- home
- Search
- Energy Research
- IT
- AU
- FI
- CN
- English
- Energy Research
- IT
- AU
- FI
- CN
- English
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors:Neubauer, David;
Neubauer, David
Neubauer, David in OpenAIREFerrachat, Sylvaine;
Siegenthaler-Le Drian, Colombe; Stoll, Jens; +18 AuthorsFerrachat, Sylvaine
Ferrachat, Sylvaine in OpenAIRENeubauer, David;
Neubauer, David
Neubauer, David in OpenAIREFerrachat, Sylvaine;
Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia;Ferrachat, Sylvaine
Ferrachat, Sylvaine in OpenAIRETegen, Ina;
Tegen, Ina
Tegen, Ina in OpenAIREWieners, Karl-Hermann;
Wieners, Karl-Hermann
Wieners, Karl-Hermann in OpenAIREMauritsen, Thorsten;
Stemmler, Irene; Barthel, Stefan; Bey, Isabelle;Mauritsen, Thorsten
Mauritsen, Thorsten in OpenAIREDaskalakis, Nikos;
Heinold, Bernd;Daskalakis, Nikos
Daskalakis, Nikos in OpenAIREKokkola, Harri;
Kokkola, Harri
Kokkola, Harri in OpenAIREPartridge, Daniel;
Rast, Sebastian; Schmidt, Hauke;Partridge, Daniel
Partridge, Daniel in OpenAIRESchutgens, Nick;
Stanelle, Tanja;Schutgens, Nick
Schutgens, Nick in OpenAIREStier, Philip;
Stier, Philip
Stier, Philip in OpenAIREWatson-Parris, Duncan;
Watson-Parris, Duncan
Watson-Parris, Duncan in OpenAIRELohmann, Ulrike;
Lohmann, Ulrike
Lohmann, Ulrike in OpenAIREProject: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.AerChemMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HAM climate model, released in 2017, includes the following components: aerosol: HAM2.3, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), atmosChem: sulfur chemistry (unnamed), land: JSBACH 3.20, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo This dataset contains data and codes required to replicate the results in the article "Joint assessment of generation adequacy with intermittent renewables and hydro storage: A case study in Finland" to be published in Electric Power Systems Research. See the enclosed Readme for further instructions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4582439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 73visibility views 73 download downloads 43 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4582439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors:Yu, Shujie;
Bai, Yan; Xianqiang He; Gong, Fang; +1 AuthorsYu, Shujie
Yu, Shujie in OpenAIREChlorophyll-a concentration (Chla) is recognized as an essential climate variable and is one of the primary parameters of ocean-color satellite products. Ocean-color missions have accumulated continuous Chla data for over two decades since the launch of SeaWiFS in 1997. However, the on-orbit life of a single mission is about five to ten years. To build a dataset with a time span long enough to serve as a climate data record (CDR), it is necessary to merge the Chla data from multiple sensors. The European Space Agency has developed two sets of merged Chla products, namely GlobColour and OC-CCI, which have been widely used. Nonetheless, issues remain in the long-term trend analysis of these two datasets because the intermission differences in Chla have not been completely corrected. To obtain more accurate Chla trends in the global and various oceans, we produced a new dataset by merging Chla records from the Sea-viewing Wide Field-of-view Sensor, Medium-spectral Resolution Imaging Spectrometer, Moderate Resolution Imaging Spectroradiometer, Visible Infrared Imaging Radiometer Suite, and Ocean and Land Colour Instrument with intermission differences corrected in this work. The fitness of the dataset as a CDR was validated by using in situ Chla and comparing the trend estimates to the multi-annual variability of different satellite Chla records. We are sorry that the data for November 2002 was missing in this upload, and we will fix it in the very next version. If you need it, please kindly contact us at yushujie@sio.org.cn.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7092220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7092220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 31 Aug 2022Publisher:Dryad Authors:Chen, Bingzhang;
Montagnes, David; Wang, Qing; Liu, Hongbin; +1 AuthorsChen, Bingzhang
Chen, Bingzhang in OpenAIREChen, Bingzhang;
Montagnes, David; Wang, Qing; Liu, Hongbin; Menden-Deuer, Susanne;Chen, Bingzhang
Chen, Bingzhang in OpenAIREConventional analyses suggest the metabolism of heterotrophs is thermally more sensitive than that of autotrophs, implying that warming leads to pronounced trophodynamic imbalances. However, these analyses inappropriately combine within- and across-taxa trends. We present a novel mathematic framework to separate these, revealing that the higher temperature sensitivity of heterotrophs is mainly caused by within-taxa responses which account for 92% of the difference between autotrophic and heterotrophic protists. This dataset contains both the datasets and R codes of per capita growth rates of autotrophic and heterotrophic protists as well as heterotrophic bacteria and insects. The datasets of per capita growth rates against temperature were compiled from the literature. Experimental data were included if they met the following criteria: at least 3 data points with positive growth rate (µ) and at least 2 unique temperatures at which positive µ were measured. To calculate apparent activation energy, we also removed data points with nonpositive µ and those with temperatures above the optimal growth temperature (defined as the temperature corresponding to the maximal µ). We use the free software R (version 4.2.0) with R packages (foreach, nlme, plyr, dplyr) to analyse these datasets. R codes are also provided.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.dr7sqvb1v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.dr7sqvb1v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors:Capozzi, Vincenzo;
Serrapica, Francesco; Rocco, Armando;Capozzi, Vincenzo
Capozzi, Vincenzo in OpenAIREAnnella, Clizia;
+1 AuthorsAnnella, Clizia
Annella, Clizia in OpenAIRECapozzi, Vincenzo;
Serrapica, Francesco; Rocco, Armando;Capozzi, Vincenzo
Capozzi, Vincenzo in OpenAIREAnnella, Clizia;
Annella, Clizia
Annella, Clizia in OpenAIREBudillon, Giorgio;
Budillon, Giorgio
Budillon, Giorgio in OpenAIREThis database includes a large collection of quality-controlled and homogenized historical snow records measured in the 1951-2001 period in the Central and Southern Apennine Mountains (Italy). Such data have been manually digitized from the Hydrological Yearbooks of the Italian National Hydrological and Mareographic Service (hereafter, NHMS), the institution that managed the hydro-meteorological data collection in Italy from 1917 to 2002. More specifically, the rescued dataset includes the monthly observations of three different variables: · The snow cover duration (SCD), which is defined as total number of days in a given month with snow depth on the ground >=1 cm. This variable is available for 110 stations between 288 and 1430 m above the sea level (ASL). · The number of days with snowfall (NDS), which is total number of days in a given month on which the accumulated snowfall (i.e. the amount of fresh snow with respect to the previous observations) is at least 1 cm. This variable is available for 114 stations between 288 and 1430 m ASL. · The height of new snow (HN), which is defined as the monthly amount of fresh snow (expressed in cm). The monthly value is intended as the sum of daily HN data observed in a determined month. This variable is available for 120 stations between 288 and 1750 m ASL. Note that for HN variable, the data availability is restricted to the period 1971-2001. The considered dataset has been subjected to an accurate quality control consisting of several statistical tests: the gross error test, which flags the data that are above or below acceptable physical limits, the consistency test, which involves an inter-variable check, and the tolerance test, which is focused on the outlier detection. In addition, the homogeneity of the rescued time series has been checked using Climatol method (Guijarro, 2018). The latter is based on the Standard Normal Homogeneity Test (Alexandersson, 1986) for the identification of the breaks and on a linear regression approach for the adjustments (Easterling and Peterson, 1995). Climatol has been also employed for the filling of missing values. The database is structured into three different folders (one for each variable). In a determined folder, the user finds two files, one containing the main information regarding the available stations (code, station name, latitude and longitude (in decimal degrees) and altitude ASL (in m)), the other one the monthly time series for the considered variable. Note that the original data sources of this database, the Hydrological Yearbooks of the NHMS, are freely accessible in printed version (i.e. as scanned images in portable document format) through the Italian Institute for Environmental Protection and Research (ISPRA) website (http://www.bio.isprambiente.it/annalipdf). Additional information about the data rescue processing can be found in the preprint “Historical snowfall measurements in the Central and Southern Apennine Mountains: climatology, variability and trend”, open for discussion in The Cryosphere journal (https://doi.org/10.5194/egusphere-2024-1056). References Alexandersson, H.: A homogeneity test applied to precipitation data, J. Climatol., 6, 661–675, 1986. Easterling, D. R. and Peterson, T.C.: A new method for detecting and adjusting for undocumented discontinuities in climatological time series, International Journal Climatol.,15, 369–377, https://doi.org/10.1002/joc.3370150403, 1995. Guijarro, J. A.: Homogenization of climatic series with Climatol, Climatol manual, https://www.climatol.eu/homog_climatolen.pdf (last access: 15 February 2024), 2018.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12699506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12699506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors:Garner, Gregory;
Garner, Gregory
Garner, Gregory in OpenAIREHermans, Tim H.J.;
Hermans, Tim H.J.
Hermans, Tim H.J. in OpenAIREKopp, Robert;
Kopp, Robert
Kopp, Robert in OpenAIRESlangen, Aimée;
+22 AuthorsSlangen, Aimée
Slangen, Aimée in OpenAIREGarner, Gregory;
Garner, Gregory
Garner, Gregory in OpenAIREHermans, Tim H.J.;
Hermans, Tim H.J.
Hermans, Tim H.J. in OpenAIREKopp, Robert;
Kopp, Robert
Kopp, Robert in OpenAIRESlangen, Aimée;
Edwards, Tasmin;Slangen, Aimée
Slangen, Aimée in OpenAIRELevermann, Anders;
Levermann, Anders
Levermann, Anders in OpenAIRENowicki, Sophie;
Nowicki, Sophie
Nowicki, Sophie in OpenAIREPalmer, Matthew D.;
Palmer, Matthew D.
Palmer, Matthew D. in OpenAIRESmith, Chris;
Smith, Chris
Smith, Chris in OpenAIREFox-Kemper, Baylor;
Hewitt, Helene;Fox-Kemper, Baylor
Fox-Kemper, Baylor in OpenAIREXiao, Cunde;
Aðalgeirsdóttir, Guðfinna;Xiao, Cunde
Xiao, Cunde in OpenAIREDrijfhout, Sybren;
Drijfhout, Sybren
Drijfhout, Sybren in OpenAIREGolledge, Nicholas;
Hemer, Marc;Golledge, Nicholas
Golledge, Nicholas in OpenAIREKrinner, Gerhard;
Mix, Alan;Krinner, Gerhard
Krinner, Gerhard in OpenAIRENotz, Dirk;
Nurhati, Intan;Notz, Dirk
Notz, Dirk in OpenAIRERuiz, Lucas;
Sallée, Jean-Baptiste; Yu, Yongqiang; Hua, L.; Palmer, Tamzin;Ruiz, Lucas
Ruiz, Lucas in OpenAIREPearson, Brodie;
Pearson, Brodie
Pearson, Brodie in OpenAIREProject: IPCC Data Distribution Centre : Supplementary data sets for the Sixth Assessment Report - For the Sixth Assessment Report of the IPCC (AR6) input/source and intermediate datasets underlying the AR6 were collected and long-term archived. This project compliments CMIP6 data subset and snapshot analyzed for the WGI AR6. Summary: This data set contains detailed elements the sea level projections associated with the Intergovernmental Panel on Climate Change Sixth Assessment Report. In particular, it contains relative sea level projections that exclude the background term (representing primarily land subsidence or uplift). It includes probability distributions for all the workflows described in AR6 WGI 9.6.3.2. P-boxes derived from these distributions are available in the sister entry 'IPCC-DDC_AR6_Sup_PBox'. These data may be of use for users who want to substitute their own estimates of the background term. Regional projections can also be accessed through the NASA/IPCC Sea Level Projections Tool at https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool. See https://zenodo.org/communities/ipcc-ar6-sea-level-projections for additional related data sets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.ipcc-ddc_ar6_sup_distbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.ipcc-ddc_ar6_sup_distbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Cao, Jian; Wang, Bin;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.NUIST.NESM3.amip' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The NUIST ESM v3 climate model, released in 2016, includes the following components: atmos: ECHAM v6.3 (T63; 192 x 96 longitude/latitude; 47 levels; top level 1 Pa), land: JSBACH v3.1, ocean: NEMO v3.4 (NEMO v3.4, tripolar primarily 1deg; 384 x 362 longitude/latitude; 46 levels; top grid cell 0-6 m), seaIce: CICE4.1. The model was run by the Nanjing University of Information Science and Technology, Nanjing, 210044, China (NUIST) in native nominal resolutions: atmos: 250 km, land: 2.5 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmnuinesam&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmnuinesam&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors:Tangarife Escobar, Andres;
Tangarife Escobar, Andres
Tangarife Escobar, Andres in OpenAIREGuggenberger, Georg;
Feng, Xiaojuan; Muñoz, Estefania; +4 AuthorsGuggenberger, Georg
Guggenberger, Georg in OpenAIRETangarife Escobar, Andres;
Tangarife Escobar, Andres
Tangarife Escobar, Andres in OpenAIREGuggenberger, Georg;
Feng, Xiaojuan; Muñoz, Estefania; Chanca, Ingrid; Peichl, Matthias; Smith, Paul; Sierra, Carlos;Guggenberger, Georg
Guggenberger, Georg in OpenAIREFiles for the manuscript “Radiocarbon Isotopic Disequilibrium Shows Little Incorporation of New Carbon in Soils and Fast Cycling of a Boreal Forest Ecosystem” 1. “Raw_Data” folder contains the files in .xlsx: - Lab_Atmospheric_Samples: D14C results from ambient air at the sampled heights. - Lab_Soil_Respiration: D14C results with date and integration time for the FFSR sampling campaign. - Lab_Solid_Samples: D14C and TOC results for soil, vegetation, roots, fungi and incubation samples.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10952030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10952030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Aug 2022Publisher:Dryad Authors:Wu, Xingtong;
Wang, Minqiu; Li, Xinyu; Yan, Yadan; +5 AuthorsWu, Xingtong
Wu, Xingtong in OpenAIREWu, Xingtong;
Wang, Minqiu; Li, Xinyu; Yan, Yadan; Dai, Minjun; Xie, Wanyu; Zhou, Xiaofen; Zhang, Donglin; Wen, Yafeng;Wu, Xingtong
Wu, Xingtong in OpenAIREClimate change affects species' spatio-temporal distribution deeply. However, how climate affects the spatio-temporal distribution pattern of related species on the large scale remains largely unclear. Here, we selected two closely related species in the Taxus genus, Taxus chinensis and Taxus mairei, to explore their distribution pattern. Four environmental variables were employed to simulate the distribution patterns using the optimized Maxent model. The results showed that the highly suitable area of T. chinensis and T. mairei in the current period was 1.616 × 105 km2 and 3.093 × 105 km2, respectively. The distribution area of T. chinensis was smaller than that of T. mairei in different periods. Comparison of different periods shows that the distribution area of the two species was almost in stasis from LIG to the future periods. Temperature and precipitation were the main climate factors that determined the potential distribution of the two species. The centroids of T. chinensis and T. mairei were in Sichuan and Hunan provinces in current period, respectively. In the future, the centroid migration direction of the two species would shift towards the northeast. Our results revealed that the average elevation distribution of T. chinensis was higher than that of T. mairei. This study sheds new insights into the habitat preference and limiting environmental factors of the two related species and provides a valuable reference for the conservation of these two threatened species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cfxpnvx85&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 8 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cfxpnvx85&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: He, Bian; Bao, Qing;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.GMMIP.CAS.FGOALS-f3-L' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The FGOALS-f3-L climate model, released in 2017, includes the following components: atmos: FAMIL2.2 (Cubed-sphere, c96; 360 x 180 longitude/latitude; 32 levels; top level 2.16 hPa), land: CLM4.0, ocean: LICOM3.0 (LICOM3.0, tripolar primarily 1deg; 360 x 218 longitude/latitude; 30 levels; top grid cell 0-10 m), seaIce: CICE4.0. The model was run by the Chinese Academy of Sciences, Beijing 100029, China (CAS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6gmcasff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6gmcasff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu