search
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
    Clear
  • Source
  • Research community
  • Organization
    Clear
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Embargo
  • BE
  • University of Mary

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw M-K.H Winkler;
    M-K.H Winkler
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    M-K.H Winkler in OpenAIRE
    K.F. Ettwig; orcid T.P.W. Vannecke;
    T.P.W. Vannecke
    ORCID
    Harvested from ORCID Public Data File

    T.P.W. Vannecke in OpenAIRE
    orcid bw K. Stultiens;
    K. Stultiens
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    K. Stultiens in OpenAIRE
    +3 Authors

    Anaerobic nitrogen removal technologies offer advantages in terms of energy and cost savings over conventional nitrification-denitrification systems. A mathematical model was constructed to evaluate the influence of process operation on the coexistence of nitrite dependent anaerobic methane oxidizing bacteria (n-damo) and anaerobic ammonium oxidizing bacteria (anammox) in a single granule. The nitrite and methane affinity constants of n-damo bacteria were measured experimentally. The biomass yield of n-damo bacteria was derived from experimental data and a thermodynamic state analysis. Through simulations, it was found that the possible survival of n-damo besides anammox bacteria was sensitive to the nitrite/ammonium influent ratio. If ammonium was supplied in excess, n-damo bacteria were outcompeted. At low biomass concentration, n-damo bacteria lost the competition against anammox bacteria. When the biomass loading closely matched the biomass concentration needed for full nutrient removal, strong substrate competition occurred resulting in oscillating removal rates. The simulation results further reveal that smaller granules enabled higher simultaneous ammonium and methane removal efficiencies. The implementation of simultaneous anaerobic methane and ammonium removal will decrease greenhouse gas emissions, but an economic analysis showed that adding anaerobic methane removal to a partial nitritation/anammox process may increase the aeration costs with over 20%. Finally, some considerations were given regarding the practical implementation of the process.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Radboud Repository
    Article . 2015
    Data sources: Radboud Repository
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Research
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    71
    citations71
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Radboud Repository
      Article . 2015
      Data sources: Radboud Repository
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Research
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
Powered by OpenAIRE graph