- home
- Search
- Energy Research
- 7. Clean energy
- 13. Climate action
- 8. Economic growth
- AU
- Tsinghua University
- Energy Research
- 7. Clean energy
- 13. Climate action
- 8. Economic growth
- AU
- Tsinghua University
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Liang Ge; Jiyuan Tu; Jiyuan Tu; Xingtuan Yang; Shengyao Jiang; Nan Gui;Abstract As an important class of particle flows in industrial applications, hopper flows, particularly those using pebbles (diameters dp ~O(10-2) m), play a significant role in nuclear reactor engineering, e.g. HTGR and ADS reactors. However, the features and influencing factors of the binary mixture discharge have not yet been widely investigated. In this study, the discrete element method (DEM) simulation was adopted to analyze the discharge flow of binary mixtures consisting of ellipsoids and spheres in a hopper. After a model validation, the effects of particle aspect ratio (Ra, the ratio of the major axis to the minor axis) of ellipsoids and component ratio (Rn, the ratio of the ellipsoid number to the sphere number) of ellipsoids to spheres were analyzed. Flow patterns were visualized by colored pebble stripes according to pebbles' initial heights. Particle discharge flow rates were computed to examine their relations to particle aspect ratios and component ratios. The force structure and distributions of the binary mixtures were also explored. Results showed that pebble stripes followed quadratic function profiles. Adding ellipsoids was advantageous for particles discharging at lower particle aspect ratios (Ra≤2), while impedimental at large particle aspect ratios (Ra≥3). The discharge flow rate was inversely proportional to the particle aspect ratio at fixed component ratios, and linearly proportional to the 1/4th power of the component ratio at fixed particle aspect ratios. In addition, the discharge flow rate showed low sensitivity to the initial packing states of particles when the particle aspect ratio and component ratio were fixed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2019.07.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2019.07.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Shengyao Jiang; Nan Gui; Jiyuan Tu; Jiyuan Tu; Xingtuan Yang; Houbo Qi;Abstract The core of pebble bed type reactor (HTGR) is a packed bed composed of spherical pebbles (fuel element and graphite moderator). The restitution coefficient is an important parameter which is directly related to the flow of the core pebbles and affects the motion trajectory and stacking state of the fuel pebbles. Herein, Discrete Element Method (DEM) is used to simulate pebble flows within a thin pebble bed. The packing peaks, apex angles, trajectory and velocity deviations, residence time and residence ratios are analyzed in details. The influence of restitution coefficient on the motion characteristics of pebble flow are studied based on the trajectory of fuel pebble. A new evaluation criterion for the uniformity of pebble flows is put forward, and its influencing mechanisms are explored. The relationship between the restitution coefficient and pebble motion is proposed, which can help understand the flow uniformity of fuel pebbles in nuclear reactor core.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2020.107549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2020.107549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Royal Society of Chemistry (RSC) Changli Li; Yequan Xiao; Li Zhang; Yanbo Li; Jean-Jacques Delaunay; Hongwei Zhu;doi: 10.1039/c7se00504k
In conjunction with a TiO2 protective layer and FeNiCoOx electrocatalyst, a graphene/Si heterojunction photoanode is demonstrated as a new type of Si-based buried junction with high photovoltage for solar water oxidation.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7se00504k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7se00504k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Wiley Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP160101521Shujun Wang; Jiadong Qin; Yubai Zhang; Fang Xia; Minsu Liu; Hao Chen; Mohammad Al‐Mamun; Porun Liu; Regan Rigway; Ge Shi; Jingchao Song; Yu Lin Zhong; Huijun Zhao;handle: 11343/285717 , 10072/386606
Vanadium oxide (VOx) nanomaterials are promising candidates for energy storage devices, such as lithium‐ and sodium‐ion batteries and supercapacitors, in which many complicated structural designs and composite strategies are applied to harness the high theoretical capacity of these materials. Herein, a simple yet effective method to achieve improved performance of electrodes via tungsten doping in a green hydrothermal reaction is demonstrated. The evolution of three VOx phases (V2O5, VO2, and V6O13) during the synthesis of the VOx nanostructures is revealed by the systematic investigation of the reaction products. The dopants are critical for the formation of nanocrystalline structures. The as‐fabricated VOx is tested for lithium‐ion batteries, which shows that tungsten doping significantly improves the battery performance, including initial discharge capacity of the VOx (doped VOx = 615.2 ± 41.6 mAh g–1, undoped VOx = 377.9 ± 72.8 mAh g–1, and precursor V2O5 = 393.4 ± 74.0 mAh g–1), cycle stability, and rate performance. This research provides important insights into the understanding of the dopant‐induced phase tuning of VOx nanostructures for energy storage–related applications.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2019Full-Text: http://hdl.handle.net/10072/386606Data sources: Bielefeld Academic Search Engine (BASE)Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201801041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2019Full-Text: http://hdl.handle.net/10072/386606Data sources: Bielefeld Academic Search Engine (BASE)Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201801041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 IndiaPublisher:Informa UK Limited Thomas Spencer; Michel Colombier; Oliver Sartor; Amit Garg; Vineet Tiwari; Jesse Burton; Tara Caetano; Fergus Green; Fei Teng; John Wiseman;handle: 11718/20665
National and global mitigation scenarios consistent with 1.5°C require an early phase-out of coal in major coal-dependent countries, compared to standard technical and economic lifetimes. This appe...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2017.1386540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 112 citations 112 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2017.1386540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Zhanying Zhang; Ian M. O'Hara; Chang Jin; Huan Li; Huan Li; Sagadevan G. Mundree;Anaerobic digestion is recognized as a good and promising method for energy recovery from sewage sludge, but it is difficult to select a suitable process from various conventional and emerging technical options. In this study, five processes including mesophilic and thermophilic anaerobic digestion (CAD and TAD), mesophilic and thermophilic high-solids anaerobic digestion (HSAD and THSAD) and anaerobic digestion with thermal hydrolysis pretreatment (THPAD) are compared using life cycle environmental and economic assessment. Particularly, the uncertainty derived from variable sludge organic content and biogas production is analyzed. The results showed that energy output should be the most sensitive factor determining the assessment results. For common high-organic-content sludge, thermophilic processes like THSAD and TAD lead to the least environmental impact while THSAD and THPAD exhibit the best economic performance. Compare with CAD, THSAD have 44% less environmental impact and 118% higher net present value (NPV) for a project with treatment capability of 100 t dry solids per day. However, for low-organic-content sludge, high-solids processes like THSAD and HSAD are much better than the others mainly owing to their less consumption of thermal energy. Using this kind of feed sludge, THSAD can bring 40% less environmental burden and 31% more NPV than CAD.
Energy arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.03.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.03.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Research Square Platform LLC Funded by:EC | GC2.0, EC | REALMEC| GC2.0 ,EC| REALMZiqi Zhu; Han Wang; Sandy P. Harrison; Iain Colin Prentice; Shengchao Qiao; Shen Tan;Abstract Recent increases in vegetation cover, observed over much of the world, reflect increasing CO2 globally and warming in cold areas. However, the strength of the response to both CO2 and warming appears to be declining. Here we examine changes in vegetation cover on the Tibetan Plateau over the past 35 years. Although the climate trends are similar across the Plateau, drier regions have become greener by 0.31±0.14% yr−1 while wetter regions have become browner by 0.12±0.08% yr–1. This divergent response is predicted by a universal model of primary production accounting for optimal carbon allocation to leaves, subject to constraint by water availability. Rising CO2 stimulates production in both greening and browning areas; increased precipitation enhances growth in dry regions, but growth is reduced in wetter regions because warming increases below-ground allocation costs. The declining sensitivity of vegetation to climate change reflects a shift from water to energy limitation.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/100248Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1209202/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/100248Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1209202/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Hua Zhou; Tianwei Yang; Bassam Dally; Zhuyin Ren;Abstract Moderate or Intense Low oxygen Dilution (MILD) combustion is a promising technology to meet the ever-stringent emission regulation while maintain high thermal efficiency. In this study, large eddy simulation (LES) in conjunction with transported probability density function (TPDF) method has been carried out for the first time to investigate the impact of reaction and diffusion timescales on the stabilization process of the jet-in-hot-coflow (JHC) CH4/H2 flame emulating MILD conditions. First it is demonstrated that the LES/TPDF simulations yield improved predictions of the species and temperature fields due to its capability in capturing finite-rate chemistry and resolving molecular transport at the filter scale. Then the impact of reaction and diffusion timescales on the stabilization process are investigated. It is found that the attenuation of chemical kinetics results in larger stabilization heights and unstable flame bases. More importantly the variation of stabilization height is found to be linearly proportional to that of auto-ignition delay time, illustrating the crucial importance of chemical kinetics during flame stabilization. The results show that the flame is initiated from the lean mixture away from the shear layer, which implies the importance of molecular transport during flame stabilization. Particle-level budget analysis further shows that the resolved molecular diffusion is important for flame base dynamics by contributing more than half of the overall conditional diffusion rate. Finally, a scaling rule for the characteristic flame stabilization time is proposed based on the auto-ignition delay time and characteristic time of diffusion, and it works reasonably well for all the cases considered. These findings shed light on the key physico-chemical mechanisms of the stabilization process for JHC flames under the MILD combustion mode. Moreover, the assessment on subgrid mixing and resolved molecular diffusion reveals that the simulation exhibits low sensitivity to the mixing model and mixing timescale while being highly sensitive to the resolved molecular diffusion, highlighting the key modelling aspects related to LES/TPDF simulation of this flame.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2019.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2019.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:MDPI AG Authors: Giri R. Kattel; Wenxiu Shang; Zhongjing Wang; John Langford;doi: 10.3390/su11133735
handle: 11343/225801
Global freshwaters are severely depleted. Provision of improved water infrastructure technologies and innovation can address challenges posed by water shortages to environmental sustainability. China’s South-to-North Water Diversion Project has generated extensive debates over sustainability of water resources system in the northern drier region, which faces severe water scarcity hindering ecosystems, agriculture, industries and livelihoods. Some arguments extend the views that large infrastructure projects can have negative implications for biodiversity conservation and ecosystem goods and services. However, this study strengthens the opposite view, as such projects would resolve increasing environmental challenges northern China has been facing over many decades due to severe water shortages. The project empowers connectivity among individuals, community, and organizations that the sustainability of goods and services such as energy, irrigation and water supply are perceived, and livelihoods and the standard of peoples’ living is improved. A resilient, robust and adaptive water infrastructure framework can overcome the challenges of water shortages by meeting a long term social, economic and environmental goals for water resources systems in northern China. Such framework can also identify the thresholds of change and the threats associated with environmental sustainability.
Sustainability arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11133735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11133735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:Oxford University Press (OUP) Shiping Wang; Shiping Wang; Joy D. Van Nostrand; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Jack A. Gilbert; Jack A. Gilbert; Linwei Wu; Linwei Wu; Zhili He; Haowei Yue; Xiangzhen Li; Lauren Hale; Yigang Hu; Yunfeng Yang; Qiaoyan Lin;Abstract As climate cooling is increasingly regarded as important natural variability of long-term global warming trends, there is a resurging interest in understanding its impact on biodiversity and ecosystem functioning. Here, we report a soil transplant experiment from lower to higher elevations in a Tibetan alpine grassland to simulate the impact of cooling on ecosystem community structure and function. Three years of cooling resulted in reduced plant productivity and microbial functional potential (for example, carbon respiration and nutrient cycling). Microbial genetic markers associated with chemically recalcitrant carbon decomposition remained unchanged despite a decrease in genes associated with chemically labile carbon decomposition. As a consequence, cooling-associated changes correlated with a decrease in soil organic carbon (SOC). Extrapolation of these results suggests that for every 1 °C decrease in annual average air temperature, 0.1 Pg (0.3%) of SOC would be lost from the Tibetan plateau. These results demonstrate that microbial feedbacks to cooling have the potential to differentially impact chemically labile and recalcitrant carbon turnover, which could lead to strong, adverse consequences on soil C storage. Our findings are alarming, considering the frequency of short-term cooling and its scale to disrupt ecosystems and biogeochemical cycling.
The ISME Journal arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaThe ISME JournalArticle . 2017 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2017.75&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The ISME Journal arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaThe ISME JournalArticle . 2017 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2017.75&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Liang Ge; Jiyuan Tu; Jiyuan Tu; Xingtuan Yang; Shengyao Jiang; Nan Gui;Abstract As an important class of particle flows in industrial applications, hopper flows, particularly those using pebbles (diameters dp ~O(10-2) m), play a significant role in nuclear reactor engineering, e.g. HTGR and ADS reactors. However, the features and influencing factors of the binary mixture discharge have not yet been widely investigated. In this study, the discrete element method (DEM) simulation was adopted to analyze the discharge flow of binary mixtures consisting of ellipsoids and spheres in a hopper. After a model validation, the effects of particle aspect ratio (Ra, the ratio of the major axis to the minor axis) of ellipsoids and component ratio (Rn, the ratio of the ellipsoid number to the sphere number) of ellipsoids to spheres were analyzed. Flow patterns were visualized by colored pebble stripes according to pebbles' initial heights. Particle discharge flow rates were computed to examine their relations to particle aspect ratios and component ratios. The force structure and distributions of the binary mixtures were also explored. Results showed that pebble stripes followed quadratic function profiles. Adding ellipsoids was advantageous for particles discharging at lower particle aspect ratios (Ra≤2), while impedimental at large particle aspect ratios (Ra≥3). The discharge flow rate was inversely proportional to the particle aspect ratio at fixed component ratios, and linearly proportional to the 1/4th power of the component ratio at fixed particle aspect ratios. In addition, the discharge flow rate showed low sensitivity to the initial packing states of particles when the particle aspect ratio and component ratio were fixed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2019.07.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2019.07.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Shengyao Jiang; Nan Gui; Jiyuan Tu; Jiyuan Tu; Xingtuan Yang; Houbo Qi;Abstract The core of pebble bed type reactor (HTGR) is a packed bed composed of spherical pebbles (fuel element and graphite moderator). The restitution coefficient is an important parameter which is directly related to the flow of the core pebbles and affects the motion trajectory and stacking state of the fuel pebbles. Herein, Discrete Element Method (DEM) is used to simulate pebble flows within a thin pebble bed. The packing peaks, apex angles, trajectory and velocity deviations, residence time and residence ratios are analyzed in details. The influence of restitution coefficient on the motion characteristics of pebble flow are studied based on the trajectory of fuel pebble. A new evaluation criterion for the uniformity of pebble flows is put forward, and its influencing mechanisms are explored. The relationship between the restitution coefficient and pebble motion is proposed, which can help understand the flow uniformity of fuel pebbles in nuclear reactor core.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2020.107549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2020.107549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Royal Society of Chemistry (RSC) Changli Li; Yequan Xiao; Li Zhang; Yanbo Li; Jean-Jacques Delaunay; Hongwei Zhu;doi: 10.1039/c7se00504k
In conjunction with a TiO2 protective layer and FeNiCoOx electrocatalyst, a graphene/Si heterojunction photoanode is demonstrated as a new type of Si-based buried junction with high photovoltage for solar water oxidation.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7se00504k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7se00504k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Wiley Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP160101521Shujun Wang; Jiadong Qin; Yubai Zhang; Fang Xia; Minsu Liu; Hao Chen; Mohammad Al‐Mamun; Porun Liu; Regan Rigway; Ge Shi; Jingchao Song; Yu Lin Zhong; Huijun Zhao;handle: 11343/285717 , 10072/386606
Vanadium oxide (VOx) nanomaterials are promising candidates for energy storage devices, such as lithium‐ and sodium‐ion batteries and supercapacitors, in which many complicated structural designs and composite strategies are applied to harness the high theoretical capacity of these materials. Herein, a simple yet effective method to achieve improved performance of electrodes via tungsten doping in a green hydrothermal reaction is demonstrated. The evolution of three VOx phases (V2O5, VO2, and V6O13) during the synthesis of the VOx nanostructures is revealed by the systematic investigation of the reaction products. The dopants are critical for the formation of nanocrystalline structures. The as‐fabricated VOx is tested for lithium‐ion batteries, which shows that tungsten doping significantly improves the battery performance, including initial discharge capacity of the VOx (doped VOx = 615.2 ± 41.6 mAh g–1, undoped VOx = 377.9 ± 72.8 mAh g–1, and precursor V2O5 = 393.4 ± 74.0 mAh g–1), cycle stability, and rate performance. This research provides important insights into the understanding of the dopant‐induced phase tuning of VOx nanostructures for energy storage–related applications.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2019Full-Text: http://hdl.handle.net/10072/386606Data sources: Bielefeld Academic Search Engine (BASE)Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201801041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2019Full-Text: http://hdl.handle.net/10072/386606Data sources: Bielefeld Academic Search Engine (BASE)Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201801041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 IndiaPublisher:Informa UK Limited Thomas Spencer; Michel Colombier; Oliver Sartor; Amit Garg; Vineet Tiwari; Jesse Burton; Tara Caetano; Fergus Green; Fei Teng; John Wiseman;handle: 11718/20665
National and global mitigation scenarios consistent with 1.5°C require an early phase-out of coal in major coal-dependent countries, compared to standard technical and economic lifetimes. This appe...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2017.1386540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 112 citations 112 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2017.1386540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Zhanying Zhang; Ian M. O'Hara; Chang Jin; Huan Li; Huan Li; Sagadevan G. Mundree;Anaerobic digestion is recognized as a good and promising method for energy recovery from sewage sludge, but it is difficult to select a suitable process from various conventional and emerging technical options. In this study, five processes including mesophilic and thermophilic anaerobic digestion (CAD and TAD), mesophilic and thermophilic high-solids anaerobic digestion (HSAD and THSAD) and anaerobic digestion with thermal hydrolysis pretreatment (THPAD) are compared using life cycle environmental and economic assessment. Particularly, the uncertainty derived from variable sludge organic content and biogas production is analyzed. The results showed that energy output should be the most sensitive factor determining the assessment results. For common high-organic-content sludge, thermophilic processes like THSAD and TAD lead to the least environmental impact while THSAD and THPAD exhibit the best economic performance. Compare with CAD, THSAD have 44% less environmental impact and 118% higher net present value (NPV) for a project with treatment capability of 100 t dry solids per day. However, for low-organic-content sludge, high-solids processes like THSAD and HSAD are much better than the others mainly owing to their less consumption of thermal energy. Using this kind of feed sludge, THSAD can bring 40% less environmental burden and 31% more NPV than CAD.
Energy arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.03.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.03.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Research Square Platform LLC Funded by:EC | GC2.0, EC | REALMEC| GC2.0 ,EC| REALMZiqi Zhu; Han Wang; Sandy P. Harrison; Iain Colin Prentice; Shengchao Qiao; Shen Tan;Abstract Recent increases in vegetation cover, observed over much of the world, reflect increasing CO2 globally and warming in cold areas. However, the strength of the response to both CO2 and warming appears to be declining. Here we examine changes in vegetation cover on the Tibetan Plateau over the past 35 years. Although the climate trends are similar across the Plateau, drier regions have become greener by 0.31±0.14% yr−1 while wetter regions have become browner by 0.12±0.08% yr–1. This divergent response is predicted by a universal model of primary production accounting for optimal carbon allocation to leaves, subject to constraint by water availability. Rising CO2 stimulates production in both greening and browning areas; increased precipitation enhances growth in dry regions, but growth is reduced in wetter regions because warming increases below-ground allocation costs. The declining sensitivity of vegetation to climate change reflects a shift from water to energy limitation.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/100248Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1209202/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/100248Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1209202/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Hua Zhou; Tianwei Yang; Bassam Dally; Zhuyin Ren;Abstract Moderate or Intense Low oxygen Dilution (MILD) combustion is a promising technology to meet the ever-stringent emission regulation while maintain high thermal efficiency. In this study, large eddy simulation (LES) in conjunction with transported probability density function (TPDF) method has been carried out for the first time to investigate the impact of reaction and diffusion timescales on the stabilization process of the jet-in-hot-coflow (JHC) CH4/H2 flame emulating MILD conditions. First it is demonstrated that the LES/TPDF simulations yield improved predictions of the species and temperature fields due to its capability in capturing finite-rate chemistry and resolving molecular transport at the filter scale. Then the impact of reaction and diffusion timescales on the stabilization process are investigated. It is found that the attenuation of chemical kinetics results in larger stabilization heights and unstable flame bases. More importantly the variation of stabilization height is found to be linearly proportional to that of auto-ignition delay time, illustrating the crucial importance of chemical kinetics during flame stabilization. The results show that the flame is initiated from the lean mixture away from the shear layer, which implies the importance of molecular transport during flame stabilization. Particle-level budget analysis further shows that the resolved molecular diffusion is important for flame base dynamics by contributing more than half of the overall conditional diffusion rate. Finally, a scaling rule for the characteristic flame stabilization time is proposed based on the auto-ignition delay time and characteristic time of diffusion, and it works reasonably well for all the cases considered. These findings shed light on the key physico-chemical mechanisms of the stabilization process for JHC flames under the MILD combustion mode. Moreover, the assessment on subgrid mixing and resolved molecular diffusion reveals that the simulation exhibits low sensitivity to the mixing model and mixing timescale while being highly sensitive to the resolved molecular diffusion, highlighting the key modelling aspects related to LES/TPDF simulation of this flame.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2019.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2019.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:MDPI AG Authors: Giri R. Kattel; Wenxiu Shang; Zhongjing Wang; John Langford;doi: 10.3390/su11133735
handle: 11343/225801
Global freshwaters are severely depleted. Provision of improved water infrastructure technologies and innovation can address challenges posed by water shortages to environmental sustainability. China’s South-to-North Water Diversion Project has generated extensive debates over sustainability of water resources system in the northern drier region, which faces severe water scarcity hindering ecosystems, agriculture, industries and livelihoods. Some arguments extend the views that large infrastructure projects can have negative implications for biodiversity conservation and ecosystem goods and services. However, this study strengthens the opposite view, as such projects would resolve increasing environmental challenges northern China has been facing over many decades due to severe water shortages. The project empowers connectivity among individuals, community, and organizations that the sustainability of goods and services such as energy, irrigation and water supply are perceived, and livelihoods and the standard of peoples’ living is improved. A resilient, robust and adaptive water infrastructure framework can overcome the challenges of water shortages by meeting a long term social, economic and environmental goals for water resources systems in northern China. Such framework can also identify the thresholds of change and the threats associated with environmental sustainability.
Sustainability arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11133735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11133735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:Oxford University Press (OUP) Shiping Wang; Shiping Wang; Joy D. Van Nostrand; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Jack A. Gilbert; Jack A. Gilbert; Linwei Wu; Linwei Wu; Zhili He; Haowei Yue; Xiangzhen Li; Lauren Hale; Yigang Hu; Yunfeng Yang; Qiaoyan Lin;Abstract As climate cooling is increasingly regarded as important natural variability of long-term global warming trends, there is a resurging interest in understanding its impact on biodiversity and ecosystem functioning. Here, we report a soil transplant experiment from lower to higher elevations in a Tibetan alpine grassland to simulate the impact of cooling on ecosystem community structure and function. Three years of cooling resulted in reduced plant productivity and microbial functional potential (for example, carbon respiration and nutrient cycling). Microbial genetic markers associated with chemically recalcitrant carbon decomposition remained unchanged despite a decrease in genes associated with chemically labile carbon decomposition. As a consequence, cooling-associated changes correlated with a decrease in soil organic carbon (SOC). Extrapolation of these results suggests that for every 1 °C decrease in annual average air temperature, 0.1 Pg (0.3%) of SOC would be lost from the Tibetan plateau. These results demonstrate that microbial feedbacks to cooling have the potential to differentially impact chemically labile and recalcitrant carbon turnover, which could lead to strong, adverse consequences on soil C storage. Our findings are alarming, considering the frequency of short-term cooling and its scale to disrupt ecosystems and biogeochemical cycling.
The ISME Journal arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaThe ISME JournalArticle . 2017 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2017.75&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The ISME Journal arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaThe ISME JournalArticle . 2017 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2017.75&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu