- home
- Search
- Energy Research
- 2021-2025
- Restricted
- Embargo
- FR
- CA
- Energy Research
- 2021-2025
- Restricted
- Embargo
- FR
- CA
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 08 Jul 2022 FrancePublisher:Elsevier BV Patrick Rousset; Mark Daniel G. de Luna; Arjay A. Arpia; Arjay A. Arpia; Wei Hsin Chen; Wei Hsin Chen; Wei Hsin Chen; Su Shiung Lam; Su Shiung Lam;Abstract With drastic fossil fuel depletion and environmental deterioration concerns, a move towards a more sustainable bioenergy-based economy is essential. Lately, the application of microwave (MW) irradiation for waste processing has been attracting interest globally. MW-assisted heating possesses several advantages such as the provision of high microwave energy into dielectric materials with deeper penetration for internal heat generation, showing beneficial features in improving the heating rate and reducing the reaction time. Consequently, the most recent literature regarding the applications of MW-assisted heating for biomass pretreatment as well as biofuel and bioenergy production was reviewed and consolidated in this study. An impressive increase in the product yield and improvement of the product properties are reported, with the use of MW-assisted heating in several conversion routes to produce biofuels. Despite being a promising technology for biofuel production, some major fundamental data of MW-assisted heating have not been comprehensively identified. Therefore, the feasibility of this technology for large-scale implementation is still subpar. Understanding the interaction between the feedstock and the microwave electromagnetic field, and the optimization of several operational and mechanical parameters are the two main keystones that would propel the industrialization of MW heating in the near future. This provides key insights leading to increased feasibility and more advanced application of MW heating.
Agritrop arrow_drop_down Chemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.126233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 241 citations 241 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Agritrop arrow_drop_down Chemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.126233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Sinet-Mathiot, Virginie; Le Meillour, Louise;Le Meillour & Sinet-Mathiot et al. 2024 Increasing sustainability in palaeoproteomics by optimizing digestion times for large-scale archaeological bone analyses DOI: 10.1016/j.isci.2024.109432 MALDI-ToF MS data (raw data: mzML files, merged spectra: msd files) used for the ZooMS analysis of the bone material from Baishiya Karst Cave (China) and La Draga (Spain), along with the R codes for merging triplicates into one msd file.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8290649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8290649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Mehdi Sellali; Achour Betka; Abdesslem Djerdir; Yongheng Yang; Imene Bahri; Said Drid;The present paper exhibits a real time assessment of a robust Energy Management Strategy (EMS) for battery-super capacitor (SC) Hybrid Energy Storage System (HESS). The proposed algorithm, dedicated to an electric vehicular application, is based on a self-gain scheduled controller, which guarantees the H∞ performance for a class of linear parameter varying (LPV) systems. Assuming that the duty cycle of the involved DC-DC converters are considered as the variable parameters, that can be captured in real time, and forwarded to the controller to ensure both; the performance and robustness of the closed-loop system. The subsequent controller is therefore time-varying and it is automatically scheduled according to each parameter variation. This algorithm has been validated through experimental results provided by a tailor-made test bench including both the HESS and the vehicle traction emulation system. The experimental results demonstrate the overall stability of the system, where the proposed LPV supervisor successfully accomplishes a power frequency splitting in an adequate way, respecting the dynamic of the sources. The proposed solution provides significant performances for different speed levels.
VBN arrow_drop_down IEEE Transactions on Energy ConversionArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tec.2020.3017811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert VBN arrow_drop_down IEEE Transactions on Energy ConversionArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tec.2020.3017811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Boquera, Laura; Castro Chicot, José Ramón; Pisello, Anna Laura; Fabiani, Claudia; +3 AuthorsBoquera, Laura; Castro Chicot, José Ramón; Pisello, Anna Laura; Fabiani, Claudia; D'Alessandro, Antonella; Ubertini, Filippo; Cabeza, Luisa F.;The incorporation of recycled materials in concrete as a partial replacement of cement is becoming an alternative strategy for decreasing energy-intensive and CO2 emissions imputable to the cement manufacture, while investigating new potential uses of such multifunctional materials for environmental sustainability opportunities. Therefore, low-cost and worldwide availability of by-products materials is being assessed for sensible heat thermal energy storage applications based on cementitious materials. A greater concern is especially required focusing on the thermal stability of cement paste under high temperature cycled conditions. Moreover, compatibility between cement type and supplementary cementitious materials is determinant for the proper performance reliability. In this study, benchmark cement types were selected, i.e., ordinary Portland and calcium aluminate. Six supplementary cementitious materials were added to both types of cement in a content of 10 % and 25 %. Thermo-mechanical properties were studied before and after 10 thermal cycles from 290 to 650 ◦C. Results after thermal cycling showed that calcium aluminate cement paste mixtures maintained their integrity. However, most ordinary Portland cement paste mixtures were deteriorated: only mixtures with 25 % cement replacement with chamotte, flay ash, and ground granulated blast furnace slag remained without cracks. Calcium aluminate cement paste mixtures obtained the highest compressive strength, for partial replacement of cement with 10 % of chamotte, ground granulated blast furnace slag, and iron silicate. The incorporation of supplementary cementitious materials did not increase the thermal conductivity. This work was partially funded by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31 - MCIU/AEI/FEDER, UE) and by the Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (AEI) (RED2018-102431-T). The authors at University of Lleida would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537). GREiA is certified agent TECNIO in the category of technology developers from the Government of Catalonia. This work is partially supported by ICREA under the ICREA Academia programme and by the Italian project ‘SOS-CITTA’ supported by Fondazione Cassa di Risparmio di Perugia under grant agreement No 2018.0499.026. Laura Boquera acknowledgments are due to the PhD school in Energy and Sustainable Development from University of Perugia. Laura Boquera would like to acknowledge the financial support provided by UNIPG – CIRIAF InpathTES project. The authors also thank the companies that provided the material to make possible this experimental research: Arciresa, Abrasivos Mendiola EDERSA—Masaveu Industria, General Admixtures S.p.A, Mapei, Ciments Molins industrial, and Promsa for the material supplied in this research. Financial support of the UNIPG-CIRIAF team has been achieved from the Italian Ministry of University and Research (MUR) in the framework of the Project FISR 2019: “Eco Earth” (code 00245) and it is gratefully acknowledged.
Repositori Obert UdL arrow_drop_down Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.105370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repositori Obert UdL arrow_drop_down Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.105370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:American Society of Civil Engineers (ASCE) Authors: Giorgia Dalla Santa; Philippe Pasquier; Luca Schenato; Antonio Galgaro;For the design of ground-source heat-pump systems, the local subsoil is an invariant factor. To improve the evaluation of the local heat exchange capability, significant efforts recently have been devoted to identifying the ground thermal conductivity vertical profile. In recent years, an innovative method using hybrid optic fiber cables inserted into the ground has been developed. The technique relies on copper wires that thermally stimulate the ground. Optical fibers measure the temperature variation over time all along the cable at a high spatial and temporal resolution. In this work, the hybrid cable was grouted into a 125-m well located in the Po Plain in Northern Italy. The provided core defined the geological environment as a continuous succession of unconsolidated alluvial deposits of very limited thickness, grouped in 15 different granulometric units. Three enhanced thermal response test (ETRT) data sets were acquired in different seasons; for 5 days of heating followed by 5 days of recovery, the soil temperature was recorded continuously along the well, with a spatial resolution of 1 m. A new approach using a multiple linear regression is proposed to analyze the data sets to distinguish the thermal conductivity of each individual granulometric unit. The obtained thermal conductivity values were compared and discussed considering the standard thermal response test outputs and the thermal conductivity data obtained from direct measurements performed on the cores. The analytical method's reliability stands due to the high repeatability of the obtained results, despite the increased complexity of the treated geological setting.
CNR ExploRA arrow_drop_down Journal of Geotechnical and Geoenvironmental EngineeringArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)gt.1943-5606.0002724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Journal of Geotechnical and Geoenvironmental EngineeringArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)gt.1943-5606.0002724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 PortugalPublisher:Elsevier BV Kashif Mushtaq; Kashif Mushtaq; Kashif Mushtaq; M. Madalena Alves; L. Peixoto; Adélio Mendes; Márcia S.S. Santos; Márcia S.S. Santos; Márcia S.S. Santos; Celia Dias-Ferreira;M.S.S. Santos is grateful to Portuguese Foundation for Science and Technology (FCT) for her PhD fellow (reference: SFRH/BD/104087/ 2014). Kashif Mushtaq is grateful to MIT Portugal Program for his doctoral grant (PD/BD/128041/2016) under the scope of the FCT. The authors would like to acknowledge to the FCT under the scope of the strategic funding of UID/BIO/04469 unit and COMPETE 2020 (POCI 01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145- FEDER-000004) funded by the European Regional Development Fund (ERDF), under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also acknowledge the Projects: i) POCI-01-0145- FEDER-006939 (LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy – UID/EQU/00511/2013), funded by the ERDF, through COMPETE2020 – Programa Operacional Competitividade e Internacionalizacao (POCI) and by nationals funds through FCT, ii) by the Project SunStorage - Harvesting and storage of solar energy”, with reference POCI-01-0145-FEDER-016387, funded by ERDF, through COMPETE 2020 –POCI), and by national funds, through FCT; (iii) Project PTDC/EQU-EQU/30510/2017 - POCI-01-0145- FEDER-030510 – Sunflow “Solar energy storage into redox flow batteries” funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) and by national funds (PIDDAC) through FCT/MCTES and iV) NORTE-01-0145- FEDER-000005 – LEPABE-2-ECO-INNOVATION, supported by North Portugal Regional Operational Programme (Norte 2020), under the Portugal 2020 Partnership Agreement, through the ERDF. The authors are indebted with all the colleagues who assisted in the laboratory work.
Repositório Aberto d... arrow_drop_down Repositório Aberto da Universidade do PortoArticle . 2021Data sources: Repositório Aberto da Universidade do PortoRepositório Aberto da Universidade AbertaArticle . 2021Data sources: Repositório Aberto da Universidade AbertaJournal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.102610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 102visibility views 102 download downloads 66 Powered bymore_vert Repositório Aberto d... arrow_drop_down Repositório Aberto da Universidade do PortoArticle . 2021Data sources: Repositório Aberto da Universidade do PortoRepositório Aberto da Universidade AbertaArticle . 2021Data sources: Repositório Aberto da Universidade AbertaJournal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.102610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Ruoyang Hu; Xuedong Li; Yong Hu; Runjie Zhang; Qiang Lv; Min Zhang; Xianyong Sheng; Feng Zhao; Zhijia Chen; Yuhan Ding; Huan Yuan; Xiaofeng Wu; Shuang Xing; Xiaoyu Yan; Fang Bao; Ping Wan; Lihong Xiao; Xiaoqin Wang; Wei Xiao; Eva L. Decker; Nico van Gessel; Hugues Renault; Gertrud Wiedemann; Nelly A. Horst; Fabian B. Haas; Per K.I. Wilhelmsson; Kristian K. Ullrich; Eva Neumann; Bin Lv; Chengzhi Liang; Huilong Du; Hongwei Lu; Qiang Gao; Zhukuan Cheng; Hanli You; Peiyong Xin; Jinfang Chu; Chien-Hsun Huang; Yang Liu; Shanshan Dong; Liangsheng Zhang; Fei Chen; Lei Deng; Fuzhou Duan; Wenji Zhao; Kai Li; Zhongfeng Li; Xingru Li; Hengjian Cui; Yong E. Zhang; Chuan Ma; Ruiliang Zhu; Yu Jia; Meizhi Wang; Mitsuyasu Hasebe; Jinzhong Fu; Bernard Goffinet; Hong Ma; Stefan A. Rensing; Ralf Reski; Yikun He;pmid: 37562403
The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cell.2023.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cell.2023.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Saudi Arabia, Saudi Arabia, United Kingdom, GermanyPublisher:American Association for the Advancement of Science (AAAS) Pörtner, H-O; Scholes, R J; Arneth, A; Barnes, D K A; Burrows, M T; Diamond, S E; Duarte, C M; Kiessling, W; Leadley, P; Managi, S; McElwee, P; Midgley, G; Ngo, H T; Obura, D; Pascual, U; Sankaran, M; Shin, Y J; Val, A L;Earth’s biodiversity and human societies face pollution, overconsumption of natural resources, urbanization, demographic shifts, social and economic inequalities, and habitat loss, many of which are exacerbated by climate change. Here, we review links among climate, biodiversity, and society and develop a roadmap toward sustainability. These include limiting warming to 1.5°C and effectively conserving and restoring functional ecosystems on 30 to 50% of land, freshwater, and ocean “scapes.” We envision a mosaic of interconnected protected and shared spaces, including intensively used spaces, to strengthen self-sustaining biodiversity, the capacity of people and nature to adapt to and mitigate climate change, and nature’s contributions to people. Fostering interlinked human, ecosystem, and planetary health for a livable future urgently requires bold implementation of transformative policy interventions through interconnected institutions, governance, and social systems from local to global levels.
https://dx.doi.org/1... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abl4881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abl4881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Lipson, Mathew; Grimmond, Sue; Best, Martin; Chow, Winston; Christen, Andreas; Chrysoulakis, Nektarios; Coutts, Andrew; Crawford, Ben; Earl, Stevan; Evans, Jonathan; Fortuniak, Krzysztof; Heusinkveld, Bert G.; Hong, Je-Woo; Hong, Jinkyu; Järvi, Leena; Jo, Sungsoo; Kim, Yeon-Hee; Kotthaus, Simone; Lee, Keunmin; Masson, Valéry; McFadden, Joseph P.; Michels, Oliver; Pawlak, Wlodzimierz; Roth, Matthias; Sugawara, Hirofumi; Tapper, Nigel; Velasco, Erik; Ward, Helen Claire;------------------------------------------------------------------------------------------------------------------------------------------- This version has been superseded. The latest version is at https://doi.org/10.5281/zenodo.5517550 ------------------------------------------------------------------------------------------------------------------------------------------- Eddy covariance flux tower datasets of all Urban-PLUMBER sites, associated with the manuscript: "Harmonized, gap-filled dataset from 20 urban flux tower sites" Use of any data must give credit through citation of the above manuscript and other sources as appropriate. We recommend data users consult with site contributing authors and/or the coordination team in the project planning stage. Relevant contacts are included in timeseries metadata. For site information and timeseries plots see https://urban-plumber.github.io/sites. For processing code see https://github.com/matlipson/urban-plumber_pipeline. Within each site folder: - `index.html`: A summary page with site characteristics and timeseries plots. - `SITENAME_sitedata_vX.csv`: comma seperated file for numerical site characteristics e.g. location, surface cover fraction etc. - `timeseries/` (following files available as netCDF and txt) - `SITENAME_raw_observations_vX`: site observed timeseries before project-wide quality control. - `SITENAME_clean_observations_vX`: site observed timeseries after project-wide quality control. - `SITENAME_metforcing_vX`: site observed timeseries after project-wide quality control and gap filling. - `SITENAME_era5_corrected_vX`: site ERA5 surface data (1990-2020) with bias corrections as applied in the final dataset. - `log_processing_SITENAME_vX.txt`: a log of the print statements through running the create_dataset_SITENAME scripts. Authors Mathew Lipson, Sue Grimmond, Martin Best, Andreas Christen, Andrew Coutts, Ben Crawford, Bert Heusinkveld, Erik Velasco, Helen Claire Ward, Hirofumi Sugawara, Je-Woo Hong, Jinkyu Hong, Jonathan Evans, Joseph McFadden, Keunmin Lee, Krzysztof Fortuniak, Leena Järvi, Matthias Roth, Nektarios Chrysoulakis, Nigel Tapper, Oliver Michels, Simone Kotthaus, Stevan Earl, Sungsoo Jo, Valéry Masson, Winston Chow, Wlodzimierz Pawlak, Yeon-Hee Kim. Corresponding author: Mathew Lipson <m.lipson@unsw.edu.au>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5517551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 71visibility views 71 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5517551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 France, United StatesPublisher:Wiley Funded by:SNSF | Climate and Environmental...SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System 2021-2025 (bgcCEP20)Chang, Kuang-Yu; Riley, William J; Collier, Nathan; McNicol, Gavin; Fluet-Chouinard, Etienne; Knox, Sara H; Delwiche, Kyle B; Jackson, Robert B; Poulter, Benjamin; Saunois, Marielle; Chandra, Naveen; Gedney, Nicola; Ishizawa, Misa; Ito, Akihiko; Joos, Fortunat; Kleinen, Thomas; Maggi, Federico; McNorton, Joe; Melton, Joe R; Miller, Paul; Niwa, Yosuke; Pasut, Chiara; Patra, Prabir K; Peng, Changhui; Peng, Sushi; Segers, Arjo; Tian, Hanqin; Tsuruta, Aki; Yao, Yuanzhi; Yin, Yi; Zhang, Wenxin; Zhang, Zhen; Zhu, Qing; Zhu, Qiuan; Zhuang, Qianlai;doi: 10.1111/gcb.16755 , 10.48350/182628
pmid: 37190869
AbstractThe recent rise in atmospheric methane (CH4) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH4 source, estimates of global wetland CH4 emissions vary widely among approaches taken by bottom‐up (BU) process‐based biogeochemical models and top‐down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi‐model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH4 emission estimates and model performance. We find that using better‐performing models identified by observational constraints reduces the spread of wetland CH4 emission estimates by 62% and 39% for BU‐ and TD‐based approaches, respectively. However, global BU and TD CH4 emission estimate discrepancies increased by about 15% (from 31 to 36 TgCH4 year−1) when the top 20% models were used, although we consider this result moderately uncertain given the unevenly distributed global observations. Our analyses demonstrate that model performance ranking is subject to benchmark selection due to large inter‐site variability, highlighting the importance of expanding coverage of benchmark sites to diverse environmental conditions. We encourage future development of wetland CH4 models to move beyond static benchmarking and focus on evaluating site‐specific and ecosystem‐specific variabilities inferred from observations.
https://dx.doi.org/1... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 08 Jul 2022 FrancePublisher:Elsevier BV Patrick Rousset; Mark Daniel G. de Luna; Arjay A. Arpia; Arjay A. Arpia; Wei Hsin Chen; Wei Hsin Chen; Wei Hsin Chen; Su Shiung Lam; Su Shiung Lam;Abstract With drastic fossil fuel depletion and environmental deterioration concerns, a move towards a more sustainable bioenergy-based economy is essential. Lately, the application of microwave (MW) irradiation for waste processing has been attracting interest globally. MW-assisted heating possesses several advantages such as the provision of high microwave energy into dielectric materials with deeper penetration for internal heat generation, showing beneficial features in improving the heating rate and reducing the reaction time. Consequently, the most recent literature regarding the applications of MW-assisted heating for biomass pretreatment as well as biofuel and bioenergy production was reviewed and consolidated in this study. An impressive increase in the product yield and improvement of the product properties are reported, with the use of MW-assisted heating in several conversion routes to produce biofuels. Despite being a promising technology for biofuel production, some major fundamental data of MW-assisted heating have not been comprehensively identified. Therefore, the feasibility of this technology for large-scale implementation is still subpar. Understanding the interaction between the feedstock and the microwave electromagnetic field, and the optimization of several operational and mechanical parameters are the two main keystones that would propel the industrialization of MW heating in the near future. This provides key insights leading to increased feasibility and more advanced application of MW heating.
Agritrop arrow_drop_down Chemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.126233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 241 citations 241 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Agritrop arrow_drop_down Chemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.126233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Sinet-Mathiot, Virginie; Le Meillour, Louise;Le Meillour & Sinet-Mathiot et al. 2024 Increasing sustainability in palaeoproteomics by optimizing digestion times for large-scale archaeological bone analyses DOI: 10.1016/j.isci.2024.109432 MALDI-ToF MS data (raw data: mzML files, merged spectra: msd files) used for the ZooMS analysis of the bone material from Baishiya Karst Cave (China) and La Draga (Spain), along with the R codes for merging triplicates into one msd file.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8290649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8290649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Mehdi Sellali; Achour Betka; Abdesslem Djerdir; Yongheng Yang; Imene Bahri; Said Drid;The present paper exhibits a real time assessment of a robust Energy Management Strategy (EMS) for battery-super capacitor (SC) Hybrid Energy Storage System (HESS). The proposed algorithm, dedicated to an electric vehicular application, is based on a self-gain scheduled controller, which guarantees the H∞ performance for a class of linear parameter varying (LPV) systems. Assuming that the duty cycle of the involved DC-DC converters are considered as the variable parameters, that can be captured in real time, and forwarded to the controller to ensure both; the performance and robustness of the closed-loop system. The subsequent controller is therefore time-varying and it is automatically scheduled according to each parameter variation. This algorithm has been validated through experimental results provided by a tailor-made test bench including both the HESS and the vehicle traction emulation system. The experimental results demonstrate the overall stability of the system, where the proposed LPV supervisor successfully accomplishes a power frequency splitting in an adequate way, respecting the dynamic of the sources. The proposed solution provides significant performances for different speed levels.
VBN arrow_drop_down IEEE Transactions on Energy ConversionArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tec.2020.3017811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert VBN arrow_drop_down IEEE Transactions on Energy ConversionArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tec.2020.3017811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Boquera, Laura; Castro Chicot, José Ramón; Pisello, Anna Laura; Fabiani, Claudia; +3 AuthorsBoquera, Laura; Castro Chicot, José Ramón; Pisello, Anna Laura; Fabiani, Claudia; D'Alessandro, Antonella; Ubertini, Filippo; Cabeza, Luisa F.;The incorporation of recycled materials in concrete as a partial replacement of cement is becoming an alternative strategy for decreasing energy-intensive and CO2 emissions imputable to the cement manufacture, while investigating new potential uses of such multifunctional materials for environmental sustainability opportunities. Therefore, low-cost and worldwide availability of by-products materials is being assessed for sensible heat thermal energy storage applications based on cementitious materials. A greater concern is especially required focusing on the thermal stability of cement paste under high temperature cycled conditions. Moreover, compatibility between cement type and supplementary cementitious materials is determinant for the proper performance reliability. In this study, benchmark cement types were selected, i.e., ordinary Portland and calcium aluminate. Six supplementary cementitious materials were added to both types of cement in a content of 10 % and 25 %. Thermo-mechanical properties were studied before and after 10 thermal cycles from 290 to 650 ◦C. Results after thermal cycling showed that calcium aluminate cement paste mixtures maintained their integrity. However, most ordinary Portland cement paste mixtures were deteriorated: only mixtures with 25 % cement replacement with chamotte, flay ash, and ground granulated blast furnace slag remained without cracks. Calcium aluminate cement paste mixtures obtained the highest compressive strength, for partial replacement of cement with 10 % of chamotte, ground granulated blast furnace slag, and iron silicate. The incorporation of supplementary cementitious materials did not increase the thermal conductivity. This work was partially funded by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31 - MCIU/AEI/FEDER, UE) and by the Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (AEI) (RED2018-102431-T). The authors at University of Lleida would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537). GREiA is certified agent TECNIO in the category of technology developers from the Government of Catalonia. This work is partially supported by ICREA under the ICREA Academia programme and by the Italian project ‘SOS-CITTA’ supported by Fondazione Cassa di Risparmio di Perugia under grant agreement No 2018.0499.026. Laura Boquera acknowledgments are due to the PhD school in Energy and Sustainable Development from University of Perugia. Laura Boquera would like to acknowledge the financial support provided by UNIPG – CIRIAF InpathTES project. The authors also thank the companies that provided the material to make possible this experimental research: Arciresa, Abrasivos Mendiola EDERSA—Masaveu Industria, General Admixtures S.p.A, Mapei, Ciments Molins industrial, and Promsa for the material supplied in this research. Financial support of the UNIPG-CIRIAF team has been achieved from the Italian Ministry of University and Research (MUR) in the framework of the Project FISR 2019: “Eco Earth” (code 00245) and it is gratefully acknowledged.
Repositori Obert UdL arrow_drop_down Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.105370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repositori Obert UdL arrow_drop_down Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.105370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:American Society of Civil Engineers (ASCE) Authors: Giorgia Dalla Santa; Philippe Pasquier; Luca Schenato; Antonio Galgaro;For the design of ground-source heat-pump systems, the local subsoil is an invariant factor. To improve the evaluation of the local heat exchange capability, significant efforts recently have been devoted to identifying the ground thermal conductivity vertical profile. In recent years, an innovative method using hybrid optic fiber cables inserted into the ground has been developed. The technique relies on copper wires that thermally stimulate the ground. Optical fibers measure the temperature variation over time all along the cable at a high spatial and temporal resolution. In this work, the hybrid cable was grouted into a 125-m well located in the Po Plain in Northern Italy. The provided core defined the geological environment as a continuous succession of unconsolidated alluvial deposits of very limited thickness, grouped in 15 different granulometric units. Three enhanced thermal response test (ETRT) data sets were acquired in different seasons; for 5 days of heating followed by 5 days of recovery, the soil temperature was recorded continuously along the well, with a spatial resolution of 1 m. A new approach using a multiple linear regression is proposed to analyze the data sets to distinguish the thermal conductivity of each individual granulometric unit. The obtained thermal conductivity values were compared and discussed considering the standard thermal response test outputs and the thermal conductivity data obtained from direct measurements performed on the cores. The analytical method's reliability stands due to the high repeatability of the obtained results, despite the increased complexity of the treated geological setting.
CNR ExploRA arrow_drop_down Journal of Geotechnical and Geoenvironmental EngineeringArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)gt.1943-5606.0002724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Journal of Geotechnical and Geoenvironmental EngineeringArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)gt.1943-5606.0002724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 PortugalPublisher:Elsevier BV Kashif Mushtaq; Kashif Mushtaq; Kashif Mushtaq; M. Madalena Alves; L. Peixoto; Adélio Mendes; Márcia S.S. Santos; Márcia S.S. Santos; Márcia S.S. Santos; Celia Dias-Ferreira;M.S.S. Santos is grateful to Portuguese Foundation for Science and Technology (FCT) for her PhD fellow (reference: SFRH/BD/104087/ 2014). Kashif Mushtaq is grateful to MIT Portugal Program for his doctoral grant (PD/BD/128041/2016) under the scope of the FCT. The authors would like to acknowledge to the FCT under the scope of the strategic funding of UID/BIO/04469 unit and COMPETE 2020 (POCI 01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145- FEDER-000004) funded by the European Regional Development Fund (ERDF), under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also acknowledge the Projects: i) POCI-01-0145- FEDER-006939 (LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy – UID/EQU/00511/2013), funded by the ERDF, through COMPETE2020 – Programa Operacional Competitividade e Internacionalizacao (POCI) and by nationals funds through FCT, ii) by the Project SunStorage - Harvesting and storage of solar energy”, with reference POCI-01-0145-FEDER-016387, funded by ERDF, through COMPETE 2020 –POCI), and by national funds, through FCT; (iii) Project PTDC/EQU-EQU/30510/2017 - POCI-01-0145- FEDER-030510 – Sunflow “Solar energy storage into redox flow batteries” funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) and by national funds (PIDDAC) through FCT/MCTES and iV) NORTE-01-0145- FEDER-000005 – LEPABE-2-ECO-INNOVATION, supported by North Portugal Regional Operational Programme (Norte 2020), under the Portugal 2020 Partnership Agreement, through the ERDF. The authors are indebted with all the colleagues who assisted in the laboratory work.
Repositório Aberto d... arrow_drop_down Repositório Aberto da Universidade do PortoArticle . 2021Data sources: Repositório Aberto da Universidade do PortoRepositório Aberto da Universidade AbertaArticle . 2021Data sources: Repositório Aberto da Universidade AbertaJournal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.102610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 102visibility views 102 download downloads 66 Powered bymore_vert Repositório Aberto d... arrow_drop_down Repositório Aberto da Universidade do PortoArticle . 2021Data sources: Repositório Aberto da Universidade do PortoRepositório Aberto da Universidade AbertaArticle . 2021Data sources: Repositório Aberto da Universidade AbertaJournal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.102610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Ruoyang Hu; Xuedong Li; Yong Hu; Runjie Zhang; Qiang Lv; Min Zhang; Xianyong Sheng; Feng Zhao; Zhijia Chen; Yuhan Ding; Huan Yuan; Xiaofeng Wu; Shuang Xing; Xiaoyu Yan; Fang Bao; Ping Wan; Lihong Xiao; Xiaoqin Wang; Wei Xiao; Eva L. Decker; Nico van Gessel; Hugues Renault; Gertrud Wiedemann; Nelly A. Horst; Fabian B. Haas; Per K.I. Wilhelmsson; Kristian K. Ullrich; Eva Neumann; Bin Lv; Chengzhi Liang; Huilong Du; Hongwei Lu; Qiang Gao; Zhukuan Cheng; Hanli You; Peiyong Xin; Jinfang Chu; Chien-Hsun Huang; Yang Liu; Shanshan Dong; Liangsheng Zhang; Fei Chen; Lei Deng; Fuzhou Duan; Wenji Zhao; Kai Li; Zhongfeng Li; Xingru Li; Hengjian Cui; Yong E. Zhang; Chuan Ma; Ruiliang Zhu; Yu Jia; Meizhi Wang; Mitsuyasu Hasebe; Jinzhong Fu; Bernard Goffinet; Hong Ma; Stefan A. Rensing; Ralf Reski; Yikun He;pmid: 37562403
The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cell.2023.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cell.2023.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Saudi Arabia, Saudi Arabia, United Kingdom, GermanyPublisher:American Association for the Advancement of Science (AAAS) Pörtner, H-O; Scholes, R J; Arneth, A; Barnes, D K A; Burrows, M T; Diamond, S E; Duarte, C M; Kiessling, W; Leadley, P; Managi, S; McElwee, P; Midgley, G; Ngo, H T; Obura, D; Pascual, U; Sankaran, M; Shin, Y J; Val, A L;Earth’s biodiversity and human societies face pollution, overconsumption of natural resources, urbanization, demographic shifts, social and economic inequalities, and habitat loss, many of which are exacerbated by climate change. Here, we review links among climate, biodiversity, and society and develop a roadmap toward sustainability. These include limiting warming to 1.5°C and effectively conserving and restoring functional ecosystems on 30 to 50% of land, freshwater, and ocean “scapes.” We envision a mosaic of interconnected protected and shared spaces, including intensively used spaces, to strengthen self-sustaining biodiversity, the capacity of people and nature to adapt to and mitigate climate change, and nature’s contributions to people. Fostering interlinked human, ecosystem, and planetary health for a livable future urgently requires bold implementation of transformative policy interventions through interconnected institutions, governance, and social systems from local to global levels.
https://dx.doi.org/1... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abl4881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abl4881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Lipson, Mathew; Grimmond, Sue; Best, Martin; Chow, Winston; Christen, Andreas; Chrysoulakis, Nektarios; Coutts, Andrew; Crawford, Ben; Earl, Stevan; Evans, Jonathan; Fortuniak, Krzysztof; Heusinkveld, Bert G.; Hong, Je-Woo; Hong, Jinkyu; Järvi, Leena; Jo, Sungsoo; Kim, Yeon-Hee; Kotthaus, Simone; Lee, Keunmin; Masson, Valéry; McFadden, Joseph P.; Michels, Oliver; Pawlak, Wlodzimierz; Roth, Matthias; Sugawara, Hirofumi; Tapper, Nigel; Velasco, Erik; Ward, Helen Claire;------------------------------------------------------------------------------------------------------------------------------------------- This version has been superseded. The latest version is at https://doi.org/10.5281/zenodo.5517550 ------------------------------------------------------------------------------------------------------------------------------------------- Eddy covariance flux tower datasets of all Urban-PLUMBER sites, associated with the manuscript: "Harmonized, gap-filled dataset from 20 urban flux tower sites" Use of any data must give credit through citation of the above manuscript and other sources as appropriate. We recommend data users consult with site contributing authors and/or the coordination team in the project planning stage. Relevant contacts are included in timeseries metadata. For site information and timeseries plots see https://urban-plumber.github.io/sites. For processing code see https://github.com/matlipson/urban-plumber_pipeline. Within each site folder: - `index.html`: A summary page with site characteristics and timeseries plots. - `SITENAME_sitedata_vX.csv`: comma seperated file for numerical site characteristics e.g. location, surface cover fraction etc. - `timeseries/` (following files available as netCDF and txt) - `SITENAME_raw_observations_vX`: site observed timeseries before project-wide quality control. - `SITENAME_clean_observations_vX`: site observed timeseries after project-wide quality control. - `SITENAME_metforcing_vX`: site observed timeseries after project-wide quality control and gap filling. - `SITENAME_era5_corrected_vX`: site ERA5 surface data (1990-2020) with bias corrections as applied in the final dataset. - `log_processing_SITENAME_vX.txt`: a log of the print statements through running the create_dataset_SITENAME scripts. Authors Mathew Lipson, Sue Grimmond, Martin Best, Andreas Christen, Andrew Coutts, Ben Crawford, Bert Heusinkveld, Erik Velasco, Helen Claire Ward, Hirofumi Sugawara, Je-Woo Hong, Jinkyu Hong, Jonathan Evans, Joseph McFadden, Keunmin Lee, Krzysztof Fortuniak, Leena Järvi, Matthias Roth, Nektarios Chrysoulakis, Nigel Tapper, Oliver Michels, Simone Kotthaus, Stevan Earl, Sungsoo Jo, Valéry Masson, Winston Chow, Wlodzimierz Pawlak, Yeon-Hee Kim. Corresponding author: Mathew Lipson <m.lipson@unsw.edu.au>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5517551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 71visibility views 71 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5517551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 France, United StatesPublisher:Wiley Funded by:SNSF | Climate and Environmental...SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System 2021-2025 (bgcCEP20)Chang, Kuang-Yu; Riley, William J; Collier, Nathan; McNicol, Gavin; Fluet-Chouinard, Etienne; Knox, Sara H; Delwiche, Kyle B; Jackson, Robert B; Poulter, Benjamin; Saunois, Marielle; Chandra, Naveen; Gedney, Nicola; Ishizawa, Misa; Ito, Akihiko; Joos, Fortunat; Kleinen, Thomas; Maggi, Federico; McNorton, Joe; Melton, Joe R; Miller, Paul; Niwa, Yosuke; Pasut, Chiara; Patra, Prabir K; Peng, Changhui; Peng, Sushi; Segers, Arjo; Tian, Hanqin; Tsuruta, Aki; Yao, Yuanzhi; Yin, Yi; Zhang, Wenxin; Zhang, Zhen; Zhu, Qing; Zhu, Qiuan; Zhuang, Qianlai;doi: 10.1111/gcb.16755 , 10.48350/182628
pmid: 37190869
AbstractThe recent rise in atmospheric methane (CH4) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH4 source, estimates of global wetland CH4 emissions vary widely among approaches taken by bottom‐up (BU) process‐based biogeochemical models and top‐down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi‐model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH4 emission estimates and model performance. We find that using better‐performing models identified by observational constraints reduces the spread of wetland CH4 emission estimates by 62% and 39% for BU‐ and TD‐based approaches, respectively. However, global BU and TD CH4 emission estimate discrepancies increased by about 15% (from 31 to 36 TgCH4 year−1) when the top 20% models were used, although we consider this result moderately uncertain given the unevenly distributed global observations. Our analyses demonstrate that model performance ranking is subject to benchmark selection due to large inter‐site variability, highlighting the importance of expanding coverage of benchmark sites to diverse environmental conditions. We encourage future development of wetland CH4 models to move beyond static benchmarking and focus on evaluating site‐specific and ecosystem‐specific variabilities inferred from observations.
https://dx.doi.org/1... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu