.eu. The dataset contains the following files (CSV comma-delimited, UTF8, and ESRI shapefiles in zipped folders): HANZE_historical_floods_catalogue_listA.csv - historical floods with impact data (1870-2020) HANZE_historical_floods_catalogue_listB.csv - historical floods without impact data (1950-2020) HANZE_potential_flood_catalogue_all.csv - modelled potential floods (1950-2020) HANZE_list_of_references.csv - List of all references used in the catalogues HANZE_model_completness_analysis.csv - Comparison between modelled and reported footprints of historical floods Regions_v2010_simplified.zip - Map of subnational regions (v2010) Regions_v2021_simplified.zip - Map of subnational regions (regions v2021) v1.1: errors in two records in "HANZE_historical_floods_catalogue_listB.csv" (wrong country code in event ID 8227 and wrong start date in event ID 8237) were corrected. This work was supported by the German Research Foundation (DFG) through project "Decomposition of flood losses by environmental and economic drivers" (FloodDrivers), project no. 449175973
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10949631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10949631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:SciELO journals Authors: Isabel J. Bejarano-Alva (10435808); Gisele A. M. Hirata (10435811); Klicia A. Sampaio (10435814); Eduardo A. C. Batista (10435817); +1 AuthorsIsabel J. Bejarano-Alva (10435808); Gisele A. M. Hirata (10435811); Klicia A. Sampaio (10435814); Eduardo A. C. Batista (10435817); Antonio J. A. Meirelles (9237983);Biodiesel, known as a mixture of fatty acid ethyl/methyl esters, is seen as an alternative, ecofriendly, biodegradable and renewable non-fossil fuel. The use of heterogeneous catalysts for biodiesel synthesis can solve several problems associated with the homogeneous alkaline catalyzed-transesterification. Therefore, this work reports the evaluation of the commercial resin Amberlyst A26OH, a strong anion exchange resin, as a heterogeneous catalyst for the batch transesterification of refined palm olein with ethanol. It was studied the effects of the main operational parameters, considering the molar ratio of the reaction mixture (MRRM), namely the molar ratio of ethanol to olein taking into account only the ethanol added to the reaction system, and the total molar ratio (TMR), in this case considering also the amount of ethanol carried by the resin after its pretreatment. It was determined an optimal range of operational conditions by response surface methodology, guaranteeing conversion to ethyl esters higher than 96% with a catalyst amount corresponding to a range from 10.4 to 11.4% of the oil quantity, a temperature within the range of 55 to 60 ºC and a MRRM within the range from 3.5:1 to 6.0:1.
figshare arrow_drop_down Smithsonian figshareDataset . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14303897.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14303897.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Shiogama, Hideo; Abe, Manabu; Tatebe, Hiroaki;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.MIROC.MIROC6.ssp119' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MIROC6 climate model, released in 2017, includes the following components: aerosol: SPRINTARS6.0, atmos: CCSR AGCM (T85; 256 x 128 longitude/latitude; 81 levels; top level 0.004 hPa), land: MATSIRO6.0, ocean: COCO4.9 (tripolar primarily 1deg; 360 x 256 longitude/latitude; 63 levels; top grid cell 0-2 m), seaIce: COCO4.9. The model was run by the JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan), NIES (National Institute for Environmental Studies, Ibaraki 305-8506, Japan), and R-CCS (RIKEN Center for Computational Science, Hyogo 650-0047, Japan) (MIROC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spmimis119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spmimis119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Marlis Wullenkord (8659635);These are two sets of data that I collected in 2018 and 2019 in Germany. They assess basic psychological need satisfaction, various indicators of pro-environmentalism, and self-protective strategies people commonly use when facing the threat of climate change. The corresponding study (Wullenkord, submitted) investigated relations between basic psychological need satisfaction and climate-relevant defensive self-protection.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14485155.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14485155.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:SciELO journals Authors: Ana Paula Staben Pruchniak (10423459); Graziella dos Santos Portes Silva (10423462); Liliane Schier de Lima (10423465); Sueli Pércio Quináia (4986440);Abstract Activated carbon is commonly used as a material for contaminant-adsorption processes in aqueous systems. However, its use is more restricted to charcoal than to coal, for the most part, in view of the fact of the higher cost (~ 40%) if the mineral is a fossil fuel which needs to be extracted from the earth by mining. For this reason, the peach stone that comes from alimentary industrial tailings can be a good choice for the separation of pollutants from aqueous suspensions and other soluble substances. The purpose of this research was the development of a low-cost filter, using stones to remove atrazine from water. Appraisal and characterization studies were performed along with batch experiments to investigate dosing effects of the activated carbon, atrazine concentration, contact time, and adsorption pH on removal procedures. From the results of the experiment, an excellent removal of the analyte in question was observed under conditions that can be considered as close as possible to the environment, such as pH = 6.5, room temperature and 10 minutes of agitation time, always choosing the best alternative with the lowest cost of energy and time. Batch system application has been recommended as versatile for utilization in seasonal problems such as pesticide contamination.
figshare arrow_drop_down Smithsonian figshareDataset . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14290432&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14290432&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Zweifel, Roman; Sterck, Frank J; Braun, Sabine; Buchmann, Nina; Eugster, Werner; Gessler, Arthur; Haeni, Matthias; Peters, Richard L; Walthert, Lorenz; Wilhelm, Micah; Ziemínska, Kasia; Etzold, Sophia;The timing of diel stem growth of mature forest trees is still largely unknown, as empirical data with high temporal resolution have not been available so far. Consequently, the effects of day-night conditions on tree growth remained uncertain. Here we present the first comprehensive field study of hourly-resolved radial stem growth of seven temperate tree species, based on 57 million underlying data points over a period of up to 8 years. We show that trees grow mainly at night, with a peak after midnight, when the vapour pressure deficit (VPD) is among the lowest. A high VPD strictly limits radial stem growth and allows little growth during daylight hours, except in the early morning. Surprisingly, trees also grow in moderately dry soil when the VPD is low. Species-specific differences in diel growth dynamics show that species able to grow earlier during the night are associated with the highest number of hours with growth per year and the largest annual growth increment. We conclude that species with the ability to overcome daily water deficits faster have greater growth potential. Furthermore, we conclude that growth is more sensitive than carbon uptake to dry air, as growth stops before stomata are known to close.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Metsaranta, Juha; Mamet, Steven; Maillet, Jay; Barr, Alan;These datasets are associated with the following paper: Metsaranta, J.M., Mamet, S.D., Maillett, J., Barr, A.G. (2021). Comparison of tree-ring and eddy covariance derived annual ecosystem production estimates for jack pine and trembling aspen forests in Saskatchewan, Canada. Agricultural and Forest Meteorology. There are two files: (1) CBMOutput.zip. This contains the hybrid biometric modelled ecosystem C stock and flux estimates. (2) StandReconstructionData.zip. This contains the field measurement data and the tree level biomass and wood volume data for the Stand Reconstruction plots used to develop the hybrid biometric modelled estimates. The data are formatted as .csv files, and an associated Microsoft Excel spreadsheet explains the data columns and provides information on the associated units of measure.
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4716568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 21 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4716568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu