- home
- Search
- Energy Research
- Closed Access
- Restricted
- Embargo
- AU
- Energy Research
- Closed Access
- Restricted
- Embargo
- AU
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Angeliki N. Menegaki; Yifei Cai;Abstract Since the adoption of the Kyoto protocol in 1997 and its entry into force in 2005, as well its aftermath such as the Doha amendment and Paris agreement, national policies have become more conscious of the usage of clean energy, mostly the different forms of renewable energy and nuclear energy. Ratifying countries and signatories had committed themselves to binding targets for the reduction of greenhouse emissions by 8% with respect to 1990 levels until 2012, also based on the particular contribution to global emissions from each country. This paper examines the integrational properties of clean energy consumption from eight emerging economies which are also high greenhouse gas emitters. The empirical results show that the clean energy consumption is stationarity for Brazil and Philippines by using a quantile unit root test without smooth breaks (Koenker and Xiao, 2004). However, after capturing the smooth breaks (Bahmani-Oskooee et al., 2018), we find the clean energy consumption of China, Pakistan and Thailand are stationary. The time-varying deterministic trend with smooth breaks is more fitted to the path of clean energy consumption in comparison to the deterministic trend without smooth breaks. The paper suggests economic insights useful for policy making.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Hongjuan Hou; Nan Zhang; Liqiang Duan; Gang Yu; Chang Huang; Eric Hu; Yumeng Zhang; Zeyu Ding;Abstract To guarantee the space heating in the heating season, conventional combined heat and power (CHP) plants operate in a heat-controlled operation mode, resulting in restricted peak-shaving ability (PSA). To improve the CHP plant’s PSA, a novel solar aided CHP (SA-CHP) system is proposed and simulated in this paper. In the new system, solar heat could be flexibly used to generate power or to supply heat according to the heating and power demands, thereby realizing the heat-power decoupling. A set of models for the SA-CHP system is developed and validated. The PSA, the standard coal consumption (SCC) and the techno-economic performances of a 330 MWe SA-CHP system are comprehensively analyzed in this paper. The results show that the SA-CHP system can significantly improve (up to double) the PSA compared with the CHP plant under the same rated heating power. The feasible operation region area of the SA-CHP system is 74.7% larger than that of the CHP plant. The annual SCC of the SA-CHP system are 17378.23 t less than that of the CHP plant. The net annual revenue of the SA-CHP system is $2.24 M. Besides, techno-economic performances of SA-CHP systems with two different heat storage systems are compared.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Funded by:ARC | Industrial Transformation...ARC| Industrial Transformation Training Centres - Grant ID: IC170100032Sanghoon Kook; Anthony Chun Yin Yuen; Hengrui Liu; Cheng Wang; Guan Heng Yeoh; Guan Heng Yeoh; Qian Chen; Ivan Miguel De Cachinho Cordeiro; Qing Nian Chan;Abstract With recent developments in the design and manufacturing process of water-based fire suppression systems , more advanced technologies such as water mist systems have expanded in their building application. In this article, the critical fire suppression mechanisms of water mist systems and conventional fire sprinklers are investigated and compared, with emphasis on the influence of water droplet sizes on the fire suppression mechanisms. Applying computational fluid dynamics (CFD), a fully ventilated fire compartment room has been considered where a methane pool fire was placed at the centre. The considered fire suppression systems were placed directly upon the fire. Thermocouple and gas probes were applied in the computational domain to identify different stages of the fire suppression process, as well as to evaluate the suppression performance. The velocity field was analyzed to examine the penetration effect of suppression systems. Relative humidity and oxygen concentration data obtained by gas analyzers were also studied to further understand the droplet/fire interaction behavior. It was found that latent cooling, volumetric displacement, and dilution of oxygen and fuel were the main suppression mechanisms for water mist systems, as smaller droplets evaporate more efficiently compared to larger ones. On the other hand, for sprinklers, heat extraction by water droplets from the fire was found to be the main suppression mechanism, and the evaporation effect is not as significant as in water mist systems. According to in-depth parametric studies of water droplet sizes, recommendations for the optimal running conditions have been provided for both systems.
Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2019.100999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2019.100999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Authors: Kracke, Frauke; Lai, Bin; Yu, Shiqin; Krömer, Jens O.;pmid: 29229581
More and more microbes are discovered that are capable of extracellular electron transfer, a process in which they use external electrodes as electron donors or acceptors for metabolic reactions. This feature can be used to overcome cellular redox limitations and thus optimizing microbial production. The technologies, termed microbial electrosynthesis and electro-fermentation, have the potential to open novel bio-electro production platforms from sustainable energy and carbon sources. However, the performance of reported systems is currently limited by low electron transport rates between microbes and electrodes and our limited ability for targeted engineering of these systems due to remaining knowledge gaps about the underlying fundamental processes. Metabolic engineering offers many opportunities to optimize these processes, for instance by genetic engineering of pathways for electron transfer on the one hand and target product synthesis on the other hand. With this review, we summarize the status quo of knowledge and engineering attempts around chemical production in bio-electrochemical systems from a microbe perspective. Challenges associated with the introduction or enhancement of extracellular electron transfer capabilities into production hosts versus the engineering of target compound synthesis pathways in natural exoelectrogens are discussed. Recent advances of the research community in both directions are examined critically. Further, systems biology approaches, for instance using metabolic modelling, are examined for their potential to provide insight into fundamental processes and to identify targets for metabolic engineering.
Metabolic Engineerin... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymben.2017.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Metabolic Engineerin... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymben.2017.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV Lim, Juin Yau; Safder, Usman; How, Bing Shen; Ifaei, Pouya; Yoo, Chang Kyoo;handle: 1959.3/459255
Abstract The urge to increase renewable energy penetration into the power supply mix has been frequently highlighted in response to climate change. South Korea was analyzed as a case study for which the government has shown motivation to increase renewable energy penetration. Herein, a hybrid renewable energy system (HRES) including solar and wind energies were selected due to their relatively stable and mature technology. In addition, Power-to-X has been incorporated to cover other renewable energy options such as hydrogen and synthetic natural gas (SNG). Therefore, an approach of forecasting the weather characteristics and demand loading over a relatively long timeframe was implemented via deep learning techniques (LSTM and GRU) and statistical approaches (Fbprophet and SARIMA), respectively. A deployment strategy incorporating HRES and Power-to-X is then proposed in correspondence to the forecasted results of the 15 regions considered in this study. An extension of this, the reliability of the designed system is further assessed based on the probability of the demand losses with the aid of Monte-Carlo simulation. With the proposed deployment strategy, a total annual cost of 9.88 × 1011 $/year and a greenhouse gas reduction of 1.24 × 106 tons/year are expected for a 35% renewable energy penetration. However, only SNG shows relatively competitive cost (at 23.20 $/m3 SNG), whereas the average costs of electricity (0.133 $/kWh) and hydrogen (7.784 $/kg H2) across the regions are yet to be competitive compared to the current market prices. Nonetheless, the priority of deployment across regions has been identified via TOPSIS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Hindawi Limited Authors: Keith Lovegrove;An approach to the optimization of a solar energy conversion system which involves treating the system as a series of subsystems, each having a single cost determining variable, is proposed. Optimization techniques can be used to determine designs for each subsystem for constant values of the cost determining variable. Subsequently, the allocation of a financial resource amongst subsystems to achieve an optimal performance can be determined. The application to an ammonia-based thermochemical system with direct work output is discussed and possible subsystems are identified. The subsystem consisting of the exothermic reactor has been studied in detail. For this subsystem, the ratio of available catalyst volume to thermal power level is held constant whilst the exergetic efficiency is maximized. Results are presented from a determination of optimized reaction paths using dynamic programming techniques.
International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 1993 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.4440170905&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 1993 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.4440170905&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Authors: Hassan, K.; Hoque, A.; Wali, M.; Gasbarro, D.;Abstract This paper uses threshold GARCH (TGARCH) and generalised forecast error variance decomposition to compute time domain and frequency domain volatility spillover. The spillover technique is then applied to Islamic and conventional stock indices and crude oil in BRICS countries (Brazil, Russia, India, China, and South Africa), thus informing investors about the magnitude and speed of the volatility spillover. We find that the total volatility spillover is driven mainly by a long-term component. Accordingly, these assets are suitable for investors with short- and medium-term investment horizons. However, analysis reveals that volatility spillover magnitude and speed increase substantially during the global financial crisis, suggesting that investors in Brazil, Russia, and South Africa with stocks in their portfolio should rebalance promptly. Dynamic covariance analysis shows that covariance between Islamic and conventional stock index returns is the highest and exhibit a significant increase during the crisis period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2020.104985&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2020.104985&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran..., ARC | Australian Laureate Fello...ARC| Discovery Projects - Grant ID: DP130103261 ,ARC| Australian Laureate Fellowships - Grant ID: FL160100101Authors: Barry W. Brook; Sanghyun Hong; Tom M. L. Wigley; Tom M. L. Wigley;Abstract We evaluated three Integrated Assessment Models (IAMs: IGSM, MERGE, MiniCAM) by: (i) comparing their global Primary Energy year-2000 initializations and projections for 2010 and 2015 to historical data; (ii) mapping their CO2 emissions projections against observations; and (iii) examining model-output diagnostics. The IAMs underestimated historical primary energy consumption and initial/projected CO2 emissions in both reference and stabilization scenarios (particularly for combustion fuels) but overestimated usage of non-biomass renewables, causing underestimates of future CO2 emissions that, for the stabilization scenarios, are wildly optimistic. Mitigation technology breakdowns in the policy scenarios vary enormously across IAMs, suggesting that confidence in their projections might be misplaced, or that options for mitigation have greater scope than is supposed. Most increases in carbon-free technologies in the stabilization scenarios are already captured in the reference cases. Energy-conversion efficiencies in electricity generation improve over time, but, (except for gas-powered generation in IGSM), efficiencies in the policy scenarios are less than in the reference. Electrification results diverge widely: IGSM has little change over the 21st century, while MiniCAM and MERGE have major electrification increases in their policy scenarios. We suggest: 1) comprehensive model output suitable for secondary analysis should be more readily available; 2) directly comparable reference and policy-driven mitigation scenarios are essential for assessing mitigation measures; 3) model validation using historical, source-specific energy data is crucial for assessing model credibility; 4) separation of mitigation contributions into no-policy and policy-driven amounts is needed to assess the effectiveness of mitigation policies; and 5) detailed inter-model comparisons can provide important insights into model credibility.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Juan Pablo Alvarez-Gaitan; Jinming Duan; Christopher P. Saint; Fang Liu; Fang Liu; Li’an Hou; Xiang Guo; Guanyi Chen; Michael D. Short; Michael D. Short;Abstract: After the implementation of a biofuel target in 2017, China, the second largest consumer of oil in the world, accelerated the development of lignocellulosic biomass technology to produce ethanol and minimized food security risks commonly associated with first generation biofuel production. In this study, Life Cycle Assessment (LCA) is used to investigate three new lignocellulosic biomass refinery systems based on corncob which co-produce ethanol with chemicals and energy. The bioethanol is used in E10 and E85 biofuel mixes and these are compared with a fossil gasoline reference system. Using 1 km distance driven by a compact size flexible fuel passenger vehicle as the functional unit and a exergy allocation approach to the raw material inputs and to the co-products in the simulated multifunctional biorefinery processes, the results indicate that regardless of the configuration of the ethanol-biorefinery, ethanol-blended fuels performed better than gasoline in terms of fossil fuels depletion (E10 6% lower; E85 64–70% lower), global warming potential (E10 1–10% lower; E85 5–113% lower) and human toxicity potential (E10 6–7% lower; E85 72–75% lower), but worst in terms of ozone layer depletion (E10 4.5–6.8 times higher; E85 51.9–78.2 times higher), acidification (E10 30–50% higher; E85 3.3–5.5 times higher) and eutrophication potential (E10 5.2–7.0 times higher; E85 42.4–64.0 times higher) than gasoline.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.118933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.118933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Chemical Society (ACS) Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP200101293Jianwei Tian; Jishan Liu; Derek Elsworth; Yee-Kwong Leong; Wai Li;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.2c02857&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.2c02857&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Angeliki N. Menegaki; Yifei Cai;Abstract Since the adoption of the Kyoto protocol in 1997 and its entry into force in 2005, as well its aftermath such as the Doha amendment and Paris agreement, national policies have become more conscious of the usage of clean energy, mostly the different forms of renewable energy and nuclear energy. Ratifying countries and signatories had committed themselves to binding targets for the reduction of greenhouse emissions by 8% with respect to 1990 levels until 2012, also based on the particular contribution to global emissions from each country. This paper examines the integrational properties of clean energy consumption from eight emerging economies which are also high greenhouse gas emitters. The empirical results show that the clean energy consumption is stationarity for Brazil and Philippines by using a quantile unit root test without smooth breaks (Koenker and Xiao, 2004). However, after capturing the smooth breaks (Bahmani-Oskooee et al., 2018), we find the clean energy consumption of China, Pakistan and Thailand are stationary. The time-varying deterministic trend with smooth breaks is more fitted to the path of clean energy consumption in comparison to the deterministic trend without smooth breaks. The paper suggests economic insights useful for policy making.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Hongjuan Hou; Nan Zhang; Liqiang Duan; Gang Yu; Chang Huang; Eric Hu; Yumeng Zhang; Zeyu Ding;Abstract To guarantee the space heating in the heating season, conventional combined heat and power (CHP) plants operate in a heat-controlled operation mode, resulting in restricted peak-shaving ability (PSA). To improve the CHP plant’s PSA, a novel solar aided CHP (SA-CHP) system is proposed and simulated in this paper. In the new system, solar heat could be flexibly used to generate power or to supply heat according to the heating and power demands, thereby realizing the heat-power decoupling. A set of models for the SA-CHP system is developed and validated. The PSA, the standard coal consumption (SCC) and the techno-economic performances of a 330 MWe SA-CHP system are comprehensively analyzed in this paper. The results show that the SA-CHP system can significantly improve (up to double) the PSA compared with the CHP plant under the same rated heating power. The feasible operation region area of the SA-CHP system is 74.7% larger than that of the CHP plant. The annual SCC of the SA-CHP system are 17378.23 t less than that of the CHP plant. The net annual revenue of the SA-CHP system is $2.24 M. Besides, techno-economic performances of SA-CHP systems with two different heat storage systems are compared.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Funded by:ARC | Industrial Transformation...ARC| Industrial Transformation Training Centres - Grant ID: IC170100032Sanghoon Kook; Anthony Chun Yin Yuen; Hengrui Liu; Cheng Wang; Guan Heng Yeoh; Guan Heng Yeoh; Qian Chen; Ivan Miguel De Cachinho Cordeiro; Qing Nian Chan;Abstract With recent developments in the design and manufacturing process of water-based fire suppression systems , more advanced technologies such as water mist systems have expanded in their building application. In this article, the critical fire suppression mechanisms of water mist systems and conventional fire sprinklers are investigated and compared, with emphasis on the influence of water droplet sizes on the fire suppression mechanisms. Applying computational fluid dynamics (CFD), a fully ventilated fire compartment room has been considered where a methane pool fire was placed at the centre. The considered fire suppression systems were placed directly upon the fire. Thermocouple and gas probes were applied in the computational domain to identify different stages of the fire suppression process, as well as to evaluate the suppression performance. The velocity field was analyzed to examine the penetration effect of suppression systems. Relative humidity and oxygen concentration data obtained by gas analyzers were also studied to further understand the droplet/fire interaction behavior. It was found that latent cooling, volumetric displacement, and dilution of oxygen and fuel were the main suppression mechanisms for water mist systems, as smaller droplets evaporate more efficiently compared to larger ones. On the other hand, for sprinklers, heat extraction by water droplets from the fire was found to be the main suppression mechanism, and the evaporation effect is not as significant as in water mist systems. According to in-depth parametric studies of water droplet sizes, recommendations for the optimal running conditions have been provided for both systems.
Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2019.100999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2019.100999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Authors: Kracke, Frauke; Lai, Bin; Yu, Shiqin; Krömer, Jens O.;pmid: 29229581
More and more microbes are discovered that are capable of extracellular electron transfer, a process in which they use external electrodes as electron donors or acceptors for metabolic reactions. This feature can be used to overcome cellular redox limitations and thus optimizing microbial production. The technologies, termed microbial electrosynthesis and electro-fermentation, have the potential to open novel bio-electro production platforms from sustainable energy and carbon sources. However, the performance of reported systems is currently limited by low electron transport rates between microbes and electrodes and our limited ability for targeted engineering of these systems due to remaining knowledge gaps about the underlying fundamental processes. Metabolic engineering offers many opportunities to optimize these processes, for instance by genetic engineering of pathways for electron transfer on the one hand and target product synthesis on the other hand. With this review, we summarize the status quo of knowledge and engineering attempts around chemical production in bio-electrochemical systems from a microbe perspective. Challenges associated with the introduction or enhancement of extracellular electron transfer capabilities into production hosts versus the engineering of target compound synthesis pathways in natural exoelectrogens are discussed. Recent advances of the research community in both directions are examined critically. Further, systems biology approaches, for instance using metabolic modelling, are examined for their potential to provide insight into fundamental processes and to identify targets for metabolic engineering.
Metabolic Engineerin... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymben.2017.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Metabolic Engineerin... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymben.2017.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV Lim, Juin Yau; Safder, Usman; How, Bing Shen; Ifaei, Pouya; Yoo, Chang Kyoo;handle: 1959.3/459255
Abstract The urge to increase renewable energy penetration into the power supply mix has been frequently highlighted in response to climate change. South Korea was analyzed as a case study for which the government has shown motivation to increase renewable energy penetration. Herein, a hybrid renewable energy system (HRES) including solar and wind energies were selected due to their relatively stable and mature technology. In addition, Power-to-X has been incorporated to cover other renewable energy options such as hydrogen and synthetic natural gas (SNG). Therefore, an approach of forecasting the weather characteristics and demand loading over a relatively long timeframe was implemented via deep learning techniques (LSTM and GRU) and statistical approaches (Fbprophet and SARIMA), respectively. A deployment strategy incorporating HRES and Power-to-X is then proposed in correspondence to the forecasted results of the 15 regions considered in this study. An extension of this, the reliability of the designed system is further assessed based on the probability of the demand losses with the aid of Monte-Carlo simulation. With the proposed deployment strategy, a total annual cost of 9.88 × 1011 $/year and a greenhouse gas reduction of 1.24 × 106 tons/year are expected for a 35% renewable energy penetration. However, only SNG shows relatively competitive cost (at 23.20 $/m3 SNG), whereas the average costs of electricity (0.133 $/kWh) and hydrogen (7.784 $/kg H2) across the regions are yet to be competitive compared to the current market prices. Nonetheless, the priority of deployment across regions has been identified via TOPSIS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Hindawi Limited Authors: Keith Lovegrove;An approach to the optimization of a solar energy conversion system which involves treating the system as a series of subsystems, each having a single cost determining variable, is proposed. Optimization techniques can be used to determine designs for each subsystem for constant values of the cost determining variable. Subsequently, the allocation of a financial resource amongst subsystems to achieve an optimal performance can be determined. The application to an ammonia-based thermochemical system with direct work output is discussed and possible subsystems are identified. The subsystem consisting of the exothermic reactor has been studied in detail. For this subsystem, the ratio of available catalyst volume to thermal power level is held constant whilst the exergetic efficiency is maximized. Results are presented from a determination of optimized reaction paths using dynamic programming techniques.
International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 1993 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.4440170905&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 1993 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.4440170905&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Authors: Hassan, K.; Hoque, A.; Wali, M.; Gasbarro, D.;Abstract This paper uses threshold GARCH (TGARCH) and generalised forecast error variance decomposition to compute time domain and frequency domain volatility spillover. The spillover technique is then applied to Islamic and conventional stock indices and crude oil in BRICS countries (Brazil, Russia, India, China, and South Africa), thus informing investors about the magnitude and speed of the volatility spillover. We find that the total volatility spillover is driven mainly by a long-term component. Accordingly, these assets are suitable for investors with short- and medium-term investment horizons. However, analysis reveals that volatility spillover magnitude and speed increase substantially during the global financial crisis, suggesting that investors in Brazil, Russia, and South Africa with stocks in their portfolio should rebalance promptly. Dynamic covariance analysis shows that covariance between Islamic and conventional stock index returns is the highest and exhibit a significant increase during the crisis period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2020.104985&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2020.104985&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran..., ARC | Australian Laureate Fello...ARC| Discovery Projects - Grant ID: DP130103261 ,ARC| Australian Laureate Fellowships - Grant ID: FL160100101Authors: Barry W. Brook; Sanghyun Hong; Tom M. L. Wigley; Tom M. L. Wigley;Abstract We evaluated three Integrated Assessment Models (IAMs: IGSM, MERGE, MiniCAM) by: (i) comparing their global Primary Energy year-2000 initializations and projections for 2010 and 2015 to historical data; (ii) mapping their CO2 emissions projections against observations; and (iii) examining model-output diagnostics. The IAMs underestimated historical primary energy consumption and initial/projected CO2 emissions in both reference and stabilization scenarios (particularly for combustion fuels) but overestimated usage of non-biomass renewables, causing underestimates of future CO2 emissions that, for the stabilization scenarios, are wildly optimistic. Mitigation technology breakdowns in the policy scenarios vary enormously across IAMs, suggesting that confidence in their projections might be misplaced, or that options for mitigation have greater scope than is supposed. Most increases in carbon-free technologies in the stabilization scenarios are already captured in the reference cases. Energy-conversion efficiencies in electricity generation improve over time, but, (except for gas-powered generation in IGSM), efficiencies in the policy scenarios are less than in the reference. Electrification results diverge widely: IGSM has little change over the 21st century, while MiniCAM and MERGE have major electrification increases in their policy scenarios. We suggest: 1) comprehensive model output suitable for secondary analysis should be more readily available; 2) directly comparable reference and policy-driven mitigation scenarios are essential for assessing mitigation measures; 3) model validation using historical, source-specific energy data is crucial for assessing model credibility; 4) separation of mitigation contributions into no-policy and policy-driven amounts is needed to assess the effectiveness of mitigation policies; and 5) detailed inter-model comparisons can provide important insights into model credibility.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Juan Pablo Alvarez-Gaitan; Jinming Duan; Christopher P. Saint; Fang Liu; Fang Liu; Li’an Hou; Xiang Guo; Guanyi Chen; Michael D. Short; Michael D. Short;Abstract: After the implementation of a biofuel target in 2017, China, the second largest consumer of oil in the world, accelerated the development of lignocellulosic biomass technology to produce ethanol and minimized food security risks commonly associated with first generation biofuel production. In this study, Life Cycle Assessment (LCA) is used to investigate three new lignocellulosic biomass refinery systems based on corncob which co-produce ethanol with chemicals and energy. The bioethanol is used in E10 and E85 biofuel mixes and these are compared with a fossil gasoline reference system. Using 1 km distance driven by a compact size flexible fuel passenger vehicle as the functional unit and a exergy allocation approach to the raw material inputs and to the co-products in the simulated multifunctional biorefinery processes, the results indicate that regardless of the configuration of the ethanol-biorefinery, ethanol-blended fuels performed better than gasoline in terms of fossil fuels depletion (E10 6% lower; E85 64–70% lower), global warming potential (E10 1–10% lower; E85 5–113% lower) and human toxicity potential (E10 6–7% lower; E85 72–75% lower), but worst in terms of ozone layer depletion (E10 4.5–6.8 times higher; E85 51.9–78.2 times higher), acidification (E10 30–50% higher; E85 3.3–5.5 times higher) and eutrophication potential (E10 5.2–7.0 times higher; E85 42.4–64.0 times higher) than gasoline.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.118933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.118933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Chemical Society (ACS) Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP200101293Jianwei Tian; Jishan Liu; Derek Elsworth; Yee-Kwong Leong; Wai Li;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.2c02857&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.2c02857&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu