- home
- Search
- Energy Research
- engineering and technology
- AU
- OceanRep
- Energy Research
- engineering and technology
- AU
- OceanRep
description Publicationkeyboard_double_arrow_right Article , Journal 2014 Germany, United KingdomPublisher:Elsevier BV Funded by:UKRI | Predicting the fate of CO...UKRI| Predicting the fate of CO2 in geological reservoirs for modelling geological carbon storageRalf R. Haese; L. Truche; Kevin G. Knauss; S. Mito; Sebastian Fischer; Axel Liebscher; Damien Daval; Christian Deusner; M. Schmidt; Angela Goodman; Christopher A. Rochelle; Athanasios K. Karamalidis; Athanasios K. Karamalidis; Masao Sorai; Christian Ostertag-Henning; Giuseppe D. Saldi; Gemma Purser; Nikolaus Bigalke; Robert J. Rosenbauer; B. Thomas; Jörgen Rosenqvist; Jonathan P. Icenhower; Craig Griffith; Bruce W. D. Yardley; Sheila W. Hedges; Robert Dilmore; Jay R. Black; Andrew D. Kilpatrick; Andrew D. Kilpatrick; Matthias Haeckel; A. Risse;AbstractDue to the strong interest in geochemical CO2-fluid-rock interaction in the context of geological storage of CO2 a growing number of research groups have used a variety of different experimental ways to identify important geochemical dissolution or precipitation reactions and – if possible – quantify the rates and extent of mineral or rock alteration. In this inter-laboratory comparison the gas-fluid-mineral reactions of three samples of rock-forming minerals have been investigated by 11 experimental labs. The reported results point to robust identification of the major processes in the experiments by most groups. The dissolution rates derived from the changes in composition of the aqueous phase are consistent overall, but the variation could be reduced by using similar corrections for changing parameters in the reaction cells over time. The comparison of experimental setups and procedures as well as of data corrections identified potential improvements for future gas-fluid-rock studies.
OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 download downloads 3 Powered bymore_vert OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017Embargo end date: 01 Jan 2017 France, Germany, United States, United Kingdom, United Kingdom, United Kingdom, United Kingdom, United States, Norway, United StatesPublisher:Copernicus GmbH Funded by:NSERC, EC | CDREG, EC | METLAKE +3 projectsNSERC ,EC| CDREG ,EC| METLAKE ,EC| MACC II ,EC| MACC-III ,RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyM. Saunois; P. Bousquet; B. Poulter; A. Peregon; P. Ciais; J. G. Canadell; E. J. Dlugokencky; G. Etiope; G. Etiope; D. Bastviken; S. Houweling; S. Houweling; G. Janssens-Maenhout; F. N. Tubiello; S. Castaldi; S. Castaldi; S. Castaldi; R. B. Jackson; M. Alexe; V. K. Arora; D. J. Beerling; P. Bergamaschi; D. R. Blake; G. Brailsford; L. Bruhwiler; C. Crevoisier; P. Crill; K. Covey; C. Frankenberg; C. Frankenberg; N. Gedney; L. Höglund-Isaksson; M. Ishizawa; A. Ito; F. Joos; H.-S. Kim; T. Kleinen; P. Krummel; J.-F. Lamarque; R. Langenfelds; R. Locatelli; T. Machida; S. Maksyutov; J. R. Melton; I. Morino; V. Naik; S. O'Doherty; F.-J. W. Parmentier; P. K. Patra; C. Peng; C. Peng; S. Peng; S. Peng; G. P. Peters; I. Pison; R. Prinn; M. Ramonet; W. J. Riley; M. Saito; M. Santini; M. Santini; R. Schroeder; I. J. Simpson; R. Spahni; A. Takizawa; B. F. Thornton; H. Tian; Y. Tohjima; N. Viovy; A. Voulgarakis; R. Weiss; D. J. Wilton; A. Wiltshire; D. Worthy; D. Wunch; X. Xu; X. Xu; Y. Yoshida; B. Zhang; Z. Zhang; Z. Zhang; Q. Zhu;Abstract. Following the recent Global Carbon Project (GCP) synthesis of the decadal methane (CH4) budget over 2000–2012 (Saunois et al., 2016), we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models (including process-based models for estimating land surface emissions and atmospheric chemistry), inventories of anthropogenic emissions, and data-driven approaches. The annual global methane emissions from top-down studies, which by construction match the observed methane growth rate within their uncertainties, all show an increase in total methane emissions over the period 2000–2012, but this increase is not linear over the 13 years. Despite differences between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total methane emissions over the period 2000–2006, during the plateau of atmospheric methane mole fractions, and also over the period 2008–2012, during the renewed atmospheric methane increase. However, the top-down ensemble mean produces an emission shift between 2006 and 2008, leading to 22 [16–32] Tg CH4 yr−1 higher methane emissions over the period 2008–2012 compared to 2002–2006. This emission increase mostly originated from the tropics, with a smaller contribution from mid-latitudes and no significant change from boreal regions. The regional contributions remain uncertain in top-down studies. Tropical South America and South and East Asia seem to contribute the most to the emission increase in the tropics. However, these two regions have only limited atmospheric measurements and remain therefore poorly constrained. The sectorial partitioning of this emission increase between the periods 2002–2006 and 2008–2012 differs from one atmospheric inversion study to another. However, all top-down studies suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries) compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the Emission Database for Global Atmospheric Research (EDGARv4.2) inventory, which should be revised to smaller values in a near future. We apply isotopic signatures to the emission changes estimated for individual studies based on five emission sectors and find that for six individual top-down studies (out of eight) the average isotopic signature of the emission changes is not consistent with the observed change in atmospheric 13CH4. However, the partitioning in emission change derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands), with an uncertain but smaller contribution from fossil CH4 emissions. In addition, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases) makes the balance of sources consistent with atmospheric 13CH4 observations. In most of the top-down studies included here, OH concentrations are considered constant over the years (seasonal variations but without any inter-annual variability). As a result, the methane loss (in particular through OH oxidation) varies mainly through the change in methane concentrations and not its oxidants. For these reasons, changes in the methane loss could not be properly investigated in this study, although it may play a significant role in the recent atmospheric methane changes as briefly discussed at the end of the paper.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/55004Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.5194/ACP-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2017Full-Text: https://doi.org/10.5194/acp-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and PhysicsOther literature type . 2017Data sources: DANS (Data Archiving and Networked Services)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaMunin - Open Research ArchiveArticle . 2017 . Peer-reviewedData sources: Munin - Open Research ArchiveAtmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-17-11135-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 36 Powered bymore_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/55004Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.5194/ACP-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2017Full-Text: https://doi.org/10.5194/acp-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and PhysicsOther literature type . 2017Data sources: DANS (Data Archiving and Networked Services)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaMunin - Open Research ArchiveArticle . 2017 . Peer-reviewedData sources: Munin - Open Research ArchiveAtmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-17-11135-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Australia, GermanyPublisher:CSIRO Publishing Funded by:ARC | Linkage Projects - Grant ..., ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP160100073 ,ARC| Linkage Projects - Grant ID: LP200100406C. Mackallah; M. A. Chamberlain; R. M. Law; M. Dix; T. Ziehn; D. Bi; R. Bodman; J. R. Brown; P. Dobrohotoff; K. Druken; B. Evans; I. N. Harman; H. Hayashida; R. Holmes; A. E. Kiss; A. Lenton; Y. Liu; S. Marsland; K. Meissner; L. Menviel; S. O’Farrell; H. A. Rashid; S. Ridzwan; A. Savita; J. Srbinovsky; A. Sullivan; C. Trenham; P. F. Vohralik; Y.-P. Wang; G. Williams; M. T. Woodhouse; N. Yeung;doi: 10.1071/es21031
handle: 11343/318099
The Australian Community Climate and Earth System Simulator (ACCESS) has contributed to the World Climate Research Programme’s Coupled Model Intercomparison Project Phase 6 (CMIP6) using two fully coupled model versions (ACCESS-CM2 and ACCESS-ESM1.5) and two ocean–sea-ice model versions (1° and 0.25° resolution versions of ACCESS-OM2). The fully coupled models differ primarily in the configuration and version of their atmosphere components (including the aerosol scheme), with smaller differences in their sea-ice and land model versions. Additionally, ACCESS-ESM1.5 includes biogeochemistry in the land and ocean components and can be run with an interactive carbon cycle. CMIP6 comprises core experiments and associated thematic Model Intercomparison Projects (MIPs). This paper provides an overview of the CMIP6 submission, including the methods used for the preparation of input forcing datasets and the post-processing of model output, along with a comprehensive list of experiments performed, detailing their initialisation, duration, ensemble number and computational cost. A small selection of model output is presented, focusing on idealised experiments and their variants at global scale. Differences in the climate simulation of the two coupled models are highlighted. ACCESS-CM2 produces a larger equilibrium climate sensitivity (4.7°C) than ACCESS-ESM1.5 (3.9°C), likely a result of updated atmospheric parameterisation in recent versions of the atmospheric component of ACCESS-CM2. The idealised experiments run with ACCESS-ESM1.5 show that land and ocean carbon fluxes respond to both changing atmospheric CO2 and to changing temperature. ACCESS data submitted to CMIP6 are available from the Earth System Grid Federation (https://doi.org/10.22033/ESGF/CMIP6.2281 and https://doi.org/10.22033/ESGF/CMIP6.2288). The information provided in this paper should facilitate easier use of these significant datasets by the broader climate community.
OceanRep arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/318099Data sources: Bielefeld Academic Search Engine (BASE)Journal of Southern Hemisphere Earth Systems ScienceArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/es21031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/318099Data sources: Bielefeld Academic Search Engine (BASE)Journal of Southern Hemisphere Earth Systems ScienceArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/es21031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 GermanyPublisher:IOP Publishing V. Kostov; Nebojsa Nakicenovic; Nebojsa Nakicenovic; V.S. Yakushev; Keywan Riahi; Neil T M Hamilton; Arnulf Grubler; Arnulf Grubler; Arthur Johnson; Nicholas Langhorne; Euan G. Nisbet; Harald Andruleit; Weihua Wang; Brian C. O'Neill; Brian C. O'Neill; Josep G. Canadell; Jean-Francois Lamarque; David Archer; Yuichi Abe; Michael Riedel; Volker Krey;Methane hydrates, ice-like compounds in which methane is held in crystalline cages formed by water molecules, are widespread in areas of permafrost such as the Arctic and in sediments on the continental margins. They are a potentially vast fossil fuel energy source but, at the same time, could be destabilized by changing pressure–temperature conditions due to climate change, potentially leading to strong positive carbon–climate feedbacks. To enhance our understanding of both the vulnerability of and the opportunity pr ovided by methane hydrates, it is necessary (i) to conduct basic research that improves the highly uncertain estimates of hydrate occurrences and their response to changing environmental conditions, and (ii) to integrate the agendas of energy security and climate change which can provide an opportunity for methane hydrates—in particular if combined with carbon capture and storage—to be used as a ‘bridge fuel’ between carbon-intensive fossil energies and zero-emission energies. Taken one step further, exploitation of dissociating methane hydrates could even mitigate against escape of methane to the atmosphere. Despite these opportunities, so far, methane hydrates have been largely absent from energy and climate discussions, including global hydrocarbon assessments and the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/4/3/034007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 76 citations 76 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/4/3/034007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 Germany, United KingdomPublisher:Elsevier BV Funded by:UKRI | Predicting the fate of CO...UKRI| Predicting the fate of CO2 in geological reservoirs for modelling geological carbon storageRalf R. Haese; L. Truche; Kevin G. Knauss; S. Mito; Sebastian Fischer; Axel Liebscher; Damien Daval; Christian Deusner; M. Schmidt; Angela Goodman; Christopher A. Rochelle; Athanasios K. Karamalidis; Athanasios K. Karamalidis; Masao Sorai; Christian Ostertag-Henning; Giuseppe D. Saldi; Gemma Purser; Nikolaus Bigalke; Robert J. Rosenbauer; B. Thomas; Jörgen Rosenqvist; Jonathan P. Icenhower; Craig Griffith; Bruce W. D. Yardley; Sheila W. Hedges; Robert Dilmore; Jay R. Black; Andrew D. Kilpatrick; Andrew D. Kilpatrick; Matthias Haeckel; A. Risse;AbstractDue to the strong interest in geochemical CO2-fluid-rock interaction in the context of geological storage of CO2 a growing number of research groups have used a variety of different experimental ways to identify important geochemical dissolution or precipitation reactions and – if possible – quantify the rates and extent of mineral or rock alteration. In this inter-laboratory comparison the gas-fluid-mineral reactions of three samples of rock-forming minerals have been investigated by 11 experimental labs. The reported results point to robust identification of the major processes in the experiments by most groups. The dissolution rates derived from the changes in composition of the aqueous phase are consistent overall, but the variation could be reduced by using similar corrections for changing parameters in the reaction cells over time. The comparison of experimental setups and procedures as well as of data corrections identified potential improvements for future gas-fluid-rock studies.
OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 download downloads 3 Powered bymore_vert OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017Embargo end date: 01 Jan 2017 France, Germany, United States, United Kingdom, United Kingdom, United Kingdom, United Kingdom, United States, Norway, United StatesPublisher:Copernicus GmbH Funded by:NSERC, EC | CDREG, EC | METLAKE +3 projectsNSERC ,EC| CDREG ,EC| METLAKE ,EC| MACC II ,EC| MACC-III ,RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyM. Saunois; P. Bousquet; B. Poulter; A. Peregon; P. Ciais; J. G. Canadell; E. J. Dlugokencky; G. Etiope; G. Etiope; D. Bastviken; S. Houweling; S. Houweling; G. Janssens-Maenhout; F. N. Tubiello; S. Castaldi; S. Castaldi; S. Castaldi; R. B. Jackson; M. Alexe; V. K. Arora; D. J. Beerling; P. Bergamaschi; D. R. Blake; G. Brailsford; L. Bruhwiler; C. Crevoisier; P. Crill; K. Covey; C. Frankenberg; C. Frankenberg; N. Gedney; L. Höglund-Isaksson; M. Ishizawa; A. Ito; F. Joos; H.-S. Kim; T. Kleinen; P. Krummel; J.-F. Lamarque; R. Langenfelds; R. Locatelli; T. Machida; S. Maksyutov; J. R. Melton; I. Morino; V. Naik; S. O'Doherty; F.-J. W. Parmentier; P. K. Patra; C. Peng; C. Peng; S. Peng; S. Peng; G. P. Peters; I. Pison; R. Prinn; M. Ramonet; W. J. Riley; M. Saito; M. Santini; M. Santini; R. Schroeder; I. J. Simpson; R. Spahni; A. Takizawa; B. F. Thornton; H. Tian; Y. Tohjima; N. Viovy; A. Voulgarakis; R. Weiss; D. J. Wilton; A. Wiltshire; D. Worthy; D. Wunch; X. Xu; X. Xu; Y. Yoshida; B. Zhang; Z. Zhang; Z. Zhang; Q. Zhu;Abstract. Following the recent Global Carbon Project (GCP) synthesis of the decadal methane (CH4) budget over 2000–2012 (Saunois et al., 2016), we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models (including process-based models for estimating land surface emissions and atmospheric chemistry), inventories of anthropogenic emissions, and data-driven approaches. The annual global methane emissions from top-down studies, which by construction match the observed methane growth rate within their uncertainties, all show an increase in total methane emissions over the period 2000–2012, but this increase is not linear over the 13 years. Despite differences between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total methane emissions over the period 2000–2006, during the plateau of atmospheric methane mole fractions, and also over the period 2008–2012, during the renewed atmospheric methane increase. However, the top-down ensemble mean produces an emission shift between 2006 and 2008, leading to 22 [16–32] Tg CH4 yr−1 higher methane emissions over the period 2008–2012 compared to 2002–2006. This emission increase mostly originated from the tropics, with a smaller contribution from mid-latitudes and no significant change from boreal regions. The regional contributions remain uncertain in top-down studies. Tropical South America and South and East Asia seem to contribute the most to the emission increase in the tropics. However, these two regions have only limited atmospheric measurements and remain therefore poorly constrained. The sectorial partitioning of this emission increase between the periods 2002–2006 and 2008–2012 differs from one atmospheric inversion study to another. However, all top-down studies suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries) compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the Emission Database for Global Atmospheric Research (EDGARv4.2) inventory, which should be revised to smaller values in a near future. We apply isotopic signatures to the emission changes estimated for individual studies based on five emission sectors and find that for six individual top-down studies (out of eight) the average isotopic signature of the emission changes is not consistent with the observed change in atmospheric 13CH4. However, the partitioning in emission change derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands), with an uncertain but smaller contribution from fossil CH4 emissions. In addition, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases) makes the balance of sources consistent with atmospheric 13CH4 observations. In most of the top-down studies included here, OH concentrations are considered constant over the years (seasonal variations but without any inter-annual variability). As a result, the methane loss (in particular through OH oxidation) varies mainly through the change in methane concentrations and not its oxidants. For these reasons, changes in the methane loss could not be properly investigated in this study, although it may play a significant role in the recent atmospheric methane changes as briefly discussed at the end of the paper.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/55004Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.5194/ACP-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2017Full-Text: https://doi.org/10.5194/acp-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and PhysicsOther literature type . 2017Data sources: DANS (Data Archiving and Networked Services)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaMunin - Open Research ArchiveArticle . 2017 . Peer-reviewedData sources: Munin - Open Research ArchiveAtmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-17-11135-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 36 Powered bymore_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/55004Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.5194/ACP-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2017Full-Text: https://doi.org/10.5194/acp-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and PhysicsOther literature type . 2017Data sources: DANS (Data Archiving and Networked Services)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaMunin - Open Research ArchiveArticle . 2017 . Peer-reviewedData sources: Munin - Open Research ArchiveAtmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-17-11135-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Australia, GermanyPublisher:CSIRO Publishing Funded by:ARC | Linkage Projects - Grant ..., ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP160100073 ,ARC| Linkage Projects - Grant ID: LP200100406C. Mackallah; M. A. Chamberlain; R. M. Law; M. Dix; T. Ziehn; D. Bi; R. Bodman; J. R. Brown; P. Dobrohotoff; K. Druken; B. Evans; I. N. Harman; H. Hayashida; R. Holmes; A. E. Kiss; A. Lenton; Y. Liu; S. Marsland; K. Meissner; L. Menviel; S. O’Farrell; H. A. Rashid; S. Ridzwan; A. Savita; J. Srbinovsky; A. Sullivan; C. Trenham; P. F. Vohralik; Y.-P. Wang; G. Williams; M. T. Woodhouse; N. Yeung;doi: 10.1071/es21031
handle: 11343/318099
The Australian Community Climate and Earth System Simulator (ACCESS) has contributed to the World Climate Research Programme’s Coupled Model Intercomparison Project Phase 6 (CMIP6) using two fully coupled model versions (ACCESS-CM2 and ACCESS-ESM1.5) and two ocean–sea-ice model versions (1° and 0.25° resolution versions of ACCESS-OM2). The fully coupled models differ primarily in the configuration and version of their atmosphere components (including the aerosol scheme), with smaller differences in their sea-ice and land model versions. Additionally, ACCESS-ESM1.5 includes biogeochemistry in the land and ocean components and can be run with an interactive carbon cycle. CMIP6 comprises core experiments and associated thematic Model Intercomparison Projects (MIPs). This paper provides an overview of the CMIP6 submission, including the methods used for the preparation of input forcing datasets and the post-processing of model output, along with a comprehensive list of experiments performed, detailing their initialisation, duration, ensemble number and computational cost. A small selection of model output is presented, focusing on idealised experiments and their variants at global scale. Differences in the climate simulation of the two coupled models are highlighted. ACCESS-CM2 produces a larger equilibrium climate sensitivity (4.7°C) than ACCESS-ESM1.5 (3.9°C), likely a result of updated atmospheric parameterisation in recent versions of the atmospheric component of ACCESS-CM2. The idealised experiments run with ACCESS-ESM1.5 show that land and ocean carbon fluxes respond to both changing atmospheric CO2 and to changing temperature. ACCESS data submitted to CMIP6 are available from the Earth System Grid Federation (https://doi.org/10.22033/ESGF/CMIP6.2281 and https://doi.org/10.22033/ESGF/CMIP6.2288). The information provided in this paper should facilitate easier use of these significant datasets by the broader climate community.
OceanRep arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/318099Data sources: Bielefeld Academic Search Engine (BASE)Journal of Southern Hemisphere Earth Systems ScienceArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/es21031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/318099Data sources: Bielefeld Academic Search Engine (BASE)Journal of Southern Hemisphere Earth Systems ScienceArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/es21031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 GermanyPublisher:IOP Publishing V. Kostov; Nebojsa Nakicenovic; Nebojsa Nakicenovic; V.S. Yakushev; Keywan Riahi; Neil T M Hamilton; Arnulf Grubler; Arnulf Grubler; Arthur Johnson; Nicholas Langhorne; Euan G. Nisbet; Harald Andruleit; Weihua Wang; Brian C. O'Neill; Brian C. O'Neill; Josep G. Canadell; Jean-Francois Lamarque; David Archer; Yuichi Abe; Michael Riedel; Volker Krey;Methane hydrates, ice-like compounds in which methane is held in crystalline cages formed by water molecules, are widespread in areas of permafrost such as the Arctic and in sediments on the continental margins. They are a potentially vast fossil fuel energy source but, at the same time, could be destabilized by changing pressure–temperature conditions due to climate change, potentially leading to strong positive carbon–climate feedbacks. To enhance our understanding of both the vulnerability of and the opportunity pr ovided by methane hydrates, it is necessary (i) to conduct basic research that improves the highly uncertain estimates of hydrate occurrences and their response to changing environmental conditions, and (ii) to integrate the agendas of energy security and climate change which can provide an opportunity for methane hydrates—in particular if combined with carbon capture and storage—to be used as a ‘bridge fuel’ between carbon-intensive fossil energies and zero-emission energies. Taken one step further, exploitation of dissociating methane hydrates could even mitigate against escape of methane to the atmosphere. Despite these opportunities, so far, methane hydrates have been largely absent from energy and climate discussions, including global hydrocarbon assessments and the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/4/3/034007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 76 citations 76 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/4/3/034007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu