search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1,232 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • other engineering and technologies
  • 15. Life on land
  • DE
  • CA

  • Authors: Ling Guo; Liqiang Xiao; Wenlan Wang; Jiachen Yin; +1 Authors

    Abstract Reasonable assessment of the environmental benefits of integrating forest products into global value chains (GVCs) is important to promote sustainable development. Based on the forest product sector data for 41 countries from 2002 to 2014, this paper explores the impact of GVC participation on carbon embodied in exports using the 2008 financial crisis, a quasi-natural experiment of negative global value chain shocks. We found that deepening backward participation in forest product value chains led to more substantial increases in carbon emissions than did forward participation. Countries with large decreases in GVC participation reduced more carbon embodied in forest product exports after the financial crisis (relative to countries with small decreases) through a larger reduction in the scale of forest product exports, and a decrease in the growth rate of capital-intensive products as a result of the relative decline in capital investment. They increased the embodied carbon of exports through a decrease in the growth rate of skilled personnel. Strengthening the technology effect of GVCs with the guidance of skilled forestry personnel is a key way to decrease exported embodied carbon.

    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Elizabeth T. Borer;
    Elizabeth T. Borer
    ORCID
    Harvested from ORCID Public Data File

    Elizabeth T. Borer in OpenAIRE
    orcid Rachel E. Paseka;
    Rachel E. Paseka
    ORCID
    Harvested from ORCID Public Data File

    Rachel E. Paseka in OpenAIRE
    orcid Angela Peace;
    Angela Peace
    ORCID
    Harvested from ORCID Public Data File

    Angela Peace in OpenAIRE
    orcid Lale Asik;
    Lale Asik
    ORCID
    Harvested from ORCID Public Data File

    Lale Asik in OpenAIRE
    +7 Authors

    AbstractAutotrophs play an essential role in the cycling of carbon and nutrients, yet disease‐ecosystem relationships are often overlooked in these dynamics. Importantly, the availability of elemental nutrients like nitrogen and phosphorus impacts infectious disease in autotrophs, and disease can induce reciprocal effects on ecosystem nutrient dynamics. Relationships linking infectious disease with ecosystem nutrient dynamics are bidirectional, though the interdependence of these processes has received little attention. We introduce disease‐mediated nutrient dynamics (DND) as a framework to describe the multiple, concurrent pathways linking elemental cycles with infectious disease. We illustrate the impact of disease–ecosystem feedback loops on both disease and ecosystem nutrient dynamics using a simple mathematical model, combining approaches from classical ecological (logistic and Droop growth) and epidemiological (susceptible and infected compartments) theory. Our model incorporates the effects of nutrient availability on the growth rates of susceptible and infected autotroph hosts and tracks the return of nutrients to the environment following host death. While focused on autotroph hosts here, the DND framework is generalizable to higher trophic levels. Our results illustrate the surprisingly complex dynamics of host populations, infection patterns, and ecosystem nutrient cycling that can arise from even a relatively simple feedback between disease and nutrients. Feedback loops in disease‐mediated nutrient dynamics arise via effects of infection and nutrient supply on host stoichiometry and population size. Our model illustrates how host growth rate, defense, and tissue chemistry can impact the dynamics of disease–ecosystem relationships. We use the model to motivate a review of empirical examples from autotroph–pathogen systems in aquatic and terrestrial environments, demonstrating the key role of nutrient–disease and disease–nutrient relationships in real systems. By assessing existing evidence and uncovering data gaps and apparent mismatches between model predictions and the dynamics of empirical systems, we highlight priorities for future research intended to narrow the persistent disciplinary gap between disease and ecosystem ecology. Future empirical and theoretical work explicitly examining the dynamic linkages between disease and ecosystem ecology will inform fundamental understanding for each discipline and will better position the field of ecology to predict the dynamics of disease and elemental cycles in the context of global change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Monograph...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Monographs
    Article . 2022 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Monograph...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Monographs
      Article . 2022 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ruth Offermann; Thilo Seidenberger; orcid Daniela Thrän;
    Daniela Thrän
    ORCID
    Harvested from ORCID Public Data File

    Daniela Thrän in OpenAIRE
    Martin Kaltschmitt; +2 Authors

    So far, various studies assessed global biomass potentials and came up with widely varying results. Existing potential estimates range from 0 EJ/a up to more than 1,550 EJ/a which corresponds to about three times the current global primary energy consumption. This paper provides an overview of the available research on bioenergy potentials and reviews the different assessments qualitative way with the objective to interpret previous research in an integrated way. In the context of this paper we understand bioenergy as energy from biomass sources including energy crops, residues, byproducts and wastes from agriculture, forestry, food production and waste management. In this review special attention was paid to the difference between residue and energy potentials, land availability estimates, and the geographical resolution of existing potential estimates. The majority of studies concentrate on energy crop potentials retrieved from surplus agricultural land and only few publications assess global potentials separated by different world regions. It results that land allocated to the exclusive production of energy crops varies from 0 to 7,000 ha, depending on land category and scenario assumptions. Only a small number of available potential assessments consider residue potentials as well as energy crop potentials from degraded land. Future energy crop potentials are assumed to vary in the mean from 200 to 600 EJ/yr. In contrast residue potentials are expected to contribute between 62 and 325 EJ/yr. The highest potentials are assigned to Asia, Africa and South America while Europe, North America and the Pacific region contribute minor parts to the global potential.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Papers in E...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Mitigation and Adaptation Strategies for Global Change
    Article . 2010 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    83
    citations83
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Papers in E...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Mitigation and Adaptation Strategies for Global Change
      Article . 2010 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: F. Dawalibi; Dinkar Mukhedkar;

    Detailed analysis of ground rods and their influence on horizontal ground conductors, such as those forming grounding grids, is performed assuming a two layer soil stratification. The study starts with a discussion about the adequacy of uniform and two-layer soils as equivalent models for actual soil structures. Following this, a typical ground rod is analysed, while it is progressively associated with other ground rods, and ultimately, with horizontal conductors. The same procedure is also applied to an horizontal conductor. The results, shown using numerous charts which can be used conveniently for practical design purposes, lead to several interesting conclusions, many of which are new or still unpublished.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Power Apparatus and Systems
    Article . 1979 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    62
    citations62
    popularityTop 10%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Power Apparatus and Systems
      Article . 1979 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • Authors: Peter Bowal;

    National environmental protection through law is a relatively recent initiative. The written national constitutions of federal countries, such as Canada, did not originally provide for which level of government would enjoy the primary constitutional authority to regulate for environmental protection. Today, a legal jurisdiction must be interpreted and declared from an old imperial document that did not foresee the environment as a discrete subject for regulation. This article describes the experience of how each of two exclusively sovereign levels of government in the same country, the courts and the constitution have combined over the last half century to establish a unique regime of environmental protection in Canada, and how that regime continues to be developed.

    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Sonal K. Thengane;
    Sonal K. Thengane
    ORCID
    Harvested from ORCID Public Data File

    Sonal K. Thengane in OpenAIRE
    Kevin Kung; Josiah Hunt; Haris R. Gilani; +3 Authors

    AbstractThe state of California could play an important role in emerging markets for biochar, due in part to the availability of low‐value biomass resources and their potential for use in agriculture sector. In this study, we assess the scale of production and use, and comment on potential markets for biochar in California. We explore various sectors for the application of biochar produced from local biomass using surveys and a market‐sizing approach. A market‐oriented approach for biochar innovation and the ecosystem around a biochar producer is also discussed. Next, we identify barriers to biochar market success in the present and the near future based on a survey of local producers. Among the barriers analyzed, access to capital investment for scale‐up is the biggest barrier experienced by a majority of producers, followed by market and demand. When grouped under different categories, the extent of barriers decreased in the order: market > scale‐up > technical > socio‐political > environmental. Most producers anticipate that revenues from carbon offset credits would help them scale up their facilities and expand the biochar market. In the near future, soil‐based applications of biochar could be the most likely market for biochar, followed by filtration, livestock feed, and manure management. As the industry evolves, rewarding carbon credits, increasing awareness and improving production processes are expected to help commercialize biochar. Finally, we offer recommendations to promote the growth of biochar in California. © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biofuels Bioproducts...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biofuels Bioproducts and Biorefining
    Article . 2021 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    49
    citations49
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biofuels Bioproducts...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biofuels Bioproducts and Biorefining
      Article . 2021 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Andrew VanderZaag;
    Andrew VanderZaag
    ORCID
    Harvested from ORCID Public Data File

    Andrew VanderZaag in OpenAIRE
    Xavier P.C. Vergé; Raymond L. Desjardins; Dominique Maxime;

    Abstract The choice of the calculation pathways used to estimate the environmental impact of human activities is of importance since it could modify the results of such studies. This is the case for the Life Cycle Analysis (LCA) which is now commonly used to perform environmental assessments: the allocation methods used have an important impact on calculations and can potentially affect the final results. This could have a very negative impact on the LCA in terms of adoption and trust in the results. In the current study, the Canadian swine sector has been used as a case study and the carbon footprint of pork production has been estimated regionally for the year 2006. In this study, these calculations were performed using different allocation approaches to study the impact and usefulness of each method. No-allocation, economic-allocation, and mass-allocation approaches were used. Owing to climate and production-type specificities, calculations were done for eastern and western Canada in addition to the national estimates. Total greenhouse gas emissions were higher in the east (3.5 Mt CO2e) than in the west (3.1 Mt CO2e). However, the carbon footprint followed an opposite trend. Considering the primal cut products and, in turn, the mass allocation, the economic allocation and no allocations, the CFs were 2.6 kgCO2e, 3.8 kgCO2e and 4.0 kgCO2e per kg of product for the east and 3.2 kgCO2e, 4.7 kgCO2e and 5.0 kgCO2e per kg of product for the west. The current study shows that, in fact, allocation methods are not interchangeable and should be selected based on the specificity of each study: the no-allocation approach can be used to analyze on-farm production, economic allocation is oriented to market studies, and mass allocation is well suited to environmental sustainability assessments.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Brian McConkey; J.A. Dyer; Devon E. Worth; X. P. C. Vergé; +1 Authors

    Abstract Greenhouse gas (GHG) emissions associated with the production of the 21 major field crops in Canada were 16.8 Tg CO 2 e of N 2 O and 17.2 Tg of fossil fuel CO 2 in 2006. The mean GHG emission intensity on an area basis for these crops was 1.0 Mg of CO 2 e per ha. On a dry matter (DM) basis, the mean GHG emission intensity was 0.33 Mg of CO 2 e Mg − 1 DM. For western Canada, the GHG emission intensity was 0.35 MgCO 2 e Mg − 1 DM and 0.30 MgCO 2 e Mg − 1 DM for eastern Canada. The sensitivity of the GHG emissions to crop-specific GHG emission intensities was demonstrated by examining two biodiesel scenarios. The biodiesel share of the diesel fuel blend was 2% in the first scenario (B2) and 5% in the second scenario (B5). The increased feedstock was assumed to come from canola and soybeans. The B2 scenario increased the emission intensity for western Canada to 0.38 MgCO 2 e Mg − 1 DM and the B5 scenario to 0.43 MgCO 2 e Mg − 1 DM. Neither scenario had any appreciable effect on the magnitude of the emission intensity for eastern Canada. The GHG emissions from the canola-dominated western Canadian field crops were increased by the B2 and B5 fuel blend scenarios. In the soybean-dominated east, the two scenarios resulted in decreased GHG emissions from field crops. Canola-based biodiesel potentially eliminates more petrodiesel CO 2 emissions than soybean biodiesel. However, for both scenarios, the net potential GHG reductions (petrodiesel offset plus change in GHG emissions from field crops) were 2.60 MgCO 2 e ha − 1 of additional oilseeds in the east and 0.94 MgCO 2 e ha − 1 in the west. The higher meal by-product from soybean oil meant a smaller loss of livestock feed for eastern Canada.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy for Sustainab...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy for Sustainable Development
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    56
    citations56
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy for Sustainab...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy for Sustainable Development
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Adrian R. Bowden; Donna F. Pershke; Rick Chalaturnyk;

    Abstract The aim of this paper is to describe the methodology developed to link the quantitative outputs of the geosphere risk assessment to the semi-quantitative assessment of risk to the biosphere. It also shows how good practice stakeholder engagement principles can be incorporated into the risk assessment process to achieve transparency in project decision making. The objective of the biosphere risk assessment portion of the Weyburn-Midale Project was to develop a risk assessment methodology that can be applied to a range of CO2 storage projects. Preliminary modelling of potential biosphere impacts associated with the Weyburn-Midale Project was undertaken to enable the risk assessment methodology to be tested and to demonstrate the nature of the biosphere risk assessment outputs, and how the process and outputs can be used to facilitate stakeholder acceptance. The method to assess the biosphere risk at the Weyburn-Midale Project uses the outputs (pathways, likelihoods and CO2 mass) from geosphere risk assessment to identify the general physical and chemical effects on the fundamental biosphere components (groundwater, surface water, soil, air) and the consequential impacts on organisms, habitat, amenity and public safety. The approach applies an existing environmental impact assessment methodology to derive outputs that stakeholders can use to assess the risk and impacts to environmental assets. The outcomes of biosphere risk assessment are used to: develop risk mitigation strategies and future monitoring options; understand whether the project will likely have unacceptable impacts on safety or valued community assets; decide whether the project should proceed; and to assist engagement with regulators and the community.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Greenhouse Gas Control
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    10
    citations10
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Greenhouse Gas Control
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid PULSELLI, R. M.;
    PULSELLI, R. M.
    ORCID
    Harvested from ORCID Public Data File

    PULSELLI, R. M. in OpenAIRE
    RUSTICI, M.; orcid MARCHETTINI, N.;
    MARCHETTINI, N.
    ORCID
    Harvested from ORCID Public Data File

    MARCHETTINI, N. in OpenAIRE

    This research proposes an integrated framework to investigate human-dominated systems and provide a basic approach to urban and regional studies in which the multiple interactions between economic and ecological processes are considered as a whole. Humans generate patterns of land use, infrastructures and other settings and redistribute ecosystem functions as flows of energy and matter for self-maintenance. To understand these emerging interactions between humans and ecological processes, human activities (e.g. transformation processes, land conversions, use of resources) and biophysical agents such as geomorphology, climate and natural cycles need to be considered. Emergy Analysis (spelled with an "m") is then used as an environmental accounting method to evaluate different categories of resource use with reference to their environmental cost. A case study of the Province of Cagliari (in the island of Sardinia, Italy) is reported and the procedure for allocating emergy flows, assigning them to districts and managing point data is discussed. Outcomes plotted on a map showed non-homogeneous spatial distribution of emergy flows throughout the region, suggesting the way ecosystem functions are affected and restructured by the human economy.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Monito...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Monitoring and Assessment
    Article . 2007 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    33
    citations33
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Monito...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Monitoring and Assessment
      Article . 2007 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim