- home
- Search
- Energy Research
- 11. Sustainability
- 7. Clean energy
- GB
- AU
- SA
- Sustainability
- Energy Research
- 11. Sustainability
- 7. Clean energy
- GB
- AU
- SA
- Sustainability
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:UKRI | Assessing the feasibility...UKRI| Assessing the feasibility of vertical farming for second generation bioenergy cropsAuthors:Zoe M. Harris;
Zoe M. Harris
Zoe M. Harris in OpenAIREYiannis Kountouris;
Yiannis Kountouris
Yiannis Kountouris in OpenAIREdoi: 10.3390/su12198193
The Intergovernmental Panel on Climate Change (IPCC) report that to limit warming to 1.5 °C, Bioenergy with Carbon Capture and Storage (BECCS) is required. Integrated assessment models (IAMS) predict that a land area between the size of Argentina and Australia is required for bioenergy crops, a 3–7 time increase in the current bioenergy planting area globally. The authors pose the question of whether vertical farming (VF) technology can enable BECCS deployment, either via land sparing or supply. VF involves indoor controlled environment cultivation, and can increase productivity per unit land area by 5–10 times. VF is predominantly being used to grow small, high value leafy greens with rapid growth cycles. Capital expenditure, operational expenditure, and sustainability are challenges in current VF industries, and will affect the ability to utilise this technology for other crops. The authors argue that, whilst challenging, VF could help reach wider climate goals. Application of VF for bioenergy crops could be a game changer in delivering BECCS technologies and may reduce the land footprint required as well as the subsequent associated negative environmental impacts. VF bioenergy could allow us to cultivate the future demand for bioenergy for BECCS on the same, or less, land area than is currently used globally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Jing Ma;
Zhanbin Luo;Fu Chen;
Qianlin Zhu;Shaoliang Zhang;
Shaoliang Zhang
Shaoliang Zhang in OpenAIREGang-Jun Liu;
Gang-Jun Liu
Gang-Jun Liu in OpenAIREdoi: 10.3390/su10082804
A new environmental ban has forced the restructure of open dumps in China since 1 July 2011. A technical process was established in this study that is feasible for the upgrade of open dumps through restructuring. The feasibility of restructuring and the benefit of greenhouse gas emission reductions were assessed according to field surveys of five landfills and four dumps in Nanjing. The results showed that the daily processing capacities of the existing landfills have been unable to meet the growth of municipal solid waste (MSW), making restructuring of the landfills imperative. According to an assessment of the technical process, only four sites in Nanjing were suitable for upgrading. Restructuring the Jiaozishan landfill effectively reduced the leachate generation rate by 5.84% under its scale when expanded by 60.7% in 2015. CO2 emissions were reduced by approximately 55,000–86,000 tons per year, in which biogas power generation replaced fossil fuels Fossil fuels accounted for the largest proportion, up to 45,000–60,000 tons. Photovoltaic power generation on the overlying land has not only reduced CO2 emissions to 26,000–30,000 tons per year but has also brought in continuing income from the sale of electricity. The funds are essential for developing countries such as China, which lack long-term financial support for landfill management after closure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10082804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10082804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAuthors:Kamalakanta Sahoo;
Kamalakanta Sahoo
Kamalakanta Sahoo in OpenAIRERichard Bergman;
Sevda Alanya-Rosenbaum;Richard Bergman
Richard Bergman in OpenAIREHongmei Gu;
+1 AuthorsHongmei Gu
Hongmei Gu in OpenAIREKamalakanta Sahoo;
Kamalakanta Sahoo
Kamalakanta Sahoo in OpenAIRERichard Bergman;
Sevda Alanya-Rosenbaum;Richard Bergman
Richard Bergman in OpenAIREHongmei Gu;
Shaobo Liang;Hongmei Gu
Hongmei Gu in OpenAIREdoi: 10.3390/su11174722
Climate change, environmental degradation, and limited resources are motivations for sustainable forest management. Forests, the most abundant renewable resource on earth, used to make a wide variety of forest-based products for human consumption. To provide a scientific measure of a product’s sustainability and environmental performance, the life cycle assessment (LCA) method is used. This article provides a comprehensive review of environmental performances of forest-based products including traditional building products, emerging (mass-timber) building products and nanomaterials using attributional LCA. Across the supply chain, the product manufacturing life-cycle stage tends to have the largest environmental impacts. However, forest management activities and logistics tend to have the greatest economic impact. In addition, environmental trade-offs exist when regulating emissions as indicated by the latest traditional wood building product LCAs. Interpretation of these LCA results can guide new product development using biomaterials, future (mass) building systems and policy-making on mitigating climate change. Key challenges include handling of uncertainties in the supply chain and complex interactions of environment, material conversion, resource use for product production and quantifying the emissions released.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Igor Martek;M. Hosseini;
M. Hosseini
M. Hosseini in OpenAIREAsheem Shrestha;
Asheem Shrestha
Asheem Shrestha in OpenAIREEdmundas Zavadskas;
+1 AuthorsEdmundas Zavadskas
Edmundas Zavadskas in OpenAIREIgor Martek;M. Hosseini;
M. Hosseini
M. Hosseini in OpenAIREAsheem Shrestha;
Asheem Shrestha
Asheem Shrestha in OpenAIREEdmundas Zavadskas;
Stewart Seaton;Edmundas Zavadskas
Edmundas Zavadskas in OpenAIREdoi: 10.3390/su10040981
Sustainability has emerged, arguably, as the premiere mission of contemporary architecture. Green assessment tools abound, consultancy services flourish, buildings are marketed on the basis of sustainability performance, and government, media, and corporations seem preoccupied with assessing the quality of the built environment through a green lens. Yet for all the effort, and indeed for all the progress made, fundamental issues resistant to the structural change that is essential for genuine sustainability remain. This paper reviews the state of play of sustainability across the urban landscape. It considers the road travelled so far, and points out some of the major challenges that lie ahead.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10040981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10040981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Tingting Liu;Xiaoxian Zhu;
Xiaoxian Zhu
Xiaoxian Zhu in OpenAIREMengqiu Cao;
Mengqiu Cao
Mengqiu Cao in OpenAIREdoi: 10.3390/su142114112
Although the United Nations’ Sustainable Development Goals (SDGs) advocate, through SDG 4 and SDG 10, equitable quality education and the reduction of inequalities within and between countries, respectively, few studies have examined how inequalities in regional sustainability influence higher education. Therefore, this study aims to examine the relationship between regional sustainability and higher education in China using fixed-effects panel modelling. A systematic force framework showing how regional sustainability drives higher education was constructed from economic, social, and environmental perspectives, and the endogeneity in the process of how regional sustainability affects higher education was explored by introducing one-year lagged values as instrumental variables. Our results show that regional sustainability has a significant impact on higher educational attainment in China, with differing effects in the eastern, central, and western regions, respectively. In central China, economic sustainability plays a significant positive role in higher educational attainment; in the western region, economic and social sustainability have stronger positive effects, while environmental sustainability has significantly negative effects. In terms of policy implications, our findings can be used to support regional development policies to promote regional higher education.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142114112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142114112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:MDPI AG Authors:Mahima Kalla;
Micheal Jerowsky;Mahima Kalla
Mahima Kalla in OpenAIREBenjamin Howes;
Benjamin Howes
Benjamin Howes in OpenAIREAnn Borda;
Ann Borda
Ann Borda in OpenAIREhandle: 11343/324347
A key determinant and outcome of successful environmental education is ‘pro-environmental behavior’, i.e., behavior that involves conscious action to mitigate adverse environmental impacts at personal or community level, e.g., reducing resource consumption and waste generation, avoiding toxic substances, and organizing community awareness initiatives. However, some theorists have sought to move away from rationalist models of behavioral modification, towards holistic pedagogical initiatives that seek to develop action competence. In light of the global push towards achievement of the Sustainable Development Goals (SDGs), emerging evidence suggests that education initiatives should foster action competence so students may be equipped to contribute to sustainable development as part of their education. The UNESCO Education for Sustainable Development (ESD) Roadmap 2030 has also identified key priority areas to strengthen ESD in formal curricula. This article reports two informal environmental education initiatives for promoting action competence and pro-environmental behaviors in school-aged children. The authors recommend that formal education settings (e.g., schools) should incorporate self-directed, free-choice project-based learning to augment environmental education programs and promote students’ action competence for contribution to attainment of SDGs. To this end, we propose a Free-Choice Project-based Learning for Action Competence in Sustainable Development (ACiSD) Curriculum, comprising six implementation dimensions, namely: (1) project duration and teaming arrangements, (2) topic selection, (3) student support, (4) teacher support, (5) learning environments, and (6) digital access and equity. For each implementation dimension, we recommend action steps to help educators implement this curriculum in their own educational settings, with the aid of an illustrative worked example.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/324347Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142316315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/324347Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142316315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Shahira Assem Abdel-Razek;
Shahira Assem Abdel-Razek
Shahira Assem Abdel-Razek in OpenAIREHanaa Salem Marie;
Hanaa Salem Marie
Hanaa Salem Marie in OpenAIREAli Alshehri;
Ali Alshehri
Ali Alshehri in OpenAIREOmar M. Elzeki;
Omar M. Elzeki
Omar M. Elzeki in OpenAIREdoi: 10.3390/su14137734
Room occupancy prediction based on indoor environmental quality may be the breakthrough to ensure energy efficiency and establish an interior ambience tailored to each user. Identifying whether temperature, humidity, lighting, and CO2 levels may be used as efficient predictors of room occupancy accuracy is needed to help designers better utilize the readings and data collected in order to improve interior design, in an effort to better suit users. It also aims to help in energy efficiency and saving in an ever-increasing energy crisis and dangerous levels of climate change. This paper evaluated the accuracy of room occupancy recognition using a dataset with diverse amounts of light, CO2, and humidity. As classification algorithms, K-nearest neighbors (KNN), hybrid Adam optimizer–artificial neural network–back-propagation network (AO–ANN (BP)), and decision trees (DT) were used. Furthermore, this research is based on machine learning interpretability methodologies. Shapley additive explanations (SHAP) improve interpretability by estimating the significance values for each feature for classifiers applied. The results indicate that the KNN performs better than the DT and AO-ANN (BP) classification models have 99.5%. Though the two classifiers are designed to evaluate variations in interpretations, we must ensure that they have accurate detection. The results show that SHAP provides successful implementation following these metrics, with differences detected amongst classifier models that support the assumption that model complexity plays a significant role when predictability is taken into account.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14137734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14137734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG doi: 10.3390/su15010500
The environmental control and management of municipal solid waste (MSW) dumping sites is considered one of the sensitive challenges faced by executive municipalities. This is especially true in Makkah due to the gradual increase in urban population and visitors, with an overall MSW generation of about one million tons per year. Consequently, the geo-environmental evaluation of the Kaakia dumping site shed light on the potential environmental threats, in terms of ambient air quality levels and meteorological parameters, in addition to geophysical inspection. An air quality survey discussed the major trends of ambient air pollutants (SO2, NO2, CO, O3, CH4, and PM10) downwind from the Kaakia dumping site. It indicated the presence of a significant increase in sporadic plumes of Methane concentration. The maximum hourly averages ranged between 22.9–26.6 µg/m3 for SO2, 44.4–64.0 µg/m3 for NO2, 0.86–1.38 mg/m3 for CO, 150.2–158.8 µg/m3 for O3, 5.09–5.9 ppm for CH4, and 955–994 µg/m3 for PM10. The ground penetrating radar (GPR) geophysical survey indicated the subsurface sequence of three geological layers, as confirmed by nearby bores of the investigated site: (1) a surface layer formed of alluvial sediments of sand, which were 2.5–3.1 m thick; (2) a second layer represented by sand and gravel, with a thickness of 4.6–6.5 m; and (3) a third layer equivalent to saturated alluvial sediments mixed with rock fragments that extended to a depth of 13 m. The signals of the GPR were attenuated at the base of the conducted profiles due to the percolation of generated leachate to the subsurface sequence and contaminated groundwater aquifer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15010500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15010500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015Publisher:MDPI AG Authors: Sadroddin Alavipanah;Martin Wegmann;
Martin Wegmann
Martin Wegmann in OpenAIRESalman Qureshi;
Salman Qureshi
Salman Qureshi in OpenAIREQihao Weng;
+1 AuthorsQihao Weng
Qihao Weng in OpenAIRESadroddin Alavipanah;Martin Wegmann;
Martin Wegmann
Martin Wegmann in OpenAIRESalman Qureshi;
Salman Qureshi
Salman Qureshi in OpenAIREQihao Weng;
Qihao Weng
Qihao Weng in OpenAIREThomas Koellner;
Thomas Koellner
Thomas Koellner in OpenAIREdoi: 10.3390/su7044689
The Urban Heat Island (UHI) is the phenomenon of altered increased temperatures in urban areas compared to their rural surroundings. UHIs grow and intensify under extreme hot periods, such as during heat waves, which can affect human health and also increase the demand for energy for cooling. This study applies remote sensing and land use/land cover (LULC) data to assess the cooling effect of varying urban vegetation cover, especially during extreme warm periods, in the city of Munich, Germany. To compute the relationship between Land Surface Temperature (LST) and Land Use Land Cover (LULC), MODIS eight-day interval LST data for the months of June, July and August from 2002 to 2012 and the Corine Land Cover (CLC) database were used. Due to similarities in the behavior of surface temperature of different CLCs, some classes were reclassified and combined to form two major, rather simplified, homogenized classes: one of built-up area and one of urban vegetation. The homogenized map was merged with the MODIS eight-day interval LST data to compute the relationship between them. The results revealed that (i) the cooling effect accrued from urban vegetation tended to be non-linear; and (ii) a remarkable and stronger cooling effect in terms of LST was identified in regions where the proportion of vegetation cover was between seventy and almost eighty percent per square kilometer. The results also demonstrated that LST within urban vegetation was affected by the temperature of the surrounding built-up and that during the well-known European 2003 heat wave, suburb areas were cooler from the core of the urbanized region. This study concluded that the optimum green space for obtaining the lowest temperature is a non-linear trend. This could support urban planning strategies to facilitate appropriate applications to mitigate heat-stress in urban area.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7044689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 134 citations 134 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7044689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Jehangir Arshad;
Jehangir Arshad
Jehangir Arshad in OpenAIREAteeq Ur Rehman;
Ateeq Ur Rehman
Ateeq Ur Rehman in OpenAIREMohamed Tahar Ben Othman;
Muhammad Ahmad; +5 AuthorsMohamed Tahar Ben Othman
Mohamed Tahar Ben Othman in OpenAIREJehangir Arshad;
Jehangir Arshad
Jehangir Arshad in OpenAIREAteeq Ur Rehman;
Ateeq Ur Rehman
Ateeq Ur Rehman in OpenAIREMohamed Tahar Ben Othman;
Muhammad Ahmad; Hassaan Bin Tariq; Muhammad Abdullah Khalid; Muhammad Abdul Rehman Moosa;Mohamed Tahar Ben Othman
Mohamed Tahar Ben Othman in OpenAIREMuhammad Shafiq;
Muhammad Shafiq
Muhammad Shafiq in OpenAIREHabib Hamam;
Habib Hamam
Habib Hamam in OpenAIREdoi: 10.3390/su14106249
This study aimed to realize Sustainable Development Goals (SDGs), i.e., no poverty, zero hunger, and sustainable cities and communities through the implementation of an intelligent cattle-monitoring system to enhance dairy production. Livestock industries in developing countries lack the technology that can directly impact meat and dairy products, where human resources are a major factor. This study proposed a novel, cost-effective, smart dairy-monitoring system by implementing intelligent wireless sensor nodes, the Internet of Things (IoT), and a Node-Micro controller Unit (Node-MCU). The proposed system comprises three modules, including an intelligent environmental parameter regularization system, a cow collar (equipped with a temperature sensor, a GPS module to locate the animal, and a stethoscope to update the heart rate), and an automatic water-filling unit for drinking water. Furthermore, a novel IoT-based front end has been developed to take data from prescribed modules and maintain a separate database for further analysis. The presented Wireless Sensor Nodes (WSNs) can intelligently determine the case of any instability in environmental parameters. Moreover, the cow collar is designed to obtain precise values of the temperature, heart rate, and accurate location of the animal. Additionally, auto-notification to the concerned party is a valuable addition developed in the cow collar design. It employed a plug-and-play design to provide ease in implementation. Moreover, automation reduces human intervention, hence labor costs are decreased when a farm has hundreds of animals. The proposed system also increases the production of dairy and meat products by improving animal health via the regularization of the environment and automated food and watering. The current study represents a comprehensive comparative analysis of the proposed implementation with the existing systems that validate the novelty of this work. This implementation can be further stretched for other applications, i.e., smart monitoring of zoo animals and poultry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14106249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14106249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu