- home
- Search
- Energy Research
- 11. Sustainability
- 15. Life on land
- AU
- FI
- Energy Research
- 11. Sustainability
- 15. Life on land
- AU
- FI
Research data keyboard_double_arrow_right Dataset 2022Embargo end date: 10 Mar 2022 SpainPublisher:Dryad Funded by:EC | DPaTh-To-AdaptEC| DPaTh-To-AdaptBennett, Scott; Marba, Nuria; Vaquer-Sunyer, Raquel; Jordá, Gabriel; Forteza, Marina; Roca, Guillem;handle: 10261/311232
[Experimental design: thermal performance experiments] All experiments were run in climate-controlled incubation facilities of the Institut Mediterrani d’Estudis Avançats (Mallorca, Spain). Following 48 hrs under ambient (collection site) conditions, samples were transferred to individual experimental aquaria, which consisted of a double layered transparent plastic bag filled with 2 L of filtered seawater (60 μm) (following Savva et al. 2018). 16 experimental bags were suspended within 80L temperature-controlled baths. In total, ten baths were used, one for each experimental temperature treatment. Bath temperatures were initially set to the acclimatization temperature (i.e. in situ temperatures) and were subsequently increased or decreased by 1 °C every 24 hours until the desired experimental temperature was achieved. Experimental temperatures were: 15, 18, 21, 24, 26, 28, 30, 32, 34 and 36°C (Table S2). For each species, four replicate aquarium bags were used for each temperature treatment with three individually marked seagrass shoots or three algal fragments placed into each bag. For P. oceanica, each marked plant was a single shoot including leaves, vertical rhizome and roots. For C. nodosa, each marked individual consisted of a 10 cm fragment of horizontal rhizome containing three vertical shoots. Individually marked seaweeds contained the holdfast, and 4-5 fronds of P. pavonica (0.98 ± 0.06 g FW; mean ± SE) or a standardised 5-8 cm fragment with meristematic tip for C. compressa (3.67 ± 0.1 g FW; mean ± SE). Experimental plants were cleaned of conspicuous epiphytes. Once the targeted temperatures were reached in all of the baths, experiments ran for 14 days for the algal species and 21 days for seagrasses to allow for measurable growth in all species at the end of the experiment. Experiments were conducted inside a temperature-controlled chamber at constant humidity and air temperature (15 °C). Bags were arranged in a 4x4 grid within each bath, enabling four species/population treatments to be run simultaneously. Bags were mixed within each bath so that one replicate bag was in each row and column of the grid, to minimise any potential within bath effects of bag position. Replicate bags were suspended with their surface kept open to allow gas exchange and were illuminated with a 14h light:10h dark photoperiod through fluorescent aquarium growth lamps. The water within the bags were mixed with aquaria pumps. The light intensity within each bag was measured via a photometric bulb sensor (LI-COR) and ranged between 180-258 μmol m-2 s-1. Light intensity was constant between experiments and did not significantly differ between experimental treatments (p > 0.05). The temperature in the baths was controlled and recorded with an IKS-AQUASTAR system, which was connected to heaters and thermometers. The seawater within the bags was renewed every 72 hrs and salinity was monitored daily with an YSI multi-parameter meter. Distilled water was added when necessary to ensure salinity levels remained within the range of 36-39 PSU, typical of the study region. Carbon and Nitrogen concentrations in the leaf tissue were measured at the end of the experiment for triplicates of the 24ºC treatment for each species and location (Fig. S2) at Unidade de Técnicas Instrumentais de Análise (University of Coruña, Spain) with an elemental analyser FlashEA112 (ThermoFinnigan). [Species description and distribution] The species used in this study are all common species throughout the Mediterranean Sea, although differ in their biological traits, evolutionary histories and thermo-geographic affinities (Fig. S1). P. oceanica is endemic to the Mediterranean Sea with the all other Posidonia species found in temperate Australia (Aires et al. 2011). The distribution of P. oceanica is restricted to the Mediterranean, spanning from Gibraltar in the west to Cyprus in the east and north into the Aegean and Adriatic seas (Telesca et al. 2015) (Fig. S1A). C. nodosa distribution extends across the Mediterranean Sea and eastern Atlantic Ocean, where it is found from south west Portugal, down the African coast to Mauritania and west to Macaronesia (Alberto et al. 2008) (Fig. S1B). Congeneric species of C. nodosa are found in tropical waters of the Red Sea and Indo-Pacific, suggesting origins in the region at least prior to the closure of the Suez Isthmus, approximately 10Mya. Like C. nodosa, Cystoseira compressa has a distribution that extends across the Mediterranean and into the eastern Atlantic, where it is found west to Macaronesia and south to northwest Africa (Fig. S1C). The genus Cystoseira has recently been reclassified to include just four species with all congeneric Cystoseira spp. having warm-temperate distributions from the Mediterranean to the eastern Atlantic (Orellana et al. 2019). The distribution of Padina pavonica is conservatively considered to resemble C. nodosa and C. compressa, spanning throughout the Mediterranean and into the eastern Atlantic. We considered the poleward distribution limit of P. pavonica to be the British Isles 50ºN (Herbert et al. 2016). P. pavonica was previously thought to have a global distribution, but molecular analysis of the genus has found no evidence to support this (Silberfeld et al. 2013). Instead it has been suggested that P. pavonica was potentially misclassified outside of the Mediterranean, due to morphological similarity with congeneric species (Silberfeld et al. 2013). Padina is a monophyletic genus with a worldwide distribution from tropical to cold temperate waters (Silberfeld et al. 2013). Most species have a regional distribution, with few confirmed examples of species spanning beyond a single marine realm (sensu Spalding et al. 2007). [Metabolic rates] Net production (NP), gross primary production (GPP) and respiration (R) were measured for all species from the four sites for five different experimental temperatures containing the in-situ temperature during sampling up to a 6ºC warming (see SM Table S3 for details). Individuals of the different species were moved to methacrylate cylinders containing seawater treated with UV radiation to remove bacteria and phytoplankton, in incubation tanks at the 5 selected temperatures. Cylinders were closed using gas-tight lids that prevent gas exchange with the atmosphere, containing an optical dissolved oxygen sensor (ODOS® IKS), with a measuring range from 0-200 % saturation and accuracy at 25ºC of 1% saturation, and magnetic stirrers inserted to ensure mixing along the height of the core. Triplicates were measured for each species and location, along with controls consisting in cylinders filled with the UV-treated seawater, in order to account for any residual production or respiration derived from microorganisms (changes in oxygen in controls was subtracted from treatments). Oxygen was measured continuously and recorded every 15 minutes for 24 hours. Changes in the dissolved oxygen (DO) were assumed to result from the biological metabolic processes and represent NP. During the night, changes in DO are assumed to be driven by R, as in the absence of light, no photosynthetic production can occur. R was calculated from the rate of change in oxygen at night, from half an hour after lights went off to half an hour before light went on (NP in darkness equalled R). NP was calculated from the rate of change in DO, at 15 min intervals, accumulated over each 24 h period. Assuming that daytime R equals that during the night, GPP was estimated as the sum of NP and R. To derive daily metabolic rates, we accumulated individual estimates of GPP, NP, and R resolved at 15 min intervals over each 24 h period during experiments and reported them in mmol O2 m−3 day−1. A detailed description of calculation of metabolic rates can be found at Vaquer-Sunyer et al. (Vaquer-Sunyer et al. 2015). [Thermal distribution and thermal safety margins] We estimated the realised thermal distribution for the four experimental species by downloading occurrence records from the Global Biodiversity Information Facility (GBIF.org (11/03/2020) GBIF Occurrence Download). Occurrence records from GBIF were screened for outliers and distributions were verified from the primary literature (Alberto et al. 2008, Draisma et al. 2010, Ni-Ni-Win et al. 2010, Silberfeld et al. 2013, Telesca et al. 2015, Orellana et al. 2019) and Enrique Ballesteros (pers. comms) (Fig. S1). Mean, 1st and 99th percentiles of daily SST’s were downloaded for each occurrence site for the period between 1981-2019 using the SST products described above (Table S4). Thermal range position of species at each experimental site were standardised by their global distribution using a Range Index (RI; Sagarin & Gaines 2002). Median SST at the experimental collection sites were standardized relative to the thermal range observed across a species realized distribution, using the equation: RI = 2(SM- DM)/DB where SM = the median temperature at the experimental collection site, Dm = the thermal midpoint of the species global thermal distribution and DB = range of median temperatures (ºC) that a species experiences across its distribution. The RI scales from -1 to 1, whereby ‘-1’ represents the cool, leading edge of a species distribution, ‘0’ represents the thermal midpoint of a species distribution and ‘1’ represents the warm, trailing edge of a species distribution (Sagarin & Gaines 2002). Thermal safety margins for each population were calculated as the difference between empirically derived upper thermal limits for each population and the maximum long term habitat temperatures recorded at collection sites. Each population’s thermal safety margin was plotted against its range position to examine patterns in thermal sensitivity across a species distribution. [Growth measurements and statistical analyses] Net growth rate of seagrass shoots was measured using leaf piercing-technique (Short & Duarte 2001). At the beginning of the experiment seagrass shoots were pierced just below the ligule with a syringe needle and shoot growth rate was estimated as the elongation of leaf tissue in between the ligule and the mark position of all leaves in a shoot at the end of the experiment, divided by the experimental duration. Net growth rate of macroalgae individuals was measured as the difference in wet weight at the end of the experiment from the beginning of the experiment divided by the duration of the experiment. Moisture on macroalgae specimens was carefully removed before weighing them. Patterns of growth in response to temperature were examined for each experimental population using a gaussian function: g = ke[-0.5(TMA-μ)2/σ2], where k = amplitude, μ = mean and σ = standard deviation of the curve. Best fit values for each parameter were determined using a non-linear least squares regression using the ‘nlstools’ package (Baty et al. 2015) in R (Team 2020). 95% CI for each of the parameters were calculated using non-parametric bootstrapping of the mean centred residuals. The relationship between growth metrics and the best-fit model was determined by comparing the sum of squared deviations (SS) of the observed data from the model, to the SS of 104 randomly resampled datasets. Growth metrics were considered to display a significant relationship to the best-fit model if the observed SS was smaller than the 5th percentile of randomised SS. Upper thermal limits were defined as the optimal temperature + 2 standard deviations (95th percentile of curve) or where net growth = 0. Samples that had lost all pigment or structural integrity by the end of the experiment were considered dead and any positive growth was treated as zero. Comparative patterns in thermal performance between populations have fundamental implications for a species thermal sensitivity to warming and extreme events. Despite this, within-species variation in thermal performance is seldom measured. Here we compare thermal performance between-species variation within communities, for two species of seagrass (Posidonia oceanica and Cymodocea nodosa) and two species of seaweed (Padina pavonica and Cystoseira compressa). Experimental populations from four locations spanning approximately 75% of each species global distribution and a 6ºC gradient in summer temperatures were exposed to 10 temperature treatments (15ºC to 36ºC), reflecting median, maximum and future temperatures. Experimental thermal performance displayed the greatest variability between species, with optimal temperatures differing by over 10ºC within the same location. Within-species differences in thermal performance were also important for P. oceanica which displayed large thermal safety margins within cool and warm-edge populations and small safety margins within central populations. Our findings suggest patterns of thermal performance in Mediterranean seagrasses and seaweeds retain deep ‘pre-Mediterranean’ evolutionary legacies, suggesting marked differences in sensitivity to warming within and between benthic marine communities. [Sample collection] Sample collections were conducted at two sites, separated by approximately 1 km, within each location. Collections were conducted at the same depth (1-3 m) at each location and were spaced across the reef or meadow to try and minimise relatedness between shoots or fragments. Upon collection, fragments were placed into a mesh bag and transported back to holding tanks in cool, damp, dark conditions (following Bennett et al. 2021). Fragments were kept in aerated holding tanks in the collection sites at ambient seawater temperature and maintained under a 14:10 light-dark cycle until transport back to Mallorca, where experiments were performed. Prior to transport, P. oceanica shoots were clipped to 25 cm length (from meristem to tip), to standardise initial conditions and remove old tissue for transport. For transport back to Mallorca, fragments were packed in layers within cool-boxes. Cool-packs were wrapped in damp tea towels (rinsed in seawater) and placed between layers of samples. Samples from Catalonia, Crete and Cyprus experienced approximately 12hrs of transit time. On arrival at the destination, samples were returned to holding tanks with aerated seawater and a 14:10 light-dark cycle. [Sea temperature measurements and reconstruction] Sea surface temperature data for each collection site were based on daily SST maps with a spatial resolution of 1/4°, obtained from the National Center for Environmental Information (NCEI, https://www.ncdc.noaa.gov/oisst (Reynolds et al. 2007). These maps have been generated through the optimal interpolation of Advanced Very High Resolution Radiometer (AVHRR) data for the period 1981-2019. Underwater temperature loggers (ONSET Hobo pro v2 Data logger) were deployed at each site and recorded hourly temperatures throughout one year. In order to obtain an extended time series of temperature at each collection site, a calibration procedure was performed comparing logger data with sea surface temperature from the nearest point on SST maps. In particular, SST data were linearly fitted to logger data for the common period. Then, the calibration coefficients were applied to the whole SST time series to obtain corrected-SST data and reconstruct daily habitat temperatures from 1981-2019. [Field collections] Thermal tolerance experiments were conducted on two seagrass species (P. oceanica and Cymodocea nodosa) and two brown seaweed species (Cystoseira compressa and P. pavonica) from four locations spanning 8 degrees in latitude and 30 degrees in longitude across the Mediterranean (Fig. 1, Table S1). These four species were chosen as they are dominant foundation species and cosmopolitan across the Mediterranean Sea. Thermal performance experiments from Catalonia and Mallorca were conducted simultaneously in June 2016 for seaweeds (P. pavonica and C. compressa) and in August 2016 for seagrasses (P. oceanica and C. nodosa). Experiments for all four species were conducted in July 2017 for Crete and in September 2017 for Cyprus. Horizon 2020 Framework Programme, Award: 659246; Juan de la Cierva Formacion, Award: FJCI-2016-30728; Spanish Ministry of Economy, Industry and Competitiveness, Award: MedShift, CGL2015-71809-P; Spanish Ministry of Science, Innovation and Universities, Award: SUMAECO, RTI2018-095441-B-C21
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d2547d81r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 19 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d2547d81r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 19 Oct 2022Publisher:Dryad McDowell, Matthew; David, Bruno; Mullett, Russell; Fresløv, Joanna; Delannoy, Jean-Jacques; Mialanes, Jerome; Ash, Jeremy; Crouch, Joe; Petchey, Fiona; Buettel, Jessie; Arnold, Lee;Palaeontological animal bone deposits are rarely investigated through research partnerships where the local First Nations communities have a defining hand in both the research questions asked and the research processes. Here we report research undertaken through such a partnership approach at the iconic archaeological site of Cloggs Cave (GunaiKurnai Country, East Gippsland), in the southern foothills of SE Australia’s Great Dividing Range. A new excavation was combined with detailed chronometric dating, high-resolution 3D mapping, and geomorphological studies. This allowed for the interpretation of a sequence of stratigraphic layers spanning from a lowermost excavated mixed layer dated to between 25,640–48,470 cal BP, to a dense set of uppermost, ash layers dated to between 1460–3360 cal BP. This long and well-dated chronostratigraphic sequence enabled temporal trends in the abundant small mammal remains to be examined. The fossil assemblage consists of at least 31 taxa of mammals which change in proportions through time. Despite clear evidence that the Old Ancestors repeatedly carried vegetation into the cave to fuel cool fires (no visible vegetation grows in Cloggs Cave), we observed little to no evidence of cooking fires or calcined bone, suggesting that people had little involvement with the accumulation of the faunal remains. Small mammal bones were most likely deposited in the cave by large disc-faced owls, Tyto novaehollandae (Masked Owl) or Tyto tenebricosa (Sooty Owl). Despite being well-dated and largely undisturbed, the Cloggs Cave assemblage does not appear to track known Late Quaternary environmental change. Instead, the complex geomorphology of the area fostered a vegetation mosaic that supported mammals with divergent habitat preferences. The faunal deposit suggests a local ancestral landscape characterised by a resilient mosaic of habitats that persisted over thousands of years, signaling that the Old Ancestors burned landscape fires to encourage and manage patches of different vegetation types and ages within and through periods of climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh1893298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 5visibility views 5 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh1893298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 17 Feb 2018Publisher:Dryad Digital Repository Authors: Wade, Ruth N.; Karley, Alison J.; Johnson, Scott N.; Hartley, Sue E.;1. Predicted changes in the frequency and intensity of extreme rainfall events in the UK have the potential to disrupt terrestrial ecosystem function. However, responses of different trophic levels to these changes in rainfall patterns, and the underlying mechanisms, are not well characterised. 2. This study aimed to investigate how changes in both the quantity and frequency of rainfall events will affect the outcome of interactions between plants, insect herbivores (above- and below- ground) and natural enemies. 3. Hordeum vulgare L. plants were grown in controlled conditions and in the field, and subjected to three precipitation scenarios: ambient (based on a local 10 year average rainfall); continuous drought (40% reduction compared to ambient); drought/ deluge (40% reduction compared to ambient at a reduced frequency). The effects of these watering regimes and wireworm (Agriotes species) root herbivory on the performance of the plants, aphid herbivores above-ground (Sitobion avenae, Metapolophium dirhodum and Rhopalosiphum padi), and natural enemies of aphids including ladybirds (Harmonia axyridis) were assessed from measurements of plant growth, insect abundance and mass, and assays of feeding behaviour. 4. Continuous drought decreased plant biomass, whereas reducing the frequency of watering events did not affect plant biomass but did alter plant chemical composition. In controlled conditions, continuous drought ameliorated the negative impact of wireworms on plant biomass. 5. Compared to the ambient treatment, aphid mass was increased by 15% when feeding on plants subjected to drought/ deluge; and ladybirds were 66% heavier when feeding on these aphids but this did not affect ladybird prey choice. In field conditions, wireworms feeding below-ground reduced the number of shoot-feeding aphids under ambient and continuous drought conditions but not under drought/ deluge. 6. Predicted changes in both the frequency and intensity of precipitation events under climate change have the potential to limit plant growth, but reduce wireworm herbivory, while simultaneously promoting above-ground aphid numbers and mass, with these effects transferring to the third trophic level. Understanding the effect of future changes in precipitation on species interactions is critical for determining their potential impact on ecosystem functioning and constructing accurate predictions under global change scenarios. Controlled environment and field experimental dataData file containing all data reported in the paper including plant, soil and insect data from controlled environment and field experiments. First spreadsheet in the data file contains a key to explain all abbreviations used throughout the file.Experimental data.xlsx
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.t6m9m.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.t6m9m.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.CSIRO.ACCESS-ESM1-5.esm-hist' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Australian Community Climate and Earth System Simulator Earth System Model Version 1.5 climate model, released in 2019, includes the following components: aerosol: CLASSIC (v1.0), atmos: HadGAM2 (r1.1, N96; 192 x 145 longitude/latitude; 38 levels; top level 39255 m), land: CABLE2.4, ocean: ACCESS-OM2 (MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), ocnBgchem: WOMBAT (same grid as ocean), seaIce: CICE4.1 (same grid as ocean). The model was run by the Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia (CSIRO) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcsaeeh&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcsaeeh&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Dix, Martin; Bi, Daohua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia M.; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CSIRO-ARCCSS.ACCESS-CM2.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Australian Community Climate and Earth System Simulator Climate Model Version 2 climate model, released in 2019, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N96; 192 x 144 longitude/latitude; 85 levels; top level 85 km), land: CABLE2.5, ocean: ACCESS-OM2 (GFDL-MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), seaIce: CICE5.1.2 (same grid as ocean). The model was run by the CSIRO (Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia), ARCCSS (Australian Research Council Centre of Excellence for Climate System Science). Mailing address: CSIRO, c/o Simon J. Marsland, 107-121 Station Street, Aspendale, Victoria 3195, Australia (CSIRO-ARCCSS) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcsiaccs245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcsiaccs245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 06 May 2022Publisher:Dryad Authors: Castañeda, Irene; Doherty, Tim S.; Fleming, Patricia A.; Stobo-Wilson, Alyson M.; +2 AuthorsCastañeda, Irene; Doherty, Tim S.; Fleming, Patricia A.; Stobo-Wilson, Alyson M.; Woinarski, John C. Z.; Newsome, Thomas M.;Understanding variation in the diet of widely distributed species can help us to predict how they respond to future environmental and anthropogenic changes. We studied the diet of the red fox Vulpes vulpes, one of the world’s most widely distributed carnivores. We compiled dietary data from 217 studies at 276 locations in five continents to assess how fox diet composition varied according to geographic location, climate, anthropogenic impact and sampling method. The diet of foxes showed substantial variation throughout the species’ range, but with a general trend for small mammals and invertebrates to be the most frequently occurring dietary items. The incidence of small and large mammals and birds in fox diets was greater away from the equator. The incidence of invertebrates and fruits increased with mean elevation, while the occurrence of medium-sized mammals and birds decreased. Fox diet differed according to climatic and anthropogenic variables. Diet richness decreased with increasing temperature and precipitation. The incidence of small and large mammals decreased with increasing temperature. The incidence of birds and invertebrates decreased with increasing mean annual precipitation. Higher Human Footprint Index was associated with lower incidence of large mammals and higher incidence of birds and fruit in fox diet. Sampling method influenced fox diet estimation: estimated percentage of small and medium-sized mammals and fruit was lower in studies based on stomach contents, while large mammals were more likely to be recorded in studies of stomach contents than in studies of scats. Our study confirms the flexible and opportunistic dietary behaviour of foxes at the global scale. This behavioural trait allows them to thrive in a range of climatic conditions, and in areas with different degrees of human-induced habitat change. This knowledge can help place the results of local-scale fox diet studies into a broader context and to predict how foxes will respond to future environmental changes. Castañeda et al. 2022 Mammal Review (Variation in red fox Vulpes vulpes diet in five continents)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb2h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 12visibility views 12 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb2h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 20 Sep 2023Publisher:Dryad Limoges, Audrey; Ribeiro, Sofia; Van Nieuwenhove, Nicolas; Jackson, Rebecca; Juggins, Stephen; Crosta, Xavier; Weckström, Kaarina;A Calypso Square gravity core AMD15-Casq1 (543 cm) and corresponding box core (40 cm) were collected in 2015 from the central north NOW (77°15.035’ N, 74°25.500’ W, 692 m water depth) (Figure 1) during the ArcticNet Leg 4a, onboard the Canadian Coast Guard Ship Amundsen. Core chronology: The core chronology is based on 11 accelerator mass spectrometry (AMS) dates on mollusc shells from the Calypso core, and 210Pb and 137Cs measurements on 20 samples from the box core (see Jackson et al. (2021) for more details). Here, all radiocarbon dates were calibrated using the latest marine calibration curve (Marine20; Heaton et al., 2020; Table S1). In Jackson et al. (2021), and using the Marine13 calibration curve, a local reservoir correction of 140 ± 60 years was applied based on measurements from a live marine mollusc specimen collected from the NOW before the mid-1950’s (McNeely & Brennan, 2005). Using the Marine20 calibration curve, this specimen now yields a reservoir offset of –4 ± 60 years. In line with this reduced reservoir offset for the Marine 20 (vs. Marine13) calibration curve, and owing to the lack of a regional ΔR term for the polynya (Pieńkowski et al., 2023), no additional reservoir age correction (i.e., ΔR=0) was applied. A mixed age-depth model was constructed using the bacon-package in R (Blaauw & Christen, 2011). Accordingly, the composite core covers the last ca. 3800 cal years BP. We note that the new calibration only resulted in negligible changes compared to the age model presented in Jackson et al. (2021). Diatom analyses: Sediment samples for diatom analysis were prepared following the protocol described in Crosta et al. (2020). Approximately 0.3 g of dry sediment was treated with an oxidative solution composed of hydrogen peroxide (H2O2), distilled water and tetrasodium pyrophosphate (decahydrate, Na4O7P2-10H2O) in a warm bath (~65°C) for several hours until the reaction ceased. The residue was then rinsed repeatedly with distilled water by centrifugation (7 min at 1200 rpm). Hydrochloric acid (HCl, 30%) was used to remove the carbonate content. The residue was again rinsed several times until neutral pH, and microscopy slides were mounted in Naphrax©. In each sample, ca. 300 diatom valves were identified to the lowest taxonomic level possible. Resting spores of Chaetoceros were counted, but not included in the relative abundance calculations. Census counts were done using a light microscope (Olympus BX53, UNB) with dark field, phase contrast optics and oil immersion, at 1000X magnification. We followed the counting rules presented in Crosta and Koç (2007): specimens were counted when at least half of the valve was observed, with the exception of Rhizosolenia and Thalassiothrix taxa that were only counted when the spine-like proboscis or appendix was visible, respectively. The Pikialasorsuaq (North Water polynya) is an area of local and global cultural and ecological significance. However, over the last decades, the region has been subject to rapid warming and, in some recent years, the seasonal ice arch that has historically defined the polynya’s northern boundary has failed to form. Both factors are deemed to alter the polynya’s ecosystem functioning. To understand how climate-induced changes to the Pikialasorsuaq impact the basis of the marine food web, we explored diatom community-level responses to changing conditions, from a sediment core spanning the last 3800 years. Four metrics were used: total diatom concentrations, taxonomic composition, mean size, and diversity. Generalized additive model statistics highlight significant changes at ca. 2400, 2050, 1550, 1200, and 130 cal years BP, all coeval with known transitions between colder and warmer intervals of the Late Holocene, and regime shifts in the Pikialasorsuaq. Notably, a weaker/contracted polynya during the Roman Warm Period and Medieval Climate Anomaly caused the diatom community to reorganize via shifts in species composition, with the presence of larger taxa but lower diversity, and significantly reduced export production. This study underlines the high sensitivity of primary producers to changes in the polynya dynamics and illustrates that the strong pulse of early-spring cryopelagic diatoms that makes the Pikialasorsuaq exceptionally productive may be jeopardized by rapid warming and associated Nares Strait ice arch destabilization. Future alterations to the phenology of primary producers may disproportionately impact higher trophic levels and keystone species in this region, with implications for Indigenous Peoples and global diversity. # Marine diatoms record Late Holocene regime shifts in the Pikialasorsuaq ecosystem [https://doi.org/10.5061/dryad.cz8w9gj8p](https://doi.org/10.5061/dryad.cz8w9gj8p) This dataset includes diatom counts (relative abundances, %) from core AMD15-Casq1. Diatoms were analyzed at a 1 to 10 cm sampling interval, which corresponds to an effective age resolution ranging from ca. 3 to 64 years (mean: 31 years). Absolute abundances are reported in valves per g of dry sediment. Fluxes were calculated by combining diatom concentrations (valves and spores g-1) with mass accumulation rates (g cm-2 yr-1). ## Description of the data and file structure Diatom data are presented against depth and modelled age (years BP) in the sediment archive. ## Sharing/Access information n/a ## Code/Software n/a
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cz8w9gj8p&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cz8w9gj8p&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Mehta, Piyush; Siebert, Stefan; Kummu, Matti; Deng, Qinyu; Ali, Tariq; Marston, Landon; Xie, Wei; Davis, Kyle;The expansion of irrigated agriculture has increased global crop production but resulted in widespread stress to freshwater resources. Ensuring that increases in irrigated production only occur in places where water is relatively abundant is a key objective of sustainable agriculture, and knowledge of how irrigated land has evolved is important for measuring progress towards water sustainability. Yet a spatially detailed understanding of the evolution of global area equipped for irrigation (AEI) is missing. Here we utilize the latest sub-national irrigation statistics (covering 17298 administrative units) from various official sources to develop a gridded (5 arc-min resolution) global product of AEI for the years 2000, 2005, 2010, and 2015. We find that AEI increased by 11% from 2000 (297 Mha) to 2015 (330 Mha) with locations of both substantial expansion (e.g., northwest India, northeast China) and decline (e.g., Russia). Combining these outputs with information on green (i.e., rainfall) and blue (i.e., surface and ground) water stress, we also examine to what extent irrigation has expanded unsustainably (i.e., in places already experiencing water stress). We find that more than half (52%) of irrigation expansion has taken place in regions that were already water stressed, with India alone accounting for 36% of global unsustainable expansion. These findings provide new insights into the evolving patterns of global irrigation with important implications for global water sustainability and food security. Recommended citation: Mehta, P., Siebert, S., Kummu, M. et al. Half of twenty-first century global irrigation expansion has been in water-stressed regions. Nat Water (2024). https://doi.org/10.1038/s44221-024-00206-9 Open-access peer reviewed publication available at https://www.nature.com/articles/s44221-024-00206-9 Files G_AEI_*.ASC were produced using the GMIA dataset[https://data.apps.fao.org/catalog/iso/f79213a0-88fd-11da-a88f-000d939bc5d8]. Files MEIER_G_AEI_*.ASC were produced using Meier et al. (2018) dataset [https://doi.pangaea.de/10.1594/PANGAEA.884744].
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6740334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2Kvisibility views 1,826 download downloads 1,165 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6740334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Hutchinson, David K; Coxall, Helen K.; Lunt, Daniel J.; Steinthorsdottir, Margret; +18 AuthorsHutchinson, David K; Coxall, Helen K.; Lunt, Daniel J.; Steinthorsdottir, Margret; de Boer, Agatha M.; Baatsen, Michiel; von der Heydt, Anna; Huber, Matthew; Kennedy-Asser, Alan T.; Kunzmann, Lutz; Ladant, Jean-Baptiste; Lear, Caroline H.; Moraweck, Karolin; Pearson, Paul N.; Piga, Emanuela; Pound, Matthew J.; Salzmann, Ulrich; Scher, Howie D.; Sijp, Willem P.; Sliwinska, Kasia K.; Wilson, Paul A.; Zhang, Zongshi;This data package contains data used for an model-data intercomparison originally published in: D. K. Hutchinson, H. K. Coxall, D. J. Lunt, M. Steinthorsdottir, A. M. de Boer, M. Baatsen, A. von der Heydt, M. Huber, A. T. Kennedy-Asser, L. Kunzmann, J.-B. Ladant, C. H. Lear, K. Moraweck, P. N. Pearson, E. Piga, M. J. Pound, U. Salzmann, H. D. Scher, W. P. Sijp, K. K. Śliwińska, P. A. Wilson, and Z. Zhang, 2021: The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons, Climate of the Past, 17, 269-315. https://doi.org/10.5194/cp-17-269-2021 These data are also used in a further model-data intercomparison of Antarctic temperatures: Emily Tibbett, Natalie J Burls, David K. Hutchinson, Sarah J Feakins, (2023), Proxy-Model Comparison for the Eocene-Oligocene Transition in Southern High Latitudes, Paleoceanography and Paleocliamtology, In Review. Pre-print avaiable from: https://www.authorea.com/doi/full/10.1002/essoar.10511735.2 The package contains surface air temperature and sea surface temperature from an ensemble of model simulations of the Eocene-Oligocene transition. These data are provided at annual and monthly frequency. They are also provided on the original model grid, and an interpolated common grid used for the intercomparison. (The common grid is based on the HadCM3BL model grid.) All data are provided in NETCDF format with self-describing variable names. The name and explanation of the interpolated data files are contained in: table_of_experiments.xlsx Please read that spreadsheet to interpret the filenames, and see Table 2 (p291) of Hutchinson et al (2021) for experiment descriptions. Please also be mindful to cite the original authors of the simulations when using these data, whose work made this dataset possible. The appropriate citations are listed below: Reference DOI link Baatsen et al (2020) https://doi.org/10.5194/cp-16-2573-2020 Goldner et al (2014) https://doi.org/10.1038/nature13597 Ladant et al (2014a,b) https://doi.org/10.5194/cp-10-1957-2014 https://doi.org/10.1002/2013PA002593 Hutchinson et al (2018, 2019) https://doi.org/10.5194/cp-14-789-2018 https://doi.org/10.1038/s41467-019-11828-z Kennedy et al (2015) https://doi.org/10.1098/rsta.2014.0419 Zhang et al (2012, 2014) https://doi.org/10.5194/gmd-5-523-2012 https://doi.org/10.1038/nature13705 Sijp et al (2009) https://doi.org/10.1175/2009JCLI3003.1
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7540321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 85visibility views 85 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7540321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 29 Mar 2022Publisher:Dryad Robinson, Sinikka; O'Gorman, Eoin; Frey, Beat; Hagner, Marleena; Mikola, Juha;Study site This is a dataset of soil physiochemical properties, bacterial and fungal abundance, and above and belowground plant and invertebrate biomass, sampled at 40 soil plots in the Hengill geothermal valley, Iceland, from 15th to 22nd August 2018. The plots, measuring approximately 1 m2, evenly span a temperature gradient of 10-35°C. The dataset also includes data on the decomposition rate of soil organic matter, which was sampled at 60 plots in the Hengill valley from May to July 2015 (see Robinson et al. 2021 for plot details and sampling regime). Soil properties Soil temperature was measured at 5 cm depth at each plot on 15th, 18th, and 22nd August, and a mean plot temperature calculated. Soil physiochemical properties were analysed from 3 soil cores of 3 cm in diameter, taken from the upper 10 cm soil stratum at each plot; one quarter of each subsample was pooled to obtain an estimate per plot. Aboveground plant matter, excluding roots, were removed from each core. Percentage soil moisture was calculated by measuring the weight of one pooled soil sample before and after drying for 24 h in a 70°C drying oven. Soil pH was obtained from 20 g of the dry soil by adding 100 ml distilled water, shaking for 5 min on 150 rpm, letting the sample stand for 2 h, and measuring soil pH from the water layer using an InoLab pH 720 (WTW) probe. Soil PO4, NH4, and NO3 concentrations were analysed from a second pooled soil; 60 g of fresh soil was extracted in 100 ml distilled water, filtered through a GF/C (1.2μm) glass microfiber filter (Whatman, GE Healthcare Europe GmbH), and analysed using a Lachat QuikChem 8000 analyser (Zallweger Analytics, Inc., Lachat Instruments Division, USA). Total mineral N was calculated as the sum of NH4 and NO3. Soil organic matter content (excluding dry root biomass) was calculated as the weight lost from an oven dried (105°C for 24 hours) soil sample after heating at 550 °C for 5 h. Decomposition rate of soil organic matter was measured using the Cotton-strip Assay method (Tiegs et al. 2013) by placing a 2.5 cm x 8 cm strip of Fredrix-brand unprimed 12-oz. heavyweight cotton fabric (Style #548) 5 cm belowground at 60 plots, concurrently with a Maxim Integrated DS1921G Thermocron iButton temperature logger, on 13th May 2015. The strips were collected on 3rd July, rinsed with stream water to remove residual soil, soaked in 96% ethanol for 30 seconds to kill bacteria and halt decomposition, and dried at 60 °C for 12 h. Using a universal testing machine (Instron 5866 with 500 kN tensile holding clamps), maximum tensile strench of each cotton strip was measured. % tensile loss (proxy for decomposition) was calculated as (C-T) / C x 100, where T is the maximum tensile strength for each strip collected from the field, and C is the mean tensile strength of seven control strips, which had not been placed in the ground. See Robinson et al. 2021 for detailed description of plots sampled in 2015. Microbial abundance Bacterial and fungal abundance was estimated from additional soil cores of 3 cm in diameter taken from the upper 4 cm soil stratum (including the litter layer) at each plot. DNA was extracted using the PowerSoil DNA Isolation Kit (Qiagen, Germany). DNA was quantified using the high-sensitivity Qubit assay (Thermo Fisher Scientific, Switzerland). Relative abundances of bacterial and fungal communities were determined by quantitative PCR (qPCR) on an ABI7500 Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, USA). PCR amplification of partial bacterial small-subunit ribosomal RNA genes (region V1–V3 of 16S; primers 27F and 512R) and fungal ribosomal internal transcribed spacers (region ITS2; primers IT3 and ITS4) was performed as described previously (Frey et al. 2020, Frey et al. 2021). For qPCR analyses, 2.5 ng DNA in a total volume of 6.6 µL and 8.4 µL GoTaq qPCRMaster Mix (Promega, Switzerland), containing 1.8 mM of each primer and 0.2 mg mL-1 of BSA, were used. The PCR conditions consisted of an initial denaturation at 95 ºC for 10 min, 40 cycles of denaturation at 95 ºC for 40 s, annealing at 58 ºC for 40 s and elongation at 72 ºC for 60 s followed by the final data acquisition step at 80 ºC for 60 s. The specificity of the amplification products was confirmed by melting-curve analysis. Three standard curves per target region (correlations ≥0.997) were obtained using tenfold serial dilutions (10-1 to 10-9 copies) of plasmids generated from cloned targets (Frey et al. 2020). Data were converted to represent the average copy number of targets per μg DNA and per g soil. Vegetation properties Vascular plant biomass was measured from a randomly placed 30 x 30 cm quadrat at each plot. To measure aboveground biomass (AGB) of plants, the aboveground layer of vegetation was cut and removed, dried at 70 °C for 24 h and weighed to obtain biomass per unit area. AGB was estimated as the biomass of graminoids plus forbs; total biomass of mosses was also estimated. Graminoid leaf N concentration was analysed from dried and ground leaf material using a LECO CNS-2000 analyser (LECO Corporation, Saint Joseph, MI, USA). Belowground biomass (BGB) of vascular plants was estimated from a soil core of 3 cm in diameter taken from the 10 cm upper soil stratum (excluding aboveground plant material) at each quadrat. Roots were extracted from the soil cores by rinsing in water using a 250-μm sieve, dried at 70 °C for 24 hours and weighed to obtain biomass per unit area. Root to shoot ratio was calculated as dry weight of BGB per cm2 divided by dry weight of AGB per cm2, and the total vascular plant biomass as the sum of AGB and BGB. Invertebrate community Enchytraied and nematode biomass was estimated from 3 soil cores of 3 cm in diameter taken from the upper 4 cm soil stratum (including litter layer) at each plot. Enchytraieds were extracted using wet funnels (O'Connor 1962) from a pooled sample of one half of each of the three soil cores, counted live, and classified into size classes (length 0-2, 2.1-4, 4.1-6, 6.1-8, 8.1-10, 10.1-12 or >12 mm) and their biomass was calculated according to Abrahamsen (1973). Nematodes were also extracted using wet funnels (Sohlenius 1979) from a pooled sample of a quarter of each of the three soil cores, counted live and preserved in 70% ethanol. Fifty individuals from each sample were identified and classified by trophic group (bacterivore, fungivoe, herbivore, omnivore, predator; Yeates et al. 1993). Soil micro-arthropods were extracted using a modified high-gradient-extractor (MacFayden 1961) from soil cores of 5.4 cm in diameter, taken from the upper 4 cm soil straum (including litter layer) at each plot. Total micro-arthropod biomass was calculated as the sum of all individual species' biomasses, obtained using length-weight regressions (see Robinson et al. 2021), and abundance of individual trophic groups (microbivore/detritivore, herbivore, omnivore, predator) calculated. Epigeal invertebrates were sampled by deploying five pitfall traps in each plot. White plastic cups of 7 cm in diameter and 8.5 cm in depth were filled with 10 ml of ethylene glycol and 30 ml of stream water, and left for 48 h before collection. Samples from the five traps at each plot were combined into a 250-μm sieve and stored in 70% ethanol. Invertebrate activity density (abundance) was estimate as the total number of individuals in the five traps, and total biomass as the sum of all individual species' biomasses. Invertebrates were identified to species level where possible and split into trophic groups, exluding adult Diptera, Hymenoptera, and Lepidoptera. Further details of sampling and collection of epigeal invertebrates are detailed in Robinson et al. (2018). References: Abrahamsen G. (1973) Studies on body-volume, body-surface area, density, and live weight of enchytraeidae (Oligochaeta). Pedobiologia 13: 6–15. Frey B, Carnol M, Dharmarajah A, Brunner I, Schleppi P. (2020) Only minor changes in the soil microbiome of a sub-alpine forest after 20 years of moderately increased nitrogen loads. Frontiers in Forests and Global Change 3: 77. Frey B, Walthert L, Perez-Mon C, Stierli B, Köchli R, Dharmarajah A, Brunner I (2021) Deep soil layers of drough-exposed forests harbor poorly known bacterial and fungal communities. Frontiers in Microbiology 12: 1061. MacFayden A. (1961) Improved funnel-type extractors for soil arthropods. Journal of Animal Ecology 30: 171–184. O’Connor FB. (1962) The extraction of Enchytraeidae from soil. In: P. W. Murphy (Ed.) Progress in soil zoology. Butterworth, London, UK; 279–285. Robinson SI, McLaughlin ÓB, Marteinsdóttir B, O'Gorman EJ. (2018) Soil temperature effects on the structure and diversity of plant and invertebrate communities in a natural warming experiment. Journal of Animal Ecology 87: 634–46. Robinson SI, Mikola J, Ovaskainen O, O’Gorman EJ. (2021) Temperature effects on the temporal dynamics of a subarctic invertebrate community. Journal of Animal Ecology 90: 1217-1227. Sohlenius B. (1979) A carbon budget for nematodes, rotifers and tardigrades in a Swedish coniferous forest soil. Holarctic Ecology 2: 30–40. Tiegs SD, Clapcott JE, Griffiths NA, Boulton AJ. (2013) A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecological Indicators 32: 131–139. Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS. (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. Journal of Nematology 25: 315–331. This is a dataset of soil physiochemical properties, bacterial and fungal abundance, and above and belowground plant and invertebrate biomass, sampled at 40 plots in the Hengill geothermal valley, Iceland, from 15th to 22nd August 2018. The plots span a temperature gradient of 10-35 °C over the sampling period, and this temperature gradient is consistent over time. The dataset also includes data on the decomposition rate of soil organic matter, which was sampled at 60 plots in the Hengill valley from May to July 2015. See README_Robinson_Hengill2018.txt
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.rxwdbrvbd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 32visibility views 32 download downloads 21 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.rxwdbrvbd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022Embargo end date: 10 Mar 2022 SpainPublisher:Dryad Funded by:EC | DPaTh-To-AdaptEC| DPaTh-To-AdaptBennett, Scott; Marba, Nuria; Vaquer-Sunyer, Raquel; Jordá, Gabriel; Forteza, Marina; Roca, Guillem;handle: 10261/311232
[Experimental design: thermal performance experiments] All experiments were run in climate-controlled incubation facilities of the Institut Mediterrani d’Estudis Avançats (Mallorca, Spain). Following 48 hrs under ambient (collection site) conditions, samples were transferred to individual experimental aquaria, which consisted of a double layered transparent plastic bag filled with 2 L of filtered seawater (60 μm) (following Savva et al. 2018). 16 experimental bags were suspended within 80L temperature-controlled baths. In total, ten baths were used, one for each experimental temperature treatment. Bath temperatures were initially set to the acclimatization temperature (i.e. in situ temperatures) and were subsequently increased or decreased by 1 °C every 24 hours until the desired experimental temperature was achieved. Experimental temperatures were: 15, 18, 21, 24, 26, 28, 30, 32, 34 and 36°C (Table S2). For each species, four replicate aquarium bags were used for each temperature treatment with three individually marked seagrass shoots or three algal fragments placed into each bag. For P. oceanica, each marked plant was a single shoot including leaves, vertical rhizome and roots. For C. nodosa, each marked individual consisted of a 10 cm fragment of horizontal rhizome containing three vertical shoots. Individually marked seaweeds contained the holdfast, and 4-5 fronds of P. pavonica (0.98 ± 0.06 g FW; mean ± SE) or a standardised 5-8 cm fragment with meristematic tip for C. compressa (3.67 ± 0.1 g FW; mean ± SE). Experimental plants were cleaned of conspicuous epiphytes. Once the targeted temperatures were reached in all of the baths, experiments ran for 14 days for the algal species and 21 days for seagrasses to allow for measurable growth in all species at the end of the experiment. Experiments were conducted inside a temperature-controlled chamber at constant humidity and air temperature (15 °C). Bags were arranged in a 4x4 grid within each bath, enabling four species/population treatments to be run simultaneously. Bags were mixed within each bath so that one replicate bag was in each row and column of the grid, to minimise any potential within bath effects of bag position. Replicate bags were suspended with their surface kept open to allow gas exchange and were illuminated with a 14h light:10h dark photoperiod through fluorescent aquarium growth lamps. The water within the bags were mixed with aquaria pumps. The light intensity within each bag was measured via a photometric bulb sensor (LI-COR) and ranged between 180-258 μmol m-2 s-1. Light intensity was constant between experiments and did not significantly differ between experimental treatments (p > 0.05). The temperature in the baths was controlled and recorded with an IKS-AQUASTAR system, which was connected to heaters and thermometers. The seawater within the bags was renewed every 72 hrs and salinity was monitored daily with an YSI multi-parameter meter. Distilled water was added when necessary to ensure salinity levels remained within the range of 36-39 PSU, typical of the study region. Carbon and Nitrogen concentrations in the leaf tissue were measured at the end of the experiment for triplicates of the 24ºC treatment for each species and location (Fig. S2) at Unidade de Técnicas Instrumentais de Análise (University of Coruña, Spain) with an elemental analyser FlashEA112 (ThermoFinnigan). [Species description and distribution] The species used in this study are all common species throughout the Mediterranean Sea, although differ in their biological traits, evolutionary histories and thermo-geographic affinities (Fig. S1). P. oceanica is endemic to the Mediterranean Sea with the all other Posidonia species found in temperate Australia (Aires et al. 2011). The distribution of P. oceanica is restricted to the Mediterranean, spanning from Gibraltar in the west to Cyprus in the east and north into the Aegean and Adriatic seas (Telesca et al. 2015) (Fig. S1A). C. nodosa distribution extends across the Mediterranean Sea and eastern Atlantic Ocean, where it is found from south west Portugal, down the African coast to Mauritania and west to Macaronesia (Alberto et al. 2008) (Fig. S1B). Congeneric species of C. nodosa are found in tropical waters of the Red Sea and Indo-Pacific, suggesting origins in the region at least prior to the closure of the Suez Isthmus, approximately 10Mya. Like C. nodosa, Cystoseira compressa has a distribution that extends across the Mediterranean and into the eastern Atlantic, where it is found west to Macaronesia and south to northwest Africa (Fig. S1C). The genus Cystoseira has recently been reclassified to include just four species with all congeneric Cystoseira spp. having warm-temperate distributions from the Mediterranean to the eastern Atlantic (Orellana et al. 2019). The distribution of Padina pavonica is conservatively considered to resemble C. nodosa and C. compressa, spanning throughout the Mediterranean and into the eastern Atlantic. We considered the poleward distribution limit of P. pavonica to be the British Isles 50ºN (Herbert et al. 2016). P. pavonica was previously thought to have a global distribution, but molecular analysis of the genus has found no evidence to support this (Silberfeld et al. 2013). Instead it has been suggested that P. pavonica was potentially misclassified outside of the Mediterranean, due to morphological similarity with congeneric species (Silberfeld et al. 2013). Padina is a monophyletic genus with a worldwide distribution from tropical to cold temperate waters (Silberfeld et al. 2013). Most species have a regional distribution, with few confirmed examples of species spanning beyond a single marine realm (sensu Spalding et al. 2007). [Metabolic rates] Net production (NP), gross primary production (GPP) and respiration (R) were measured for all species from the four sites for five different experimental temperatures containing the in-situ temperature during sampling up to a 6ºC warming (see SM Table S3 for details). Individuals of the different species were moved to methacrylate cylinders containing seawater treated with UV radiation to remove bacteria and phytoplankton, in incubation tanks at the 5 selected temperatures. Cylinders were closed using gas-tight lids that prevent gas exchange with the atmosphere, containing an optical dissolved oxygen sensor (ODOS® IKS), with a measuring range from 0-200 % saturation and accuracy at 25ºC of 1% saturation, and magnetic stirrers inserted to ensure mixing along the height of the core. Triplicates were measured for each species and location, along with controls consisting in cylinders filled with the UV-treated seawater, in order to account for any residual production or respiration derived from microorganisms (changes in oxygen in controls was subtracted from treatments). Oxygen was measured continuously and recorded every 15 minutes for 24 hours. Changes in the dissolved oxygen (DO) were assumed to result from the biological metabolic processes and represent NP. During the night, changes in DO are assumed to be driven by R, as in the absence of light, no photosynthetic production can occur. R was calculated from the rate of change in oxygen at night, from half an hour after lights went off to half an hour before light went on (NP in darkness equalled R). NP was calculated from the rate of change in DO, at 15 min intervals, accumulated over each 24 h period. Assuming that daytime R equals that during the night, GPP was estimated as the sum of NP and R. To derive daily metabolic rates, we accumulated individual estimates of GPP, NP, and R resolved at 15 min intervals over each 24 h period during experiments and reported them in mmol O2 m−3 day−1. A detailed description of calculation of metabolic rates can be found at Vaquer-Sunyer et al. (Vaquer-Sunyer et al. 2015). [Thermal distribution and thermal safety margins] We estimated the realised thermal distribution for the four experimental species by downloading occurrence records from the Global Biodiversity Information Facility (GBIF.org (11/03/2020) GBIF Occurrence Download). Occurrence records from GBIF were screened for outliers and distributions were verified from the primary literature (Alberto et al. 2008, Draisma et al. 2010, Ni-Ni-Win et al. 2010, Silberfeld et al. 2013, Telesca et al. 2015, Orellana et al. 2019) and Enrique Ballesteros (pers. comms) (Fig. S1). Mean, 1st and 99th percentiles of daily SST’s were downloaded for each occurrence site for the period between 1981-2019 using the SST products described above (Table S4). Thermal range position of species at each experimental site were standardised by their global distribution using a Range Index (RI; Sagarin & Gaines 2002). Median SST at the experimental collection sites were standardized relative to the thermal range observed across a species realized distribution, using the equation: RI = 2(SM- DM)/DB where SM = the median temperature at the experimental collection site, Dm = the thermal midpoint of the species global thermal distribution and DB = range of median temperatures (ºC) that a species experiences across its distribution. The RI scales from -1 to 1, whereby ‘-1’ represents the cool, leading edge of a species distribution, ‘0’ represents the thermal midpoint of a species distribution and ‘1’ represents the warm, trailing edge of a species distribution (Sagarin & Gaines 2002). Thermal safety margins for each population were calculated as the difference between empirically derived upper thermal limits for each population and the maximum long term habitat temperatures recorded at collection sites. Each population’s thermal safety margin was plotted against its range position to examine patterns in thermal sensitivity across a species distribution. [Growth measurements and statistical analyses] Net growth rate of seagrass shoots was measured using leaf piercing-technique (Short & Duarte 2001). At the beginning of the experiment seagrass shoots were pierced just below the ligule with a syringe needle and shoot growth rate was estimated as the elongation of leaf tissue in between the ligule and the mark position of all leaves in a shoot at the end of the experiment, divided by the experimental duration. Net growth rate of macroalgae individuals was measured as the difference in wet weight at the end of the experiment from the beginning of the experiment divided by the duration of the experiment. Moisture on macroalgae specimens was carefully removed before weighing them. Patterns of growth in response to temperature were examined for each experimental population using a gaussian function: g = ke[-0.5(TMA-μ)2/σ2], where k = amplitude, μ = mean and σ = standard deviation of the curve. Best fit values for each parameter were determined using a non-linear least squares regression using the ‘nlstools’ package (Baty et al. 2015) in R (Team 2020). 95% CI for each of the parameters were calculated using non-parametric bootstrapping of the mean centred residuals. The relationship between growth metrics and the best-fit model was determined by comparing the sum of squared deviations (SS) of the observed data from the model, to the SS of 104 randomly resampled datasets. Growth metrics were considered to display a significant relationship to the best-fit model if the observed SS was smaller than the 5th percentile of randomised SS. Upper thermal limits were defined as the optimal temperature + 2 standard deviations (95th percentile of curve) or where net growth = 0. Samples that had lost all pigment or structural integrity by the end of the experiment were considered dead and any positive growth was treated as zero. Comparative patterns in thermal performance between populations have fundamental implications for a species thermal sensitivity to warming and extreme events. Despite this, within-species variation in thermal performance is seldom measured. Here we compare thermal performance between-species variation within communities, for two species of seagrass (Posidonia oceanica and Cymodocea nodosa) and two species of seaweed (Padina pavonica and Cystoseira compressa). Experimental populations from four locations spanning approximately 75% of each species global distribution and a 6ºC gradient in summer temperatures were exposed to 10 temperature treatments (15ºC to 36ºC), reflecting median, maximum and future temperatures. Experimental thermal performance displayed the greatest variability between species, with optimal temperatures differing by over 10ºC within the same location. Within-species differences in thermal performance were also important for P. oceanica which displayed large thermal safety margins within cool and warm-edge populations and small safety margins within central populations. Our findings suggest patterns of thermal performance in Mediterranean seagrasses and seaweeds retain deep ‘pre-Mediterranean’ evolutionary legacies, suggesting marked differences in sensitivity to warming within and between benthic marine communities. [Sample collection] Sample collections were conducted at two sites, separated by approximately 1 km, within each location. Collections were conducted at the same depth (1-3 m) at each location and were spaced across the reef or meadow to try and minimise relatedness between shoots or fragments. Upon collection, fragments were placed into a mesh bag and transported back to holding tanks in cool, damp, dark conditions (following Bennett et al. 2021). Fragments were kept in aerated holding tanks in the collection sites at ambient seawater temperature and maintained under a 14:10 light-dark cycle until transport back to Mallorca, where experiments were performed. Prior to transport, P. oceanica shoots were clipped to 25 cm length (from meristem to tip), to standardise initial conditions and remove old tissue for transport. For transport back to Mallorca, fragments were packed in layers within cool-boxes. Cool-packs were wrapped in damp tea towels (rinsed in seawater) and placed between layers of samples. Samples from Catalonia, Crete and Cyprus experienced approximately 12hrs of transit time. On arrival at the destination, samples were returned to holding tanks with aerated seawater and a 14:10 light-dark cycle. [Sea temperature measurements and reconstruction] Sea surface temperature data for each collection site were based on daily SST maps with a spatial resolution of 1/4°, obtained from the National Center for Environmental Information (NCEI, https://www.ncdc.noaa.gov/oisst (Reynolds et al. 2007). These maps have been generated through the optimal interpolation of Advanced Very High Resolution Radiometer (AVHRR) data for the period 1981-2019. Underwater temperature loggers (ONSET Hobo pro v2 Data logger) were deployed at each site and recorded hourly temperatures throughout one year. In order to obtain an extended time series of temperature at each collection site, a calibration procedure was performed comparing logger data with sea surface temperature from the nearest point on SST maps. In particular, SST data were linearly fitted to logger data for the common period. Then, the calibration coefficients were applied to the whole SST time series to obtain corrected-SST data and reconstruct daily habitat temperatures from 1981-2019. [Field collections] Thermal tolerance experiments were conducted on two seagrass species (P. oceanica and Cymodocea nodosa) and two brown seaweed species (Cystoseira compressa and P. pavonica) from four locations spanning 8 degrees in latitude and 30 degrees in longitude across the Mediterranean (Fig. 1, Table S1). These four species were chosen as they are dominant foundation species and cosmopolitan across the Mediterranean Sea. Thermal performance experiments from Catalonia and Mallorca were conducted simultaneously in June 2016 for seaweeds (P. pavonica and C. compressa) and in August 2016 for seagrasses (P. oceanica and C. nodosa). Experiments for all four species were conducted in July 2017 for Crete and in September 2017 for Cyprus. Horizon 2020 Framework Programme, Award: 659246; Juan de la Cierva Formacion, Award: FJCI-2016-30728; Spanish Ministry of Economy, Industry and Competitiveness, Award: MedShift, CGL2015-71809-P; Spanish Ministry of Science, Innovation and Universities, Award: SUMAECO, RTI2018-095441-B-C21
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d2547d81r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 19 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d2547d81r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 19 Oct 2022Publisher:Dryad McDowell, Matthew; David, Bruno; Mullett, Russell; Fresløv, Joanna; Delannoy, Jean-Jacques; Mialanes, Jerome; Ash, Jeremy; Crouch, Joe; Petchey, Fiona; Buettel, Jessie; Arnold, Lee;Palaeontological animal bone deposits are rarely investigated through research partnerships where the local First Nations communities have a defining hand in both the research questions asked and the research processes. Here we report research undertaken through such a partnership approach at the iconic archaeological site of Cloggs Cave (GunaiKurnai Country, East Gippsland), in the southern foothills of SE Australia’s Great Dividing Range. A new excavation was combined with detailed chronometric dating, high-resolution 3D mapping, and geomorphological studies. This allowed for the interpretation of a sequence of stratigraphic layers spanning from a lowermost excavated mixed layer dated to between 25,640–48,470 cal BP, to a dense set of uppermost, ash layers dated to between 1460–3360 cal BP. This long and well-dated chronostratigraphic sequence enabled temporal trends in the abundant small mammal remains to be examined. The fossil assemblage consists of at least 31 taxa of mammals which change in proportions through time. Despite clear evidence that the Old Ancestors repeatedly carried vegetation into the cave to fuel cool fires (no visible vegetation grows in Cloggs Cave), we observed little to no evidence of cooking fires or calcined bone, suggesting that people had little involvement with the accumulation of the faunal remains. Small mammal bones were most likely deposited in the cave by large disc-faced owls, Tyto novaehollandae (Masked Owl) or Tyto tenebricosa (Sooty Owl). Despite being well-dated and largely undisturbed, the Cloggs Cave assemblage does not appear to track known Late Quaternary environmental change. Instead, the complex geomorphology of the area fostered a vegetation mosaic that supported mammals with divergent habitat preferences. The faunal deposit suggests a local ancestral landscape characterised by a resilient mosaic of habitats that persisted over thousands of years, signaling that the Old Ancestors burned landscape fires to encourage and manage patches of different vegetation types and ages within and through periods of climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh1893298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 5visibility views 5 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh1893298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 17 Feb 2018Publisher:Dryad Digital Repository Authors: Wade, Ruth N.; Karley, Alison J.; Johnson, Scott N.; Hartley, Sue E.;1. Predicted changes in the frequency and intensity of extreme rainfall events in the UK have the potential to disrupt terrestrial ecosystem function. However, responses of different trophic levels to these changes in rainfall patterns, and the underlying mechanisms, are not well characterised. 2. This study aimed to investigate how changes in both the quantity and frequency of rainfall events will affect the outcome of interactions between plants, insect herbivores (above- and below- ground) and natural enemies. 3. Hordeum vulgare L. plants were grown in controlled conditions and in the field, and subjected to three precipitation scenarios: ambient (based on a local 10 year average rainfall); continuous drought (40% reduction compared to ambient); drought/ deluge (40% reduction compared to ambient at a reduced frequency). The effects of these watering regimes and wireworm (Agriotes species) root herbivory on the performance of the plants, aphid herbivores above-ground (Sitobion avenae, Metapolophium dirhodum and Rhopalosiphum padi), and natural enemies of aphids including ladybirds (Harmonia axyridis) were assessed from measurements of plant growth, insect abundance and mass, and assays of feeding behaviour. 4. Continuous drought decreased plant biomass, whereas reducing the frequency of watering events did not affect plant biomass but did alter plant chemical composition. In controlled conditions, continuous drought ameliorated the negative impact of wireworms on plant biomass. 5. Compared to the ambient treatment, aphid mass was increased by 15% when feeding on plants subjected to drought/ deluge; and ladybirds were 66% heavier when feeding on these aphids but this did not affect ladybird prey choice. In field conditions, wireworms feeding below-ground reduced the number of shoot-feeding aphids under ambient and continuous drought conditions but not under drought/ deluge. 6. Predicted changes in both the frequency and intensity of precipitation events under climate change have the potential to limit plant growth, but reduce wireworm herbivory, while simultaneously promoting above-ground aphid numbers and mass, with these effects transferring to the third trophic level. Understanding the effect of future changes in precipitation on species interactions is critical for determining their potential impact on ecosystem functioning and constructing accurate predictions under global change scenarios. Controlled environment and field experimental dataData file containing all data reported in the paper including plant, soil and insect data from controlled environment and field experiments. First spreadsheet in the data file contains a key to explain all abbreviations used throughout the file.Experimental data.xlsx
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.t6m9m.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.t6m9m.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.CSIRO.ACCESS-ESM1-5.esm-hist' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Australian Community Climate and Earth System Simulator Earth System Model Version 1.5 climate model, released in 2019, includes the following components: aerosol: CLASSIC (v1.0), atmos: HadGAM2 (r1.1, N96; 192 x 145 longitude/latitude; 38 levels; top level 39255 m), land: CABLE2.4, ocean: ACCESS-OM2 (MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), ocnBgchem: WOMBAT (same grid as ocean), seaIce: CICE4.1 (same grid as ocean). The model was run by the Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia (CSIRO) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcsaeeh&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcsaeeh&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Dix, Martin; Bi, Daohua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia M.; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CSIRO-ARCCSS.ACCESS-CM2.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Australian Community Climate and Earth System Simulator Climate Model Version 2 climate model, released in 2019, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N96; 192 x 144 longitude/latitude; 85 levels; top level 85 km), land: CABLE2.5, ocean: ACCESS-OM2 (GFDL-MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), seaIce: CICE5.1.2 (same grid as ocean). The model was run by the CSIRO (Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia), ARCCSS (Australian Research Council Centre of Excellence for Climate System Science). Mailing address: CSIRO, c/o Simon J. Marsland, 107-121 Station Street, Aspendale, Victoria 3195, Australia (CSIRO-ARCCSS) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcsiaccs245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcsiaccs245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 06 May 2022Publisher:Dryad Authors: Castañeda, Irene; Doherty, Tim S.; Fleming, Patricia A.; Stobo-Wilson, Alyson M.; +2 AuthorsCastañeda, Irene; Doherty, Tim S.; Fleming, Patricia A.; Stobo-Wilson, Alyson M.; Woinarski, John C. Z.; Newsome, Thomas M.;Understanding variation in the diet of widely distributed species can help us to predict how they respond to future environmental and anthropogenic changes. We studied the diet of the red fox Vulpes vulpes, one of the world’s most widely distributed carnivores. We compiled dietary data from 217 studies at 276 locations in five continents to assess how fox diet composition varied according to geographic location, climate, anthropogenic impact and sampling method. The diet of foxes showed substantial variation throughout the species’ range, but with a general trend for small mammals and invertebrates to be the most frequently occurring dietary items. The incidence of small and large mammals and birds in fox diets was greater away from the equator. The incidence of invertebrates and fruits increased with mean elevation, while the occurrence of medium-sized mammals and birds decreased. Fox diet differed according to climatic and anthropogenic variables. Diet richness decreased with increasing temperature and precipitation. The incidence of small and large mammals decreased with increasing temperature. The incidence of birds and invertebrates decreased with increasing mean annual precipitation. Higher Human Footprint Index was associated with lower incidence of large mammals and higher incidence of birds and fruit in fox diet. Sampling method influenced fox diet estimation: estimated percentage of small and medium-sized mammals and fruit was lower in studies based on stomach contents, while large mammals were more likely to be recorded in studies of stomach contents than in studies of scats. Our study confirms the flexible and opportunistic dietary behaviour of foxes at the global scale. This behavioural trait allows them to thrive in a range of climatic conditions, and in areas with different degrees of human-induced habitat change. This knowledge can help place the results of local-scale fox diet studies into a broader context and to predict how foxes will respond to future environmental changes. Castañeda et al. 2022 Mammal Review (Variation in red fox Vulpes vulpes diet in five continents)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb2h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 12visibility views 12 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb2h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 20 Sep 2023Publisher:Dryad Limoges, Audrey; Ribeiro, Sofia; Van Nieuwenhove, Nicolas; Jackson, Rebecca; Juggins, Stephen; Crosta, Xavier; Weckström, Kaarina;A Calypso Square gravity core AMD15-Casq1 (543 cm) and corresponding box core (40 cm) were collected in 2015 from the central north NOW (77°15.035’ N, 74°25.500’ W, 692 m water depth) (Figure 1) during the ArcticNet Leg 4a, onboard the Canadian Coast Guard Ship Amundsen. Core chronology: The core chronology is based on 11 accelerator mass spectrometry (AMS) dates on mollusc shells from the Calypso core, and 210Pb and 137Cs measurements on 20 samples from the box core (see Jackson et al. (2021) for more details). Here, all radiocarbon dates were calibrated using the latest marine calibration curve (Marine20; Heaton et al., 2020; Table S1). In Jackson et al. (2021), and using the Marine13 calibration curve, a local reservoir correction of 140 ± 60 years was applied based on measurements from a live marine mollusc specimen collected from the NOW before the mid-1950’s (McNeely & Brennan, 2005). Using the Marine20 calibration curve, this specimen now yields a reservoir offset of –4 ± 60 years. In line with this reduced reservoir offset for the Marine 20 (vs. Marine13) calibration curve, and owing to the lack of a regional ΔR term for the polynya (Pieńkowski et al., 2023), no additional reservoir age correction (i.e., ΔR=0) was applied. A mixed age-depth model was constructed using the bacon-package in R (Blaauw & Christen, 2011). Accordingly, the composite core covers the last ca. 3800 cal years BP. We note that the new calibration only resulted in negligible changes compared to the age model presented in Jackson et al. (2021). Diatom analyses: Sediment samples for diatom analysis were prepared following the protocol described in Crosta et al. (2020). Approximately 0.3 g of dry sediment was treated with an oxidative solution composed of hydrogen peroxide (H2O2), distilled water and tetrasodium pyrophosphate (decahydrate, Na4O7P2-10H2O) in a warm bath (~65°C) for several hours until the reaction ceased. The residue was then rinsed repeatedly with distilled water by centrifugation (7 min at 1200 rpm). Hydrochloric acid (HCl, 30%) was used to remove the carbonate content. The residue was again rinsed several times until neutral pH, and microscopy slides were mounted in Naphrax©. In each sample, ca. 300 diatom valves were identified to the lowest taxonomic level possible. Resting spores of Chaetoceros were counted, but not included in the relative abundance calculations. Census counts were done using a light microscope (Olympus BX53, UNB) with dark field, phase contrast optics and oil immersion, at 1000X magnification. We followed the counting rules presented in Crosta and Koç (2007): specimens were counted when at least half of the valve was observed, with the exception of Rhizosolenia and Thalassiothrix taxa that were only counted when the spine-like proboscis or appendix was visible, respectively. The Pikialasorsuaq (North Water polynya) is an area of local and global cultural and ecological significance. However, over the last decades, the region has been subject to rapid warming and, in some recent years, the seasonal ice arch that has historically defined the polynya’s northern boundary has failed to form. Both factors are deemed to alter the polynya’s ecosystem functioning. To understand how climate-induced changes to the Pikialasorsuaq impact the basis of the marine food web, we explored diatom community-level responses to changing conditions, from a sediment core spanning the last 3800 years. Four metrics were used: total diatom concentrations, taxonomic composition, mean size, and diversity. Generalized additive model statistics highlight significant changes at ca. 2400, 2050, 1550, 1200, and 130 cal years BP, all coeval with known transitions between colder and warmer intervals of the Late Holocene, and regime shifts in the Pikialasorsuaq. Notably, a weaker/contracted polynya during the Roman Warm Period and Medieval Climate Anomaly caused the diatom community to reorganize via shifts in species composition, with the presence of larger taxa but lower diversity, and significantly reduced export production. This study underlines the high sensitivity of primary producers to changes in the polynya dynamics and illustrates that the strong pulse of early-spring cryopelagic diatoms that makes the Pikialasorsuaq exceptionally productive may be jeopardized by rapid warming and associated Nares Strait ice arch destabilization. Future alterations to the phenology of primary producers may disproportionately impact higher trophic levels and keystone species in this region, with implications for Indigenous Peoples and global diversity. # Marine diatoms record Late Holocene regime shifts in the Pikialasorsuaq ecosystem [https://doi.org/10.5061/dryad.cz8w9gj8p](https://doi.org/10.5061/dryad.cz8w9gj8p) This dataset includes diatom counts (relative abundances, %) from core AMD15-Casq1. Diatoms were analyzed at a 1 to 10 cm sampling interval, which corresponds to an effective age resolution ranging from ca. 3 to 64 years (mean: 31 years). Absolute abundances are reported in valves per g of dry sediment. Fluxes were calculated by combining diatom concentrations (valves and spores g-1) with mass accumulation rates (g cm-2 yr-1). ## Description of the data and file structure Diatom data are presented against depth and modelled age (years BP) in the sediment archive. ## Sharing/Access information n/a ## Code/Software n/a
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cz8w9gj8p&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cz8w9gj8p&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Mehta, Piyush; Siebert, Stefan; Kummu, Matti; Deng, Qinyu; Ali, Tariq; Marston, Landon; Xie, Wei; Davis, Kyle;The expansion of irrigated agriculture has increased global crop production but resulted in widespread stress to freshwater resources. Ensuring that increases in irrigated production only occur in places where water is relatively abundant is a key objective of sustainable agriculture, and knowledge of how irrigated land has evolved is important for measuring progress towards water sustainability. Yet a spatially detailed understanding of the evolution of global area equipped for irrigation (AEI) is missing. Here we utilize the latest sub-national irrigation statistics (covering 17298 administrative units) from various official sources to develop a gridded (5 arc-min resolution) global product of AEI for the years 2000, 2005, 2010, and 2015. We find that AEI increased by 11% from 2000 (297 Mha) to 2015 (330 Mha) with locations of both substantial expansion (e.g., northwest India, northeast China) and decline (e.g., Russia). Combining these outputs with information on green (i.e., rainfall) and blue (i.e., surface and ground) water stress, we also examine to what extent irrigation has expanded unsustainably (i.e., in places already experiencing water stress). We find that more than half (52%) of irrigation expansion has taken place in regions that were already water stressed, with India alone accounting for 36% of global unsustainable expansion. These findings provide new insights into the evolving patterns of global irrigation with important implications for global water sustainability and food security. Recommended citation: Mehta, P., Siebert, S., Kummu, M. et al. Half of twenty-first century global irrigation expansion has been in water-stressed regions. Nat Water (2024). https://doi.org/10.1038/s44221-024-00206-9 Open-access peer reviewed publication available at https://www.nature.com/articles/s44221-024-00206-9 Files G_AEI_*.ASC were produced using the GMIA dataset[https://data.apps.fao.org/catalog/iso/f79213a0-88fd-11da-a88f-000d939bc5d8]. Files MEIER_G_AEI_*.ASC were produced using Meier et al. (2018) dataset [https://doi.pangaea.de/10.1594/PANGAEA.884744].
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6740334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2Kvisibility views 1,826 download downloads 1,165 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6740334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Hutchinson, David K; Coxall, Helen K.; Lunt, Daniel J.; Steinthorsdottir, Margret; +18 AuthorsHutchinson, David K; Coxall, Helen K.; Lunt, Daniel J.; Steinthorsdottir, Margret; de Boer, Agatha M.; Baatsen, Michiel; von der Heydt, Anna; Huber, Matthew; Kennedy-Asser, Alan T.; Kunzmann, Lutz; Ladant, Jean-Baptiste; Lear, Caroline H.; Moraweck, Karolin; Pearson, Paul N.; Piga, Emanuela; Pound, Matthew J.; Salzmann, Ulrich; Scher, Howie D.; Sijp, Willem P.; Sliwinska, Kasia K.; Wilson, Paul A.; Zhang, Zongshi;This data package contains data used for an model-data intercomparison originally published in: D. K. Hutchinson, H. K. Coxall, D. J. Lunt, M. Steinthorsdottir, A. M. de Boer, M. Baatsen, A. von der Heydt, M. Huber, A. T. Kennedy-Asser, L. Kunzmann, J.-B. Ladant, C. H. Lear, K. Moraweck, P. N. Pearson, E. Piga, M. J. Pound, U. Salzmann, H. D. Scher, W. P. Sijp, K. K. Śliwińska, P. A. Wilson, and Z. Zhang, 2021: The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons, Climate of the Past, 17, 269-315. https://doi.org/10.5194/cp-17-269-2021 These data are also used in a further model-data intercomparison of Antarctic temperatures: Emily Tibbett, Natalie J Burls, David K. Hutchinson, Sarah J Feakins, (2023), Proxy-Model Comparison for the Eocene-Oligocene Transition in Southern High Latitudes, Paleoceanography and Paleocliamtology, In Review. Pre-print avaiable from: https://www.authorea.com/doi/full/10.1002/essoar.10511735.2 The package contains surface air temperature and sea surface temperature from an ensemble of model simulations of the Eocene-Oligocene transition. These data are provided at annual and monthly frequency. They are also provided on the original model grid, and an interpolated common grid used for the intercomparison. (The common grid is based on the HadCM3BL model grid.) All data are provided in NETCDF format with self-describing variable names. The name and explanation of the interpolated data files are contained in: table_of_experiments.xlsx Please read that spreadsheet to interpret the filenames, and see Table 2 (p291) of Hutchinson et al (2021) for experiment descriptions. Please also be mindful to cite the original authors of the simulations when using these data, whose work made this dataset possible. The appropriate citations are listed below: Reference DOI link Baatsen et al (2020) https://doi.org/10.5194/cp-16-2573-2020 Goldner et al (2014) https://doi.org/10.1038/nature13597 Ladant et al (2014a,b) https://doi.org/10.5194/cp-10-1957-2014 https://doi.org/10.1002/2013PA002593 Hutchinson et al (2018, 2019) https://doi.org/10.5194/cp-14-789-2018 https://doi.org/10.1038/s41467-019-11828-z Kennedy et al (2015) https://doi.org/10.1098/rsta.2014.0419 Zhang et al (2012, 2014) https://doi.org/10.5194/gmd-5-523-2012 https://doi.org/10.1038/nature13705 Sijp et al (2009) https://doi.org/10.1175/2009JCLI3003.1
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7540321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 85visibility views 85 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7540321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 29 Mar 2022Publisher:Dryad Robinson, Sinikka; O'Gorman, Eoin; Frey, Beat; Hagner, Marleena; Mikola, Juha;Study site This is a dataset of soil physiochemical properties, bacterial and fungal abundance, and above and belowground plant and invertebrate biomass, sampled at 40 soil plots in the Hengill geothermal valley, Iceland, from 15th to 22nd August 2018. The plots, measuring approximately 1 m2, evenly span a temperature gradient of 10-35°C. The dataset also includes data on the decomposition rate of soil organic matter, which was sampled at 60 plots in the Hengill valley from May to July 2015 (see Robinson et al. 2021 for plot details and sampling regime). Soil properties Soil temperature was measured at 5 cm depth at each plot on 15th, 18th, and 22nd August, and a mean plot temperature calculated. Soil physiochemical properties were analysed from 3 soil cores of 3 cm in diameter, taken from the upper 10 cm soil stratum at each plot; one quarter of each subsample was pooled to obtain an estimate per plot. Aboveground plant matter, excluding roots, were removed from each core. Percentage soil moisture was calculated by measuring the weight of one pooled soil sample before and after drying for 24 h in a 70°C drying oven. Soil pH was obtained from 20 g of the dry soil by adding 100 ml distilled water, shaking for 5 min on 150 rpm, letting the sample stand for 2 h, and measuring soil pH from the water layer using an InoLab pH 720 (WTW) probe. Soil PO4, NH4, and NO3 concentrations were analysed from a second pooled soil; 60 g of fresh soil was extracted in 100 ml distilled water, filtered through a GF/C (1.2μm) glass microfiber filter (Whatman, GE Healthcare Europe GmbH), and analysed using a Lachat QuikChem 8000 analyser (Zallweger Analytics, Inc., Lachat Instruments Division, USA). Total mineral N was calculated as the sum of NH4 and NO3. Soil organic matter content (excluding dry root biomass) was calculated as the weight lost from an oven dried (105°C for 24 hours) soil sample after heating at 550 °C for 5 h. Decomposition rate of soil organic matter was measured using the Cotton-strip Assay method (Tiegs et al. 2013) by placing a 2.5 cm x 8 cm strip of Fredrix-brand unprimed 12-oz. heavyweight cotton fabric (Style #548) 5 cm belowground at 60 plots, concurrently with a Maxim Integrated DS1921G Thermocron iButton temperature logger, on 13th May 2015. The strips were collected on 3rd July, rinsed with stream water to remove residual soil, soaked in 96% ethanol for 30 seconds to kill bacteria and halt decomposition, and dried at 60 °C for 12 h. Using a universal testing machine (Instron 5866 with 500 kN tensile holding clamps), maximum tensile strench of each cotton strip was measured. % tensile loss (proxy for decomposition) was calculated as (C-T) / C x 100, where T is the maximum tensile strength for each strip collected from the field, and C is the mean tensile strength of seven control strips, which had not been placed in the ground. See Robinson et al. 2021 for detailed description of plots sampled in 2015. Microbial abundance Bacterial and fungal abundance was estimated from additional soil cores of 3 cm in diameter taken from the upper 4 cm soil stratum (including the litter layer) at each plot. DNA was extracted using the PowerSoil DNA Isolation Kit (Qiagen, Germany). DNA was quantified using the high-sensitivity Qubit assay (Thermo Fisher Scientific, Switzerland). Relative abundances of bacterial and fungal communities were determined by quantitative PCR (qPCR) on an ABI7500 Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, USA). PCR amplification of partial bacterial small-subunit ribosomal RNA genes (region V1–V3 of 16S; primers 27F and 512R) and fungal ribosomal internal transcribed spacers (region ITS2; primers IT3 and ITS4) was performed as described previously (Frey et al. 2020, Frey et al. 2021). For qPCR analyses, 2.5 ng DNA in a total volume of 6.6 µL and 8.4 µL GoTaq qPCRMaster Mix (Promega, Switzerland), containing 1.8 mM of each primer and 0.2 mg mL-1 of BSA, were used. The PCR conditions consisted of an initial denaturation at 95 ºC for 10 min, 40 cycles of denaturation at 95 ºC for 40 s, annealing at 58 ºC for 40 s and elongation at 72 ºC for 60 s followed by the final data acquisition step at 80 ºC for 60 s. The specificity of the amplification products was confirmed by melting-curve analysis. Three standard curves per target region (correlations ≥0.997) were obtained using tenfold serial dilutions (10-1 to 10-9 copies) of plasmids generated from cloned targets (Frey et al. 2020). Data were converted to represent the average copy number of targets per μg DNA and per g soil. Vegetation properties Vascular plant biomass was measured from a randomly placed 30 x 30 cm quadrat at each plot. To measure aboveground biomass (AGB) of plants, the aboveground layer of vegetation was cut and removed, dried at 70 °C for 24 h and weighed to obtain biomass per unit area. AGB was estimated as the biomass of graminoids plus forbs; total biomass of mosses was also estimated. Graminoid leaf N concentration was analysed from dried and ground leaf material using a LECO CNS-2000 analyser (LECO Corporation, Saint Joseph, MI, USA). Belowground biomass (BGB) of vascular plants was estimated from a soil core of 3 cm in diameter taken from the 10 cm upper soil stratum (excluding aboveground plant material) at each quadrat. Roots were extracted from the soil cores by rinsing in water using a 250-μm sieve, dried at 70 °C for 24 hours and weighed to obtain biomass per unit area. Root to shoot ratio was calculated as dry weight of BGB per cm2 divided by dry weight of AGB per cm2, and the total vascular plant biomass as the sum of AGB and BGB. Invertebrate community Enchytraied and nematode biomass was estimated from 3 soil cores of 3 cm in diameter taken from the upper 4 cm soil stratum (including litter layer) at each plot. Enchytraieds were extracted using wet funnels (O'Connor 1962) from a pooled sample of one half of each of the three soil cores, counted live, and classified into size classes (length 0-2, 2.1-4, 4.1-6, 6.1-8, 8.1-10, 10.1-12 or >12 mm) and their biomass was calculated according to Abrahamsen (1973). Nematodes were also extracted using wet funnels (Sohlenius 1979) from a pooled sample of a quarter of each of the three soil cores, counted live and preserved in 70% ethanol. Fifty individuals from each sample were identified and classified by trophic group (bacterivore, fungivoe, herbivore, omnivore, predator; Yeates et al. 1993). Soil micro-arthropods were extracted using a modified high-gradient-extractor (MacFayden 1961) from soil cores of 5.4 cm in diameter, taken from the upper 4 cm soil straum (including litter layer) at each plot. Total micro-arthropod biomass was calculated as the sum of all individual species' biomasses, obtained using length-weight regressions (see Robinson et al. 2021), and abundance of individual trophic groups (microbivore/detritivore, herbivore, omnivore, predator) calculated. Epigeal invertebrates were sampled by deploying five pitfall traps in each plot. White plastic cups of 7 cm in diameter and 8.5 cm in depth were filled with 10 ml of ethylene glycol and 30 ml of stream water, and left for 48 h before collection. Samples from the five traps at each plot were combined into a 250-μm sieve and stored in 70% ethanol. Invertebrate activity density (abundance) was estimate as the total number of individuals in the five traps, and total biomass as the sum of all individual species' biomasses. Invertebrates were identified to species level where possible and split into trophic groups, exluding adult Diptera, Hymenoptera, and Lepidoptera. Further details of sampling and collection of epigeal invertebrates are detailed in Robinson et al. (2018). References: Abrahamsen G. (1973) Studies on body-volume, body-surface area, density, and live weight of enchytraeidae (Oligochaeta). Pedobiologia 13: 6–15. Frey B, Carnol M, Dharmarajah A, Brunner I, Schleppi P. (2020) Only minor changes in the soil microbiome of a sub-alpine forest after 20 years of moderately increased nitrogen loads. Frontiers in Forests and Global Change 3: 77. Frey B, Walthert L, Perez-Mon C, Stierli B, Köchli R, Dharmarajah A, Brunner I (2021) Deep soil layers of drough-exposed forests harbor poorly known bacterial and fungal communities. Frontiers in Microbiology 12: 1061. MacFayden A. (1961) Improved funnel-type extractors for soil arthropods. Journal of Animal Ecology 30: 171–184. O’Connor FB. (1962) The extraction of Enchytraeidae from soil. In: P. W. Murphy (Ed.) Progress in soil zoology. Butterworth, London, UK; 279–285. Robinson SI, McLaughlin ÓB, Marteinsdóttir B, O'Gorman EJ. (2018) Soil temperature effects on the structure and diversity of plant and invertebrate communities in a natural warming experiment. Journal of Animal Ecology 87: 634–46. Robinson SI, Mikola J, Ovaskainen O, O’Gorman EJ. (2021) Temperature effects on the temporal dynamics of a subarctic invertebrate community. Journal of Animal Ecology 90: 1217-1227. Sohlenius B. (1979) A carbon budget for nematodes, rotifers and tardigrades in a Swedish coniferous forest soil. Holarctic Ecology 2: 30–40. Tiegs SD, Clapcott JE, Griffiths NA, Boulton AJ. (2013) A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecological Indicators 32: 131–139. Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS. (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. Journal of Nematology 25: 315–331. This is a dataset of soil physiochemical properties, bacterial and fungal abundance, and above and belowground plant and invertebrate biomass, sampled at 40 plots in the Hengill geothermal valley, Iceland, from 15th to 22nd August 2018. The plots span a temperature gradient of 10-35 °C over the sampling period, and this temperature gradient is consistent over time. The dataset also includes data on the decomposition rate of soil organic matter, which was sampled at 60 plots in the Hengill valley from May to July 2015. See README_Robinson_Hengill2018.txt
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.rxwdbrvbd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 32visibility views 32 download downloads 21 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.rxwdbrvbd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu